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Operator and its Commutator on

Morrey-Herz Type Spaces
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Abstract. In this paper we will prove the boundedness of weighted Hardy-Cesàro
operator on Herz and Morrey-Herz spaces with absolutely homogeneous weights. The
corresponding operator norms are obtained. We also prove the boundedness of the
commutators of Hardy-Cesàro operator on weighted spaces of Morrey-Herz type, with
their symbols belong to Lipschitz space. By these we extend and strengthen previous
results due to Kuang [15], Fu et al. [9] and Tang et al. [20].
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1. Introduction

The Hardy inequality and its various generalizations play an important role in
various branches of analysis such as approximation theory, partial differential
equations, theory of function spaces etc. Therefore during the last twenty years
a huge amount of papers has been devoted to Hardy and Hardy type inequalities
in various spaces. The main results and their applications are given in the books
[2, 6, 18] and references therein.

In the following, we present some of these results that serve and motivate
the contents of this paper. Let ψ : [0, 1] → [0,∞) be a measurable function.
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The weighted Hardy operator Uψ is defined on all complex-valued measurable
functions f on Rn as

Uψf(x) =

∫ 1

0

f(tx)ψ(t)dt.

When ψ = 1, this operator is reduced to the usual Hardy operator S defined by

Sf(x) =
1

x

∫ x

0

f(t)dt.

Results on the boundedness of Uψ on Lp (Rn) were first proved by Carton-
Lebrun and Fosset [1]. Under certain conditions on ψ, the authors also found
that Uψ is bounded from BMO(Rn) into itself. Furthermore, Uψ commutes with
the Hilbert transform in the case n = 1 and with a certain Calderón-Zygmund
singular integral operator (and thus with the Riesz transform) in the case n ≥ 2.
A deep result for the boundeness of Uψ on Lp space were given by J. Xiao [21]
read as.

Theorem 1.1 (Xiao [21, p. 662]). Let 1 < p < ∞ and ψ : [0, 1] → [0,∞) be a
measurable function. Then, Uψ is bounded on Lp(Rn) if and only if∫ 1

0

t−
n
pψ(t)dt <∞.

Furthermore,

‖Uψ‖Lp(Rn)→Lp(Rn) =

∫ 1

0

t−
n
pψ(t)dt <∞.

Theorem 1.1 implies immediately the following celebrated integral inequal-
ity, due to Hardy [11]

‖Sf‖Lp(R) ≤
p

p− 1
‖f‖Lp(R).

We remind that the commutator of Uψ, in the sense of Coifman-Rochberg-
Weiss [5], is defined as

U b
ψf = bUψf − Uψ(bf).

Then, there is a deep result on U b
ψ obtained by Fu et al. [10], where they showed

that U b
ψ is bounded on Lp(Rn) for all b ∈ BMO(Rn) if and only if∫ 1

0

t−
n
pψ(t) log

2

t
dt <∞.

On the other hand, Chuong and Hung [3] considered a more general operator
of weighted Hardy operator as follows.
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Definition 1.2 ([3, p. 698]). Let ψ : [0, 1]→ [0,∞), s : [0, 1]→ Rn be measur-
able functions. We define the generalized Hardy-Cesàro operator Uψ,s, associ-
ated to the parameter curve s(x, t) := s(t)x, as

Uψ,sf(x) =

∫ 1

0

f (s(x, t))ψ(t) dt. (1)

for a measurable complex valued function f on Rn.

Definition 1.3 ([3, p. 699]). Let ψ : [0, 1] → [0,∞), s : [0, 1] → R and
b : Rn → C be measurable functions. Define the commutator of the weighted
Hardy-Cesàro operator U b

ψ,s as

U b
ψ,sf = bUψ,s − Uψ,s(bf), (2)

for a measurable complex valued function f on Rn.

It turns out that such operators are still keeping almost all nice properties
as the weighted Hardy-Littlewood average operators [10,21]. For examples, the
authors in [3] obtained a sufficient and necessary condition on ψ(t) and s(t)
such that Uψ,s is bounded on Lp and BMO spaces. The corresponding operator
norms are also worked out. The authors also give necessary and sufficient
conditions on ψ, s such that the commutator of Uψ,s is bounded on weighted Lp,
with symbol b in BMO. This is interesting to notice that, the p-adic version
of Uψ,s has a surprising application to discrete Hardy inequalities. More details,
by using the boundedness of p-adic Hardy-Cesàro, the author in [12] proved the
following inequality

Theorem 1.4 (Hung [12, Corollary 3.2, p. 870]). Let (xj)j∈Z and (yk)k≥0 be
two nonnegative sequences. For any positive integer β and for any 1 ≤ r <∞,
the following Hardy inequality holds(∑

j∈Z

(
∞∑
n=0

xj+βn yn

)r) 1
r

≤

(∑
j∈Z

xrj

)(
∞∑
n=0

yn

) 1
r

. (3)

For further readings on Uψ and Uψ,s operators or even more on Hausdorff
operators in Morrey-Herz spaces, Campanato spaces, Hardy spaces, . . ., the
reader may find in [3, 4, 8–10, 12, 13, 15, 19, 20]. Now we are ready to describe
our main goals of this paper.

Kuang [15] generalizes Xiao’s results to Herz spaces. He obtained some
necessary and sufficient conditions for the weighted Cesàro mean operators Vψ
to be bounded on Herz spaces, where

Vψf(x) =

∫ 1

0

f
(x
t

)
tnψ(t)dt, (4)
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for a measurable complex-valued function f on Rn. Fu and Lu [9]gave a neces-
sary and sufficient condition on the weight function for the boundedness of Uψ
on the Morrey-Herz space. Our first aim of this paper is to generalize results
by Kuang [15], and by Fu, Lu [9] to the weighted Hardy-Cesàro operator on the
weighted Herz-type spaces. Notice that, for the boundedness on Herz spaces,

we could remove the condition of concavity of the function t 7→ t−n(1−
1
q
)ψ(t),

which were needed in [15, Theorem 1-2], in case 1 ≤ p <∞.
On the other hand, in 2011, Tang et al. [20] gave a necessary condition

on ψ(t) such that U b
ψ is bounded on Morrey-Herz spaces with symbol b belongs to

a Lipschitz space (see Section 2 for its definition). They obtained the following
Theorem.

Theorem 1.5 (Tang, Xue, Zhou [20, p. 269]). Let ψ : [0; 1] → [0;∞) be a
measurable function, 0 < β < 1, b ∈ Lipβ(Rn), 1 ≤ q2 ≤ q1 <∞. If

C =

∫ 1

0

t
−
(
γ1−λ− n

q1

)
ψ(t)dt <∞, (5)

then U b
ψ is bounded from MK̇γ1,λ

p,q1
to MK̇γ2,λ

p,q2
, where γ1 = γ2 + β + n

(
1
q2
− 1

q1

)
.

Our second purpose of this paper, is to show that the condition (5) could
be replaced by a weaker condition, and such result still holds when considering
the commutator of Uψ,s in two-weighted Morrey-Herz spaces.

Our paper is organized as follows. In the first part of Section 2, we introduce
necessary preliminaries on Morrey-Herz spaces and on a class of homogeneous
weights. Our main theorems are given in Section 3. The main proofs for
theorems are given in Section 4 and Section 5.

2. Notations and definitions

Throughout the whole paper, n denotes the dimensional number of the Eu-
clidean space Rn. By ‖T‖X→Y , we denote the norm of T between two normed
vector spaces X, Y . C denotes a positive geometric constant which is indepen-
dent of the main parameters, but may change from line to line. For any mea-
surable set E, we denote by χE its characteristic function, by |E| its Lebesgue
measure, and by ω(E) the integral

∫
E
ω(x)dx. For any a ∈ Rn and r > 0, we

shall denote by B(a, r) the ball centered at a with radius r. The symbol f ' g
means that f is equivalent to g (i.e. C−1f ≤ g ≤ Cf).

Let ω(x) be a weight function, that is a nonnegative locally integrable func-
tion on Rn. The weighted Lp(ω) space is defined as the set of all measurable
functions f such that

‖f‖p,ω =

(∫
Rn
|f(x)|pω(x)dx

) 1
p

<∞.
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Definition 2.1. Let 0 < β ≤ 1. The Lipschitz space Lipβ(Rn) is defined as the
set of all functions f : Rn → C such that ‖f‖Lipβ(Rn) <∞, where

‖f‖Lipβ(Rn) := sup
x,y∈Rn, x 6=y

|f(x)− f(y)|
|x− y|β

<∞. (6)

We now present some notations and definitions from the theory of Herz and
Morrey-Herz spaces, which are necessary for understanding this paper. They
are taken mainly from the book [16] (for definitions and applications of two-
weighted Morrey-Herz spaces). For k ∈ Z, let Bk = {x ∈ Rn : |x| ≤ 2k},
Dk = Bk \Bk−1 and χk denotes the characteristic function of the set Dk.

Definition 2.2 (see [9, 16]). Let γ ∈ R, 0 < p < ∞, λ ≥ 0 and ω be weight
function. We denoteMK̇γ,λ

p,q (ω) by the space of all functions f ∈ Lqloc(Rn\{0}, ω)
such that ‖f‖MK̇γ,λ

p,q (ω)
<∞, where

‖f‖MK̇γ,λ
p,q (ω)

= sup
k0∈Z

2−k0λ

(
k0∑

k=−∞

2kγp‖fχk‖pq,ω

) 1
p

 .

Definition 2.3 (see [17]). Let γ ∈ R, 0 < p ≤ ∞, λ ≥ 0 and ω1, ω2 be
weight functions. We denote MK̇γ,λ

p,q (ω1, ω2) by the space of all functions f ∈
Lqloc(Rn \ {0}, ω2) such that ‖f‖MK̇γ,λ

p,q (ω1,ω2)
<∞, where

‖f‖MK̇γ,λ
p,q (ω1,ω2)

= sup
k0∈Z

ω1 (Bk0)
−λ
n

(
k0∑

k=−∞

ω1 (Bk)
γ p
n ‖fχk‖pq,ω2

) 1
p

 .

When ω1(x) = c−1, where c = |B0| then MK̇γ,λ
p,q (ω1, ω2) is the usual weighted

Herz space MKα,λ
p,q (ω). We shall not discuss further the applications of these

spaces here, but refer to [16,17].
Let ω be any measurable function on Rn. Let ρ be the measure on (0,∞)

so that ρ(E) =
∫
E
rn−1dr and the map Φ(x) =

(
|x|, x|x|

)
. Then there exists an

unique Borel measure σ on Sn such that ρ×σ is the Borel measure induced by Φ
from Lebesgue measure on Rn (n > 1). (see [7, p. 78] or [14] for more details).
In one dimension case, it it conventional that

∫
Sn
ω(x)dσ(x) refers to 2ω(1). In

this paper, we shall denote 2ω(1) by
∫
Sn
ω(x)dσ(x) in case n = 1.

Definition 2.4 ([3, p. 700]). Let α be a real number. Let Wα be the set of all
functions ω on Rn, which are measurable, ω(x) > 0 for almost everywhere x ∈
Rn, 0 <

∫
Sn
ω(y)dσ(y) <∞, and are absolutely homogeneous of degree α, that

is ω(tx) = |t|αω(x), for all t ∈ R \ {0}, x ∈ Rn, where Sn = {x ∈ Rn : |x| = 1}.

Some basic examples and properties of Wα, see [3]. We also have the fol-
lowing property for Wα, whose proof is trivial and left to the reader.
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Lemma 2.5. If ω ∈ Wα, α > −n, then there exists a constant C = C(ω, n) > 0

such that ω(Bk) = C|Bk|
n+α
n and

ω(Dk) =
(
1− 2−α−n

)
ω(Bk),

for any integer k.

3. Statement of the results

In [15], Kuang gives some necessary and sufficient conditions for the weighted
Cesàro mean operators Vψ (see (4)) to be bounded on Kα

p,q(Rn). In [9], Fu
and Lu obtained a necessary and sufficient condition on the weight function for
the boundedness of Uψ on the Morrey-Herz space. The corresponding operator
norm inequalities are also obtained. We will extend these results to the Hardy-
Cesàro operators on the Morrey-Herz spaces with homogeneous weights. Our
first main results are the following theorems concerning the boundedness and
bounds of Uψ,s on the weighted Morrey-Herz spaces.

Theorem 3.1. Let α, β be arbitrary real numbers, and p, q ∈ [1,∞). Suppose
that s(t) 6= 0 for almost everywhere t ∈ [0, 1] and ω ∈ Wβ.

(i) If ∫ 1

0

|s(t)|−α−
n+β
q ψ(t)dt <∞, (7)

then Uψ,s is a bounded operator on Kα
p,q(ω). Moreover,

‖Uψ,s‖Kα
p,q(ω)→Kα

p,q(ω) ≤ 2
(
1 + 2|α|

) ∫ 1

0

|s(t)|−α−
n+β
q ψ(t)dt (8)

(ii) Conversely, suppose that Uψ,s is bounded on the space Kα
p,q(ω). If

|s(t)| ≥ c|t|ε for almost everywhere t ∈ [0, 1], where c, ε are some posi-
tive constants, then (7) holds. Furthermore,

‖Uψ,s‖Kα
p,q(ω)→Kα

p,q(ω) ≥
∫ 1

0

|s(t)|−α−
n+β
q ψ(t)dt. (9)

Theorem 3.2. Let α, β be arbitrary real numbers, λ > 0, and p, q ∈ [1,∞).
Suppose that s(t) 6= 0 for almost everywhere t ∈ [0, 1] and ω ∈ Wβ. Then the
operator Uψ,s is bounded from the space MKα,λ

p,q (ω) into itself if and only if∫ 1

0

|s(t)|λ−α−
n+β
q ψ(t)dt <∞. (10)

Moreover, when (10) holds, we have

‖Uψ,s‖MKα,λ
p,q (ω)→MKα,λ

p,q (ω) '
∫ 1

0

|s(t)|λ−α−
n+β
q ψ(t)dt. (11)
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When s(t) = t, ω = 1, one obtains immediately [9, Theorem 1-3]. When
s(t) = 1

t
, ω(x) = |x|β, and replacing ψ(t) by t−nψ(t) one gets [9, Theorem 4]

for β = 0 and [15, Theorem 1-2] for any β, and in case 1 ≤ p <∞.
On the other hand, Fu, Liu and Lu [10] established a sufficient and necessary

condition on the weight function ψ to ensure the Lp (1 < p <∞) boundedness
of U b

ψ when b ∈ BMO. In [8], Fu proved the (Lp, Lq) boundedness of the

classical Hardy operator when symbols b ∈ Lipβ(Rn). Recently, Tang et al. [20]
found a sufficient condition on the weight function ψ to get the boundedness
of U b

ψ on Herz type spaces when b ∈ Lipβ(Rn). We will extend that result to
the Hardy-Cesàro operators. More details, we give a sufficient condition on
functions ψ(t) and s(t) for which U b

ψ,s is bounded on the weighted Morrey-Herz

type spaces with symbols b ∈ Lipβ(Rn).

Theorem 3.3. Let 1 ≤ q2 ≤ q1 < ∞, 0 < λ < ∞, α > −n, ωi ∈ Wα with
i = 1, 2 and b ∈ Lipβ (Rn), 0 < β ≤ 1. Suppose that s(t) 6= 0 for almost
everywhere t ∈ [0, 1] and

A =

∫ 1

0

|s(t)|−(n+α)
(
γ1−λ
n
− 1
q1

)
|1− s(t)|βψ(t)dt <∞. (12)

Then for any λ > 0 and 0 < p < ∞ or λ = 0 and 1 ≤ p < ∞, the
commutator U b

ψ,s is determined as a bounded operator from MK̇γ1,λ
p,q1

(ω1, ω2) to

MK̇γ2,λ
p,q2

(ω1, ω2), where γ1 = γ2 + nβ
n+α

+ n
(

1
q2
− 1

q1

)
.

When ω1 = 1
|B0| , ω2 = 1, s(t) = t we obtain the following result.

Corollary 3.4. Let ψ : [0; 1] → [0;∞), 0 < β ≤ 1, b ∈ Lipβ(Rn) and
1 ≤ q2 ≤ q1 <∞. If

B =

∫ 1

0

t
−(γ1−λ− n

q1
)
(1− t)βψ(t)dt <∞, (13)

then U b
ψ is bounded from MK̇γ1,λ

p,q1
to MK̇γ2,λ

p,q2
, where γ1 = γ2 + β + n

(
1
q2
− 1

q1

)
.

In [20], to obtain the boundedness of U b
ψ from MK̇γ1,λ

p,q1
to MK̇γ2,λ

p,q2
, the

authors required a sufficient condition condition on ψ that

C =

∫ 1

0

t
−
(
γ1−λ− n

q1

)
ψ(t)dt <∞.

Since 0≤ t≤1, then B≤C. In fact by choosing ψ(t) = t

(1−t)1+
β
2

, γ1− λ− n
q1

= 1,

since 0 < β ≤ 1, it is easy to see that C = ∞ but B < ∞. Thus our result

extends and strengthens result due to Tang et al. [20].
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4. Proofs of Theorem 3.1 and Theorem 3.2

Suppose that (10) holds. It is enough to show that Uψ,s is bounded on
MKα,λ

p,q (ω), where λ ≥ 0 (thus part (i) of Theorem 3.1 follows directly since
MKα,0

p,q (ω) = Kα
p,q(ω)). Fix k ∈ Z, using the Minkowski inequality and change

of variable y = s(t)x, we have

‖(Uψ,sf)χk‖q,ω =

(∫
Dk

∣∣∣∣∫ 1

0

f(s(t)x)ψ(t)dt

∣∣∣∣q ω(x)dx

) 1
q

≤
∫ 1

0

(∫
Dk

|f(s(t)x)|qω(x)dx

) 1
q

ψ(t)dt

=

∫ 1

0

(∫
S(k,t)

|f(y)|qω(y)dy

) 1
q

|s(t)|−
n+β
q ψ(t)dt,

where S(k, t) = {y ∈ Rn : 2k−1|s(t)| < |y| ≤ 2k|s(t)|}. For each t ∈ [0, 1] which
s(t) 6=0, one can find an integer number m=m(t) such that 2m−1< |s(t)|≤2m.
This implies S(k, t) is a subset of Dk+m−1 ∪Dk+m. Thus we obtain that

‖(Uψ,sf)χk‖q,ω ≤
∫ 1

0

(∫
Dk+m−1∪Dk+m

|f(y)|qω(y)dy

) 1
q

|s(t)|−
n+β
q ψ(t)dt

≤
∫ 1

0

(‖fχk+m−1‖q,ω + ‖fχk+m‖q,ω) |s(t)|−
n+β
q ψ(t)dt.

So by the definition of Morrey-Herz spaces, one has

‖Uψ,sf‖MKα,λ
p,q (ω)

= sup
k0∈Z

2−k0λ

(
k0∑

k=−∞

2kαp‖(Uψ,sf)χk‖pq,ω

) 1
p

≤ sup
k0∈Z

2−k0λ

(
k0∑

k=−∞

2kαp
(∫ 1

0

(‖fχk+m−1‖q,ω

+ ‖fχk+m‖q,ω) |s(t)|−
n+β
q ψ(t)dt

)p) 1
p

≤ sup
k0∈Z

2−k0λ
∫ 1

0

(
k0∑

k=−∞

2kαp‖fχk+m−1‖pq,ω|s(t)|
−(n+β

q
)p

) 1
p

|s(t)|−
n+β
q ψ(t)dt

+ sup
k0∈Z

2−k0λ
∫ 1

0

(
k0∑

k=−∞

2kαp‖fχk+m‖pq,ω

) 1
p

|s(t)|−
n+β
q ψ(t)dt



Bounds for the Weighted Hardy-Cesàro Operator 497

≤
∫ 1

0

sup
k0∈Z

2−(k0+m−1)λ

(
k0+m−1∑
k=−∞

2kαp‖fχk‖pq,ω

) 1
p

2(m−1)(λ−α)|s(t)|−
n+β
q ψ(t)dt

+

∫ 1

0

sup
k0∈Z

2−(k0+m)λ

(
k0+m∑
k=−∞

2kαp‖fχk‖pq,ω

) 1
p

2m(λ−α)|s(t)|−
n+β
q ψ(t)dt

≤ (1 + 2λ)‖f‖MKα,λ
p,q (ω)

∫ 1

0

(2−(m−1)α + 2−mα)|s(t)|λ−
n+β
q ψ(t)dt.

≤ (1 + 2λ)(1 + 2|α|)

(∫ 1

0

|s(t)|λ−α−
n+β
q ψ(t)dt

)
‖f‖MKα,λ

p,q (ω).

Hence, by (7) and (10), we get that Uψ,s is bounded on MKα,λ
p,q (ω) and

‖Uψ,s‖MKα,λ
p,q →MKα,λ

p,q
≤ (1 + 2λ)(1 + 2|α|)

∫ 1

0

|s(t)|λ−α−
n+β
q ψ(t)dt. (14)

Part (ii). Conversely, suppose that Uψ,s is bounded on the MKα,λ
p,q (ω), where

λ ≥ 0. We will consider two cases as follows.

Case 1 : λ > 0. In this case, we set

f0(x) = |x|λ−α−
n+β
q .

It is obviously that f0 ∈ Lqloc(ω,Rn \ {0}). Since ω(rx) = rβω(x) for any r > 0,

‖f0χk‖qq,ω =

∫
Dk

|x|qλ−qα−n−βω(x)dx

= ω(Sn)

∫ 2k

2k−1

rqλ−qα−1dr

=


ω(Sn) ln 2, if α = λ,∣∣∣∣1− 2q(α−λ)

(α− λ)q

∣∣∣∣ω(Sn)2−k(α−λ)q, if α 6= λ.

Therefore

‖f0‖MKα,λ
p,q (ω) = sup

k0∈Z
2−k0λ

(
k0∑

k=−∞

2kαp‖f0χk‖pq,ω

) 1
p

. ω(Sn)
1
q sup
k0∈Z

2−k0λ

(
k0∑

k=−∞

2kαp2kp(λ−α)

) 1
p

<∞.
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On the other hand, notice that ‖f0‖MKα,λ
p,q (ω) > 0 and

Uψ,sf0(x) = f0(x)

∫ 1

0

|s(t)|λ−α−
n+β
q ψ(t)dt.

Then ∫ 1

0

|s(t)|λ−α−
n+β
q ψ(t)dt ≤ ‖Uψ,s‖MKα,λ

p,q (ω)→MKα,λ
p,q (ω), (15)

Combining (14) and (15), then

‖Uψ,s‖MKα
p,q(ω)→MKα

p,q(ω) '
∫ 1

0

|s(t)|−α−
n+β
q ψ(t)dt,

which completes the proof of Theorem 3.2.

Case 2 : λ = 0. In this case, we set for any m ∈ Z,

fm(x) =

{
0, if |x| < 1,

|x|−α−
n+β
q
− 1

2m , if |x| ≥ 1.

First we have fmχk = 0 when k < 0. Let k be any nonnegative integer, we
choose m large enough such that α + 1

2m
6= 0. This gives

‖fmχk‖qq,ω =

∫
Dk

|x|−αq−n−β−
q

2m ω(x)dx

= ω(Sn)

∫ 2k

2k−1

r−qα−
q

2m
−1dr

=

∣∣∣∣∣1− 2q(α+
1

2m
)

q
(
α + 1

2m

) ∣∣∣∣∣ 2−kq(α+ 1
2m )ω(Sn).

Hence,

‖fm‖Kα
p,q(ω) =

(
∞∑

k=−∞

2kαp‖fmχk‖pq,ω

) 1
p

=

∣∣∣∣∣1− 2q(α+
1

2m
)

q(α + 1
2m

)

∣∣∣∣∣
1
q

ω(Sn)
1
q

(
∞∑
k=0

2kαp2−kp(α+
1

2m
)

) 1
p

<∞.

On the other hand,

Uψ,sfm(x) =

{
0, if |x| < 1,

|x|−α−
n+β
q
− 1

2m
∫
S(x)
|s(t)|−α−

n+β
q
− 1

2mψ(t)dt, if |x| ≥ 1,
(16)
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where S(x) = {t ∈ [0, 1] : |s(t)x| ≥ 1}. Since |s(t)| ≥ c|t|ε for almost every
t ∈ [0, 1], there exists a measurable subset A with |A| = 0 satisfying

S(x) ⊃ {t ∈ [0, 1] : c|t|ε|x| ≥ 1} \ A.
For every m ≥ 1, let

Sm =

{
t ∈ [0, 1] : |t| ≥ 2−

m
ε

c
1
ε

}
.

The sequence {Sm}m≥0 is increasing and tends to (0, 1]. From (16), for each
k ≤ 0, then (Uψ,sfm)χk = 0. Let k ≥ m ≥ 1, then

‖(Uψ,sfm)χk‖qq,ω ≥
∫
Dk

|x|−αq−n−β−
q

2m ω(x)

(∫
Sk

|s(t)|−α−
n+β
q
− 1

2mψ(t)dt

)q
dx

≥
(∫

Sm

|s(t)|−α−
n+β
q
− 1

2mψ(t)dt

)(∫
Dk

|x|−αq−n−β−
q

2m ω(x)dx

) 1
q

=

(∫
Sm

|s(t)|−α−
n+β
q
− 1

2mψ(t)dt

)
‖fmχk‖q,ω.

Therefore,

‖Uψ,sfm‖Kα
p,q(ω)

≥

(
∞∑
k=m

2kαp‖fmχk‖pq,ω

)1
p(∫

Dm

|s(t)|−α−
n+β
q
− 1

2mψ(t)dt

)

≥

∣∣∣∣∣1−2q(α+
1

2m
)

q(α+ 1
2m

)

∣∣∣∣∣
1
q

ω(Sn)
1
q

(
∞∑
k=m

2kαp2−kp(α+
1

2m
)

)1
q(∫

Dm

|s(t)|−α−
n+β
q
− 1

2mψ(t)dt

)
= ‖fm‖Kα

p,q(ω)

(
2−

m
2m

∫
Dm

|s(t)|−α−
n+β
q
− 1

2mψ(t)dt

)
.

So we have ‖Uψ,s‖Kα
p,q(ω)→Kα

p,q(ω) ≥ 2−
m
2m
∫
Dm
|s(t)|−α−

n+β
q
− 1

2mψ(t)dt. Letting
m→∞, one obtains

‖Uψ,s‖Kα
p,q(ω)→Kα

p,q(ω) ≥
∫ 1

0

|s(t)|−α−
n+β
q ψ(t)dt,

and hence Theorems 3.1 and 3.2 are proved.

5. Proof of Theorem 3.3

Let r = 1
q2
− 1

q1
. Suppose that A is finite. To obtain the boundedness of U b

ψ,s it
suffices to prove for any k0 ∈ Z that

ω1(Bk0)
−λ
n

(
k0∑

k=−∞

ω1(Bk)
γ2

p
n‖
(
U b
ψ,sf

)
χk‖pq2,ω2

)1
p

. ‖b‖Lipβ‖f‖MK̇
γ1,λ
p,q1

A. (17)
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Since b ∈ Lipβ(Rn),

|b(x)− b(s(t)x)| . ‖b‖Lipβ |1− s(t)|β |x|β.

For any k ∈ Z, by Minkowski’s and Hölder’s inequalities we have

‖
(
U b
ψ,sf

)
χk‖q2,ω2

=

(∫
Dk

∣∣∣∣∫ 1

0

(b(x)− b (s(t)x)) f (s(t)x)ψ(t)dt

∣∣∣∣q2 ω2(x)dx

) 1
q2

. ‖b‖Lipβ(Rn)|Bk|
β
n

∫ 1

0

(∫
Dk

|f(s(t)x)|q2ω2(x)dx

) 1
q2

ψ̃(t)dt

. ‖b‖Lipβ(Rn)|Bk|
β
n

∫ 1

0

(∫
Dk

|f(s(t)x)|q1ω2(x)dx

) 1
q1

(∫
Dk

ω2(x)dx

)r
ψ̃(t)dt

. ‖b‖Lipβ(Rn) |Bk|
β+(n+α)r

n

∫ 1

0

‖f (s(t) · ◦)χk‖q1,ω2ψ̃(t)dt,

where ψ̃(t) := |1 − s(t)|βψ(t). Since s(t) 6= 0 almost everywhere t ∈ [0, 1],
there exists an integer m = m(t) such that 2−m−1 < |s(t)| ≤ 2−m. Thus
s(t)x ∈ Dk−m−1 ∪Dk−m for each x ∈ Bk, t ∈ [0, 1]. This implies that

‖
(
U b
ψ,sf

)
χk‖q2,ω2

. ‖b‖Lipβ(Rn) |Bk|
β+(n+α)r

n

∫ 1

0

(∑
i=0,1

‖fχk−m−i‖q1,ω2

)
· |s(t)|−

n+α
q1 ψ̃(t)dt.

If we put

Sik(t) = ‖fχk−m−i‖q1,ω2 · |s(t)|
−n+α

q1 ψ̃(t)dt,

where i = 0, 1 then

‖
(
U b
ψ,sf

)
χk‖q2,ω2 . ‖b‖Lipβ(Rn) |Bk|

β+(n+α)r
n ·

∑
i=0,1

∫ 1

0

Sik(t)dt.

Hence, we obtain

ω1(Bk0)
−λ
n

(
k0∑

k=−∞

ω1(Bk)
γ2

p
n‖
(
U b
ψ,sf

)
χk‖pq2,ω2

)1
p

. ‖b‖Lipβ(Rn) ω1(Bk0)
−λ
n

(
k0∑

k=−∞

(∑
i=0,1

ω1(Bk)
γ
n |Bk|

β+(n+α)r
n

∫ 1

0

Sik(t)dt

)p)1
p

(18)

To estimate the right hand side of (18), we consider the following cases.
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Case 1: 1 ≤ p < ∞ and λ ≥ 0. It follows from Lemma 2.5 that |Bk|
ω1(Bk)

is a
constant and

ω1(Bk)

ω1(Bk−m−i)
= 2(m+i)n

By using these remarks and Minkowski’s inequality, we thus obtain

ω1 (Bk0)
−λ
n

(
k0∑

k=−∞

ω1 (Bk)
γ2

p
n ‖
(
U b
ψ,sf

)
χk‖pq2,ω2

) 1
p

.
∑
i=0,1

‖b‖Lipβ(Rn) ω1 (Bk0)
−λ
n

×
∫ 1

0

(
k0∑

k=−∞

ω1 (Bk)
γ2p
n |Bk|

β+(n+α)r
n

p‖fχk−m−i‖pq1,ω2

) 1
p

|s(t)|−
n+α
q1 ψ̃(t)dt

.
∑
i=0,1

‖b‖Lipβ(Rn)
∫ 1

0

ω1 (Bk0−m−i)
−λ
n

(
k0∑

k=−∞

ω1 (Bk−m−i)
γ1p
n ‖fχk−m−i‖pq1,ω2

) 1
p

×
(

ω1 (Bk)

ω1 (Bk−m−i)

)γ1
n
(

ω1(Bk0)

ω1 (Bk0−m−i)

)−λ
n

(
|Bk|

ω1 (Bk)
n

n+α

)β+(n+α)r
n

|s(t)|−
n+α
q1 ψ̃(t)dt

.
∑
i=0,1

‖b‖Lipβ‖f‖MK̇
γ1,λ
p,q1

∫ 1

0

2(m+i)(n+α)
γ1−λ
n |s(t)|−

n+α
q1 ψ̃(t)dt.

Note now that for any t ∈ [0, 1] the inequality 1
2|s(t)| ≤ 2m+i ≤ 2

|s(t)| , (i = 0, 1)
holds. It follows that∫ 1

0

2(m+i)(n+α)
γ1−λ
n |s(t)|−

n+α
q1 ψ̃(t)dt ≤ max

{
2

(n+α)(γ1−λ)
n , 2

(n+α)(−γ1+λ)
n

}
A.

and therefore (17) is proved.

Case 2: 0 < p < 1 and λ > 0. We first observe that

‖fχk−m−i‖q1,ω2 ≤ ω1(Bk−m−i)
λ−γ1
n ω1(Bk−m−i)

−λ
n

(
k−m−i∑
j=−∞

ω(Bj)
γ1p
n ‖fχj‖pq1,ω2

)1
p

≤ ω1(Bk−m−i)
λ−γ1
n ‖f‖

MK̇
γ1,λ
p,q1

(ω1,ω2)
.
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Combining with (17), this leads to

ω1 (Bk0)
−λ
n

(
k0∑

k=−∞

ω1 (Bk)
γ2p
n ‖

(
U b
ψ,sf

)
χk‖pq2,ω2

) 1
p

.
∑
i=0,1

‖b‖Lipβ(Rn) ω1 (Bk0)
−λ
n

×

(
k0∑

k=−∞

(
ω1 (Bk)

γ2
n |Bk|

β+(n+α)r
n

∫ 1

0

‖fχk−m−i‖q1,ω2 · |s(t)|
−n+α

q1 ψ̃(t)dt

)p) 1
p

.
∑
i=0,1

‖b‖Lipβ(Rn) · ‖f‖MK̇
γ1,λ
p,q1

(ω1,ω2)
× J

1
p

where

J :=

k0∑
k=−∞

(∫ 1

0

(
ω1(Bk)

ω(Bk−m−i)

)γ1
n
(

|Bk|
ω1(Bk)

n
n+α

)β+(n+α)r
n
(
ω1(Bk−m−i)

ω1(Bk0)

)λ
n

|s(t)|−
n+α
q1 ψ̃(t)dt

)p
.

By Lemma 2.5, for any k ≤ k0, we have(
ω1(Bk)

ω(Bk−m−i)

)γ1
n
(

|Bk|
ω1(Bk)

n
n+α

)β+(n+α)r
n
(
ω1(Bk−m−i)

ω1(Bk0)

)λ
n

. 2(m+i)(γ1−λ)+(k−k0)λ

. |s(t)|(λ−γ1) · 2(k−k0)λ.

Finally, we obtain

ω1 (Bk0)
−λ
n

(
k0∑

k=−∞

ω1 (Bk)
γ2p
n ‖

(
U b
ψ,sf

)
χk‖pq2,ω2

) 1
p

. ‖b‖Lipβ(Rn) · ‖f‖MK̇
γ1,λ
p,q1

(ω1,ω2)

(
k0∑

k=−∞

2(k−k0)pλ

) 1
p ∫ 1

0

|s(t)|λ−γ1−
n+α
q1 ψ̃(t)dt

. ‖b‖Lipβ(Rn) · ‖f‖MK̇
γ1,λ
p,q1

(ω1,ω2)

∫ 1

0

|s(t)|λ−γ1−
n+α
q1 ψ̃(t)dt.

Consequently, U b
ψ,s is determined as a bounded operator from MK̇γ1,λ

p,q1
(ω1, ω2)

to MK̇γ2,λ
p,q2

(ω1, ω2) and

‖U b
ψ,s‖MK̇γ,λ

p,q2
(ω1,ω2)→MK̇γ,λ

p,q2
(ω1,ω2)

. ‖b‖Lipβ(Rn) ·
∫ 1

0

|s(t)|λ−γ1−
n+α
q1 ψ̃(t)dt.



Bounds for the Weighted Hardy-Cesàro Operator 503

Acknowledgement. The authors cordially thank the anonymous referees for
their valuable comments which lead to the improvement of this paper. The
first and second authors were supported by the Vietnam National Foundation
for Science and Technology Development (NAFOSTED) under grant number
101.02-2014.51.

References

[1] Carton-Lebrun, C. and Fosset, M., Moyennes et quotients de Taylor dans BMO
(in French). Bull. Soc. Roy. Sci. Liége 53 (1984)(2), 85 – 87.
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Cambridge: Cambridge Univ. Press 1952.

[12] Hung, H. D., The p-adic weighted Hardy-Cesàro operator and an application
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