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Abstract. Let f be an H-periodic (periodic with respect to the hexagon lattice)
Holder continuous function of two real variables. The error ||f — Ry, (px; f)]] is es-
timated in the uniform norm and in the Holder norm, where (py) is a sequence of
numbers such that 0 < pg < p; < --- and R, (px; f) is the nth Riesz mean of
hexagonal Fourier series of f with respect to (pg).
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1. Introduction

In general, approximation problems of functions of several real variables defined
on cubes of the Euclidean space are studied by assuming that the functions are
periodic in each of their variables (see, for example [9, Sections 5.3 and 6.3] and
[11, Vol. II, Chapter XVII]). But in the case of non-tensor product domains, for
example in hexagonal domains of R?, another definition of periodicity is needed.
For such domains most useful periodicity is the periodicity defined by lattices.
We refer to [6] for general information about lattices.

In the Euclidean plane R2, besides the standard lattice Z? and the rect-
angular domain [—%, %)2, the simplest lattice is the hexagon lattice and the
simplest spectral set is the regular hexagon.

The generator matrix and the spectral set of the hexagonal lattice HZ? are

given by
H:(\@ 0)

-1 2

and

3 1
Oy = {($1,$2) eR?:—-1< xg,\/T_xl i§x2 < 1}.
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[t is more convenient to use the homogeneous coordinates (t1, ta, t3) that satisfies
tl -+ t2 —+ t3 = 0. If we define

the hexagon 2y becomes
Q= {(t1,t2,t3) €R®: =1 < ty,tp, —t3 <1, t1+1+1t3=0},

which is the intersection of the plane t; + t5 + t3 = 0 with the cube [—1, 1]3 )
We use bold letters t for homogeneous coordinates and we denote by R?;
the plane t; + t5 +t3 = 0, that is

R} = {t = (t1,t2,t3) ER® 1ty + ta + t3 =0} .
Also we use the notation Zj for the set of points in R}, with integer components,

that is Z3; = Z°> NR3,.
A function f : R? — C is called H-periodic if

fle+ HE) = f(x)
for all k € Z? and x € R?. If we define t = s (mod 3) as
t1 — 81 =ty — $9 =t3 — s3 (mod 3)

for t=(t1,t2,13), s= (51, $9, 83) €RY, | it follows that the function f is H-periodic
if and only if f (t) = f (t +s) whenever s = 0 (mod 3). It is clear that

/Qf(ws)dt:/gf(t)dt, (s € RY)

holds for H-periodic integrable function f (see [10]).
L? () becomes a Hilbert space with respect to the inner product

ol = g1 [, 0190

where |Q| denotes the area of 2. The functions
¢ (t) = e300 (t e RY)
are H-periodic and by a theorem of B. Fuglede ([3]) the set

{5 () :jeZy}

becomes an orthonormal basis of L? (Q2) (see also [6]).
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For every natural number n, we define a subset of Z3; by
H, = {j = (j1,j2,Js) € Ziy : =n < j1,ja, js <}

Note that, H,, consists of all integer points inside the hexagon n{). Members of
the set

H, =span{¢;:je€H,}, (neN)

are called hexagonal trigonometric polynomials. It is clear that the dimension
of H,, is #H,, = 3n? + 3n + 1.
The hexagonal Fourier series of an H-periodic function f € L' () is

F@)~ Y fies(t), (1)

ic73
JEZy;

where

~ 1 R
7= @/Qf(ﬂ o e, (€ 7).

The nth partial sum of the series (1) is defined by

Sa(f)(6) =" figy(t), (neN).

JeHn

It is clear that

S, (f) (t) = ﬁ / /(6 —5) D, (s)ds, 2)

where D, is the Dirichlet kernel, defined by

Da(t):= 3 &5 (t).

jeHn,

It is known that ([6,8]) the Dirichlet kernel can be expressed as

where
Sin (n+1)(§1—t2)7r sin ("+1)(;2—t3)7r sin (n+1)(§3—t1)77
On (t) := (t1—t2) (ta—t3) (ts—t1) (4)
sin 327rsin 2 337rsin 331”

for t = (tl,tg,tg) € R?ﬁ
More detailed information on hexagonal Fourier series can be found in [6,10].
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2. Main results

Let Cy (ﬁ) be the Banach space of complex valued H-periodic continuous func-
tions defined on R%;, whose norm is the uniform norm:

1l (o) = sup {If )] :teQ}.

A function f € Cgy (ﬁ) is said to belong to the Holder space H® (ﬁ)

(0<a<1)if
t) —
Ao () = sup TO IO o
s It =]
where ||t|| = max {|t1], [t], |ts]} . H* () becomes a Banach space with respect
to the Holder norm

”f”Ha(ﬁ) = ”chH(ﬁ) + A% (f).

Fejér and Abel summability of hexagonal Fourier series of functions belong
to Cy () was studied by Y. Xu in [10]. In [10], it was proved that Fejér and
Abel-Poisson means of hexagonal Fourier series of a function f € Cy (ﬁ) con-
verges uniformly to this function on Q. Later, in [4,5], the order of convergence
of Fejér and Abel-Poisson means of hexagonal Fourier series of functions belong
to H (ﬁ) was estimated in uniform and Holder norms, respectively. In this
work we give estimates for the order of approximation of Riesz means of hexag-
onal Fourier series in uniform and Hoélder norms, and by this way we obtain
analogues of theorems given in [1,2].

Let (px) be a sequence of numbers such that 0 < py < p; < --- . The nth
Riesz mean of the series (1) with respect to the sequence (py) is defined by

Ruoii 1) (1) = 5 S miSi (N (), (ne ),

where P, := >"}_, pr. By considering (2), it can be easily shown that

Ry, (pis f) |Q|/f n (Pk; 8) ds,

where

Ly, (pr;s Zkak (5)

In the case p, = 1 (k=0,1,...), the Rlesz mean R, (pg; f) (t) coincide with
the Fejér means

n

S, (nen).

k=0

1

S () () = -
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We shall write A < B for the quantities A and B, if there exists a constant
K > 0 (K is an absolute constant, or a constant depending only on parame-
ters which are not important for the questions involve in the paper) such that
A < KB holds.

We estimate the rate of approximation of Riesz means of hexagonal Fourier
series of H-periodic Holder continuous functions as follows:

Theorem 2.1. Let (pr) be a sequence of numbers such that 0 < pg < p; < -+,
and let f € H* () (0 < a <1). Then,

formn > 2.

Proof. By considering (3) and (5), we get

F0) = R s (O] < 1 / 76) = (6= )] 1L (pis )| ds 7

S [ 17 1 () s

~ 5 [ |3 mDe s

— P%/g IS [po + > 1k (B4 (5) = Op-1 (s))

ds,

because of f€ H*(Q). Since the function [|t|*|po+Y_r_, Px(Or(t) —Or_1(t))] is
symmetric with respect to t1,ts and t3, where t = (1, to,t3) € €, it is sufficient
to estimate the integral

I, = / e
A

dt,

pot S pe (01 (t) — O (1)

where
Ai={t=(t1,ls,t3) ER};: 0<ty, by, —t3 <1} ={(t1,12): 11 >0, 1o, >0, {1+t <1},

which is one of the six equilateral triangles in Q. If we use the formula (4), we



6 A. Guven

obtain

J el
A

n (G —to)m . (to—tg)m . (t3—ty)w
a Sin 3 S 3 Sin 3
:/ (t1 +12)" |po + E P dt.
A _

. —t . k(to— . _
sin Bla—t)™ ) klta—ta)m ) k(tg—ty)m

3 3 3
(i1t  (ia—t (i3t
sin (1 32)7T sin (2 33)7r sin (3 31)7r

Po + Zpk (@k (t) — @k—l (t)) dt

sin DG Zt)7 ) (1)t —tg)m

(k+1)(t3—t1)m
3

If we use the change of variables

t—ts 2t +1 =ty 42

S1 - — 3 = 3 s S9 1= 3 = 3

as in [10], we get

[ —3/ 81—|—82

where A is the image of A in the plane, that is

d51d52,

sin(k(s1—s2)m) sin(ksam) sin(k(—s17))
sin((s1—s2)7) sin(s2m) sin(—s17)

Sin((k-‘rl)(tsl(—(sg)ﬂ) s)in)((l'ﬁ—lzl)sz)w? s(in((k—&-)l)(—slﬂ))
sin((s1—s2)m) sin(som) sin(—s1 7
o+zpk< | o )

A= {(51,82) : 0 <51 <289, 0 <59 <251, $1+ 52 <1}.

Since the integrated function is symmetric with respect to s; and so, we have

]n:6/ (81+82>

where A* is the half of A :

“Ipo+>_pr sin((s1—s2)m) sin(som) sin(—s17)
k=1

dSldSQ,

__sin(k(s1—s2)m) sin(ksom) sin(k(=s17))
sin((s1—s2)m) sin(s2m) sin(—s17)

n (sin((k—l—l)(sl—sz)w) sin((k+1)som) sin((k+1)(—s17)) )

A = {(81,52) cA:s < 82} ={(s1,82) : 81 < 89 <281, 81+ 82 < 1}.

The change of variables

Uy — U Uy +u
51 = 12 2 5y i= 12 2 9)

transforms the triangle A* to the triangle

F::{(UbuQ) 0<U2<§ 0§U1§1};

and the integral becomes

]n:3/u‘f‘
r

po+ Y piDj (w1, us)
k=1

dU1 dUQ,
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where

sin ((k + 1) (—ug) m) sin ((k + 1) 52 7) sin ((k + 1) (—“5%27))
sin ((—ug) 7) sin (WT“QW) sin (—%W)

_ sin (k (—up) m)sin (kut2m) sin (k (—“5%7)) ‘

sin ((—up) ) sin (2542 7) sin (—“5%27)

Dy (uy,uz) =

By elementary trigonometric identities, we have
Dy (u1,uz) = Dy (u1,ug) + Dy o (w1, u2) + Dy 5 (u1,uz),

where

1
Dy 1 (uy,up) := 2cos ((k + 5) u27r>

sin (guom) sin ((k +1) “5227) sin ((k + 1) 25 7)

2
sin (uom) sin (“3%27) sin (5% 7)

1

sin (kugr) sin (5 45427) sin ((k 4 1) “5% 1)

sin (up) sin (“13%27) sin (“5%27)

1 _
DZ,:?, (w1, us) := 2cos ((k + 5) U1 . ugﬂ)

sin (kuom) sin (k342 7) sin (3452 7)

sin (ugm) sin (“4%27) sin (“5%7)

Also, we will need another formula for D} (uy,us) :

cos ((2k + 1) ugm)

D; (ug,us) =
i () 2sin (“F2 1) sin (U5 % ) 10
_cos ((2k + 1) vdrar) cos ((2k + 1) “527) (10)
2sin (upm) sin (5% ) 2sin (upm) sin (“E27)’
which easily follows from the fact that sin 2z+sin 2y+sin 2z = —4sin z sin y sin z
ife+y+2=0.

We partition the triangle I' as

I := {(Ul,UQ) cel:u < p];—n},

n

Pn Dn
Ty = T: > — <
2 {(UbUz)E ul_Pn’ u2_3Pn}’
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[ = {(ul,uQ) el:u > %Z, Uy > Sl;n}.

To estimate the integrals, we will use the well known inequalities

sin nt
" <n, (neNy,
sint
and
T
sint > —t, <O<t<§>

It is clear that,

/u?poduldm = Do / ufdurdus Spo<p, (O<a<l).
r

r
We have
/ uf ZkaZ (w1, uz)| duydusg
I k=1
— ( +/ +/ )Uflx Zka;:, (Ul,UQ) duldu2,
| i 7 k=1
where

1
= {(U1,U2)€F12U1§ n—|—1}7

1 1
.= ry: > — <
1 {(U1,U2)€ 1 U1_n+1, U2_3(n+1)},

1 1
T el g > —— >~ U
1 {(UI’UQ) L= T “2—3(n+1)}

For j =1,2,3 and for 0 < a < 1, we obtain

/ui" duldu2§/ uf
r I *

1
B T
2 3(n+1) n+1 a
S(n+1) Pn/ / utduydug
0

3us

3

Zka]:,j (1, usg)

k=1

(k4 1) pk> duydusy

I
-
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by considering (11). By (11) and (12), we get

/ uf duydus ,S/ < (k+ 1)pk> u$  duy dusy
Fll/ 1’1// k 1
3<n+1) TL _1
<(n+1) Pn uy duidus

for 7 =1,2,3 and for 0 < a < 1. The inequality (12 yields

(6%
/ UI
"
1

ZPkDZ,j (u1, u2)

Pn

317?’"” P"l _2
durdus < P, ul “duydus

> Dy (ua, u)
k=1

ﬁ 3U2

Pn o
<P, (%) o<t
;—Zlog<(n+1);n), a=1

By considering (12) again we get

/1"‘///

bPn

duldu2 < P / / —duldu2
3u

3(n+1)
<P, (%:) log ((n +1) %:)
for j =2,3 and for 0 < a < 1.

If we combine above estimates we obtain

o
I k=1

n

Zkak] (1, un)

k=1

ZkaZ (w1, u2)

for0 < <1.
We partition the rectangle I's as

1
T =< (uj,up) €T <—}

and .
F”::{u,u ely:u >—}
2 (1, uz) ’ 2_3(n—|—1)2
in order to estimate the integral

o
/ Uy
I

dU1 dUQ .

ZkaZ (u1,u2)

k=1

9

duydus < P, (%’;)a (1 +log <(n +1) 7;2)) (14)
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By considering (11) we get

n 1

(n+1)2
E Dy (ur, up)| durdug S P, /3 a / u$ 2 duy dusg
_ 0

«
/
2 k=1

a<l

log o=

By (11) and (12) we obtain

/ul Zkak] (w1, ug)| durduy S (n+1) /3(n+1)/ “duyduy < P, <ij—n>

for j =2,3 and for 0 < a < 1.

We use the expression (10) of the function Dj (uq,us) to estimate the inte-
gral over I'j and I's:

Since Y ,_,cos((2k+1)z) = sinxy ,_, cos (Qkx) — cosz Y, sin (2kx)
and |> "7, cos (2kz)| < SHII 1> p sin (2kz)| < |Smx| for x # mm (m € Z),

x|’

we get

1
Z cos ((2k +1)x)| S
|sin x|’
and hence Abel’s transform yields
- Pn
2k +1 < . 15
;pkcos(( + )‘CE) ~ ‘Sinl" ( )

Therefore, by taking into account the inequality

sin (497) s (LT ) e

and (15), we obtain

n
p
> oDy (ur, us)| S 5 (16)
k=1
for (uy,uy) € I'y UTs. Hence,
n Pn_ 1
" 3P _9 1
/ uy Zkak (ur, uz)| durduy S py uy " —duydugy
2 k=1 3<ni1)2 P U2

a—1
(%) log ((n + 1) B, a<l
log <&> log ((n+1)°2), a=1.
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Therefore, the estimate
ZkaZ (w1, up)

«
2 k=1

[e% a—1
P, (%) + Dn (%) log ((n + 1)2 %Z) , a<l1
Pn + P log (5—:) + pn log ﬁ—:) log ((n+1)° %") , a=1

duidusy (17)

follows.
If we use (16), we get

I's

> peDj (ur, uz)
k=1

1 1
3 1
duydug < pn/ / uS ™% —duydusy (18)
Lo J 3uy U2
a—1

) _
<P_n> s a<l1
Spn 2
<log (5—:)) , a=1.

Hence, combining (13), (14), (17), (18) and considering (7) completes the proof
of Theorem 2.1. m

Remark 2.2. Analogue of Theorem 2.1 for classical Fourier series was proved

by P. Chandra in [1].
Remark 2.3. If we take pp, =1 (k=0,1,...), (6) gives the estimate

logn

1= 50 Dl % | o

a<l
— a=1

for Fejér means.

In the following theorem, we give an estimate for the order of approximation
of R, (pg; f) in the Hélder norm.

Theorem 2.4. Let (py) be a sequence of numbers such that 0 < pg < py < -+,
0<f<a<l andfeHa(Q). Then,

a—fB
(%) (log n)1+§ ) a<l

o 1+1log =) (1 8 a=1
(Pn) ( ; ogpn) (logn)™** . a

forn > 2.
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Proof. Set e, (t) :== f(t) — R, (px; f) (t) . Hence,

|f — R (pk;f)HHa( q) = llenllo, @ )+A (en) -

Since e, (£) —en () = & foy (f (£) = £ (6= 1) = £(5) + /(5 — W) Ly (s ) d,

we have

en(t)—ea(s)] < /|f F(3)+ f (5= | Ly (pys w)] du
:—/|f f(s)+f(s—u) po+;kak u)| du,

thus

1
£) = en (8)| S 5
|€n() en(s)|f\./ PnJ

where

Po + Zkak (ll) du.

k=1

7 _/|f Fl6—w) = f(s)+ f(s—)

Since f € H (ﬁ) we have
[f (&) = ft—u)—f(s)+ f(s—u)| S It —s[

and
f)—ft—u)—f(s)+ f(s—u)| <[l
Hence,
Ju)e = </|f ft—u)—=f(s)+ f(s—w)l|po+ > pDk (u) du)a
k=1

Q[

Po + Zkak (u)

k=1

<t —s)’ ( / du) -

As in proof of Theorem 2.1, it is sufficient to estimate the integral

J

By transforms (8) and (9) we obtain

/Q du:3/F

Do + Zkak (u)| du.

k=1

Po + ZkaZ (Ul, UQ) duldu2.

k=1

po+ Y pDy (u)

k=1
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It is clear that [ poduidus < po < P,. By (11), it follows that

J

n

duldu2 N/ <Z
1 \k

1

3(n+1) +1
n + 1 / / duy dug

an

Zka’w (u1, uz)

k=1

(k+1)%p ) duyduy

/
1

for j =1,2,3. By (12),

n

2

1
3(n+1) Pp, 9
durdus < P, uy “durduy S Py,
0 _1
k=1

n+1

pk‘D;;l (uh u2)

and using (11) and (12) yields,

3(n1+1) %:i 1
/ duydus < (n+1) Pn/ / uy " dugdug
r 0 1
n + )

< Putog (41

n

ZkaI:J (u1,uz)
k=1

3/
P
I
for j =2, 3.

By considering (12) again, we obtain

n

/F/l// Zkl

Pn Pn
3P, Po

duyduy < Pn/ / uy “duydugy
1

3(n+1) Suz

< P, log ((n +1) i)—”) ,

n

ka};l (1, uz)

and for j = 2,3

(>

bn

Pn P,
duyduy < P, / ’ / duydus
Juy UTU2

3(n+1)

<P, {log <(n+ 1) ?;:)r.

ZkaZ,j (w1, uz)

By (12),

J

2

ZkaZ,l (u1, uz)

k=1

Pn

3Pn

_1 1
5t D) .
duqdus 5 Pn/ / Uq duydus SJ Pn < Py,
0

13
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and by (11) and (12),

J

ZPka] Uy, ug)

k=1

3(n+1)
durdus < (n+1) / / uy  duyduy

Dn P,
P, 1og [ =2

"P, g(m)
P

2

AN

IN

for jy =2,3.

If we use (16), we obtain

I

3P |
dudus < pn/ / 5—duidug

3(1'1,+1)2 Pp

< P, log ((n—i— 1)2 p") ,

Z piDj (w1, us)

k=1

and

n 1 1
3 1
E pr Dy, (w1, ug)| duydug S pn/ / s—durduy S P,
- J3uy UTU2

By combining these estimates, we get

J

S B

Po + Zkak: (u)| du

k=1

1+ log ((n +1) %) + log <(n +1)? %) + (log <<n +1) %))1

< P (logn)®,

which yields

jolje

(J)* S 1It = s|” (P (logn)?)
for 0 < a < 1. On the other hand,

B

1-8
1_£ «@
Jn " S /||u|| p0+ZPka )
a—p
- (Pn logn)kg (;—’;) : a<l
~ 1—ﬁ P 1—ﬁ & 1—5 _ )
(P, logn) o 1+log (= , a=1

\

which follows from Theorem 2.1.
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Therefore, for a < 1,

a—p
B 1_8
I = I Ji “ 5 Ht - SHBPn (logn)yrg (p_n) )

P,
and hence ,
len () — en ()] P\ 8
w_s ~\p, (logm)"" = (20)
For a =1,
1-8 1-3
n P,
o= B S e sl P o) () (a0 (52))
thus C .
|6n (t) — €n (S)| Pn N Pn -
T < (logn)'*? i Lt log (F .2

Considering (20), (21) and corresponding parts of Theorem 2.1 for o < 1 and
« = 1 finishes the proof of Theorem 2.4. O]

Remark 2.5. Analogue of Theorem 2.4 for classical Fourier series was proved
by P. Chandra in [2].

Remark 2.6. In the case p, =1 (k=0,1,...), the estimate (19) reduces to

1F = SO (P aen S 4 o S a< (22)
! (@) ~ (12322’ a=1.

Analogue of (22) was obtained by S. Prossdorf in [7] for classical Fourier
series.
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