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Generalized Morrey Spaces – Revisited

Ali Akbulut, Vagif Sabir Guliyev, Takahiro Noi
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Abstract. The generalized Morrey space Mp,φ(Rn) was defined by Mizuhara 1991
and Nakai in 1994. It is equipped with a parameter 0 < p < ∞ and a function
φ : Rn × (0,∞) → (0,∞). Our experience shows that Mp,φ(Rn) is easy to handle
when 1 < p <∞. However, when 0 < p ≤ 1, the function space Mp,φ(Rn) is difficult
to handle as many examples show. We propose a way to deal with Mp,φ(Rn) for
0 < p ≤ 1, in particular, to obtain some estimates of the Hardy-Littlewood maximal
operator on these spaces. Especially, the vector-valued estimates obtained in the
earlier papers are refined. The key tool is the weighted dual Hardy operator. Much
is known on the weighted dual Hardy operator.
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1. Introduction

We are concerned with generalized Morrey spaces in the present paper. The
generalized Morrey spaceMp,φ(Rn) is equipped with a function φ and a positive
parameter 0 < p < ∞. The generalized Morrey space Mp,φ(Rn) was defined
independently by Mizuhara in 1991 [21] and Nakai in 1994 [23].

Let 0 < p <∞. Denote by Gp the set of all the functions φ : Rn× (0,∞)→
(0,∞) decreasing in the second variable such that t∈(0,∞) 7→ t

n
pφ(x, t)∈(0,∞)

is almost increasing uniformly over the first variable x, so that there exists a
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constant C > 0 such that

φ(x, r) ≤ φ(x, s), Cφ(x, r)r
n
p ≥ φ(x, s)s

n
p

for all x ∈ Rn and 0 < s ≤ r <∞. In this paper we often assume 0 < p ≤ 1.
All “cubes” in Rn are assumed to have their sides parallel to the coordinate

axes. Denote by Q = Q(Rn) the set of all cubes. For a cube Q ∈ Q, the symbol

`(Q) stands for the side-length of the cube Q; `(Q) ≡ |Q| 1n , where |E| denotes
the Lebesgue measure of a measurable set E. When we are given a cube Q, we
use the following abuse of notation: φ(Q) ≡ φ(c(Q), `(Q)), where c(Q) denotes
the center of Q.

Let 0 < p < ∞ and φ : Rn × (0,∞) → (0,∞) be a function which is not
necessarily in Gp. The generalized Morrey spaceMp,φ(Rn) is defined as the set
of all measurable functions f for which the quasi-norm

‖f‖Mp,φ
≡ sup

Q∈Q

1

φ(Q)

(
1

|Q|

∫
Q

|f(y)|p dy
) 1

p

is finite. Seemingly the requirement φ ∈ Gp is superfluous but it turns out
that this condition is natural. Indeed, in the case when 1 ≤ p < ∞, Nakai
established that there exists a function ρ such that ρ itself is decreasing, that
ρ(t)t

n
p ≤ ρ(T )T

n
p for all 0 < t ≤ T < ∞ and that Mp,φ(Rn) = Mp,ρ(Rn)

[24, p. 446]. See [35, (1.2)] for the case when 0 < p ≤ 1. This assumption will
turn out to be natural even when φ depends on x. See Section 2 of this paper
in the case when φ depends on x.

Observe that, if φ(x, r) = r−
n
p , then Mp,φ(Rn) = Lp(Rn). In the special

case when φ(x, r) ≡ r
λ
p
−n
p , we write Mp,λ(Rn) instead of Mp,φ(Rn).

We adopt the following notation:

1. We define N0 ≡ {0, 1, . . .}.
2. We let

‖x‖∞ = ‖(x1, x2, . . . , xn)‖∞ ≡ max
j=1,2,...,n

|xj|

when we have x = (x1, x2, . . . , xn) ∈ Rn.

3. Let A,B ≥ 0. Then A . B means that there exists a constant C > 0
such that A ≤ CB and A ∼ B stands for A . B . A, where C depends
only on the parameters of importance.

4. By a “cube” we mean a compact cube whose edges are parallel to the
coordinate axes. The metric closed ball defined by `∞ is called a cube. If
a cube has center x and radius r, we denote it by Q(x, r). Namely, we
write

Q(x, r) ≡
{
y = (y1, y2, . . . , yn) ∈ Rn : max

j=1,2,...,n
|xj − yj| ≤ r

}
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when x = (x1, x2, . . . , xn) ∈ Rn and r > 0. From the definition of Q(x, r),
its volume is (2r)n. We write Q(r) instead of Q(0, r), where 0 denotes the
origin. Given a cube Q, we denote by c(Q) the center of Q and by `(Q)
the sidelength of Q: `(Q) = |Q|1/n, where |Q| denotes the volume of the
cube Q.

5. Given a cube Q and k > 0, k Q means the cube concentric to Q with
sidelength k `(Q).

6. By a dyadic cube, we mean a set of the form 2−jm + [0, 2−j]n for some
m ∈ Zn and j ∈ Z. The set of all dyadic cubes will be denoted by D.

7. Let Qx(Rn) be a collection of all cubes that contain x ∈ Rn.

8. The symbol B(x, r) stands for the open ball centered at x ∈ R and of
radius r > 0. Abbreviate B(0, r) to B(r).

9. We adopt the following definition of the Hardy-Littlewood maximal oper-
ator to estimate some integrals: The Hardy-Littlewood maximal operator
M is defined by

Mf(x) ≡ sup
Q∈Qx(Rn)

1

|Q|

∫
Q

|f(y)|dy,

for a locally integrable function f on Rn.

10. Let 0 < p <∞ and 0 < q ≤ ∞. If {fj}∞j=1 is a sequence of complex-valued
Lebesgue measurable functions, then define∥∥∥{fj}∞j=1

∥∥∥
`q(Lp)

≡
∥∥∥∥{‖fj‖Lp}∞j=1

∥∥∥∥
`q

and ∥∥∥{fj}∞j=1

∥∥∥
Lp(`q)

≡
∥∥‖{fj(·)}∞j=1‖`q

∥∥
Lp
.

The weak Lp space is the set of all functions f for which the quasi-norm

‖f‖WLp ≡ sup
λ>0

λ‖χ{|f |>λ}‖Lp

is finite. If {fj}∞j=1 is a sequence of complex-valued Lebesgue measurable
functions, then define∥∥∥{fj}∞j=1

∥∥∥
`q(WLp)

≡
∥∥∥∥{‖fj‖WLp

}∞
j=1

∥∥∥∥
`q

and ∥∥∥{fj}∞j=1

∥∥∥
WLp(`q)

≡
∥∥∥∥∥∥∥{fj}∞j=1

∥∥∥
`q

∥∥∥∥
WLp

.
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11. Let 0 < p < ∞ and 0 < q ≤ ∞ and φ ∈ Gp. The space Mp,φ(lq,Rn)
stands for the set of all sequences {fj}∞j=1 of complex-valued Lebesgue
measurable functions on Rn for which∥∥{fj}∞j=1

∥∥
Mp,φ(lq)

≡
∥∥∥∥∥{fj}∞j=1

∥∥
lq

∥∥∥
Mp,φ

<∞.

Denote by WMp,φ(Rn) the set of all measurable functions f for which the
quasi-norm ‖f‖WMp,φ

≡ supλ>0 λ‖χ{|f |>λ}‖Mp,φ
is finite. Likewise denote

byWMp,φ(lq,Rn) the set of all sequences {fj}∞j=1 for which the quasi-norm∥∥{fj}∞j=1

∥∥
WMp,φ(lq)

≡
∥∥∥∥∥{fj}∞j=1

∥∥
lq

∥∥∥
WMp,φ

is finite. The vector-valued

spaces lq (Mp,φ(Rn)) and lq (WMp,φ(Rn)) can be also defined similarly
by the norms

∥∥{fj}∞j=1

∥∥
lq(Mp,φ)

≡
∥∥∥∥{‖fj‖Mp,φ

}∞
j=1

∥∥∥∥
lq

<∞

and ∥∥{fj}∞j=1

∥∥
lq(WMp,φ)

≡
∥∥∥∥{‖fj‖WMp,φ

}∞
j=1

∥∥∥∥
lq

<∞,

respectively.

12. For a measurable function h and a sequence of measurable functions
{fj}∞j=1, we write h{fj}∞j=1 ≡ {h · fj}∞j=1.

2. Structure of generalized Morrey spaces

We shall show that the definition of G1 is suitable when we considerMp,φ(Rn).

Lemma 2.1. Let φ : Rn × (0,∞) → (0,∞) be a function and let 0 < p < ∞.
Then there exists a function ψ : Rn × (0,∞)→ (0,∞) satisfying

ψ(y, s)s
n
p ≤ ψ(x, r)r

n
p (1)

for all x, y ∈ Rn and r, s > 0 with ‖x − y‖∞ ≤ r − s such that Mp,φ(Rn) =
Mp,ψ(Rn) with norm coincidence.

Proof. Let us set

ψ(x, r) ≡ inf
y∈Rn

(
inf

v∈[r+‖x−y‖∞,∞)
φ(y, v)

(v
r

)n
p

)
(x ∈ Rn, r > 0). (2)

Then φ ≥ ψ trivially and hence ‖f‖Mp,φ
≤ ‖f‖Mp,ψ

for any measurable func-
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tion f. Meanwhile for any measurable function f ,

‖f‖Mp,ψ
= sup

Q∈Q

1

ψ(c(Q), `(Q))

(
1

|Q|

∫
Q

|f(y)|p dy
) 1

p

= sup
Q∈Q

sup
y∈Rn

(
sup

v∈[`(Q)+‖c(Q)−y‖∞,∞)

1

φ(y, v)

(
1

vn

∫
Q

|f(y)|p dy
) 1

p

)

≤ sup
Q∈Q

sup
y∈Rn

(
sup

v∈[`(Q)+‖c(Q)−y‖∞,∞)

1

φ(y, v)

(
1

vn

∫
Q(y,v)

|f(y)|p dy
) 1

p

)
= ‖f‖Mp,φ

.

Thus we have Mp,φ(Rn) =Mp,ψ(Rn) with norm coincidence.
From the definition of ψ, it is easy to check (1).

Lemma 2.2. Let 0 < p < ∞ and let φ : Rn × (0,∞) → (0,∞) be a function
satisfying (1). Then there exists a function ψ : Rn× (0,∞)→ (0,∞) satisfying

ψ(x, r) ≤ ψ(x, s) (3)

for all x ∈ Rn and 0 < s ≤ r <∞ such that Mp,φ(Rn) =Mp,ψ(Rn) with norm
equivalence.

Proof. Let us set

ψ(x, r) ≡ inf
0<s≤r

(
sup

y∈Q(x,r)

φ(y, s)

)
(x ∈ Rn, r > 0).

It is easy to verify (3). Furthermore,

ψ(x, r) ≤ sup
y∈Q(x,r)

φ(y, r) ≤ 3
n
pφ(x, 3r) (x ∈ Rn, r > 0)

from (1) and hence ‖f‖Mp,φ
≤ 3

n
p ‖f‖Mp,ψ

. Meanwhile, for all Q ∈ Q and
0 < s ≤ `(Q) such that log2(s`(Q)−1) ∈ Z, we can find a cube R = RQ(s)
contained in Q such that `(R) = s and that(

1

|R|

∫
R

|f(y)|p dy
) 1

p

≥ 2−
n
p

(
1

|Q|

∫
Q

|f(y)|p dy
) 1

p

by the pegion hole principle. Thus for all Q ∈ Q and 0 < s ≤ `(Q), we can find
a cube R = RQ(s) contained in Q such that `(R) = s and that(

1

|R|

∫
R

|f(y)|p dy
) 1

p

≥ 4−
n
p

(
1

|Q|

∫
Q

|f(y)|p dy
) 1

p

.
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Therefore, it follows that

‖f‖Mp,ψ
= sup

Q∈Q

1

ψ(c(Q), `(Q))

(
1

|Q|

∫
Q

|f(y)|p dy
) 1

p

= sup
Q∈Q

sup
0<s<r

(
inf
y∈Q

1

φ(y, s)

(
1

|Q|

∫
Q

|f(y)|p dy
) 1

p

)

≤ 4
n
p sup
Q∈Q

sup
0<s<r

 inf
y∈Q

1

φ(y, s)

(
1

|RQ(s)|

∫
RQ(s)

|f(y)|p dy

) 1
p


≤ 4

n
p sup
Q∈Q

sup
0<s<r

 1

φ(RQ(s))

(
1

|RQ(s)|

∫
RQ(s)

|f(y)|p dy

) 1
p


≤ 4

n
p ‖f‖Mp,φ

,

as was to be shown.

Lemma 2.3. Let 0 < p < ∞ and let φ : Rn × (0,∞) → (0,∞) be a function
satisfying

φ(x, r) ≤ φ(x, s) (4)

for all 0 < s ≤ r < ∞ and x ∈ Rn. Then there exists a function ψ :
Rn × (0,∞) → (0,∞) satisfying (1) and (3) such that Mp,φ(Rn) = Mp,ψ(Rn)
with norm coincidence.

Proof. Let us define ψ by (2). Then as we have seen in Lemma 2.1, ψ :
Rn × (0,∞)→ (0,∞) satisfies (1) and Mp,φ(Rn) =Mp,ψ(Rn) with norm coin-
cidence. It remains to check (3). Let R < R′. Then, from (4), we obtain

ψ(x,R′) = inf
y∈Rn

(
inf

v∈[R′+‖x−y‖∞,∞)
φ(y, v)

( v
R′

)n
p

)
≤ inf

y∈Rn

(
inf

v∈[R′+R′‖x−y‖∞/R,∞)
φ(y, v)

( v
R′

)n
p

)
= inf

y∈Rn

(
inf

v∈[R+‖x−y‖∞,∞)
φ

(
y,
R′v

R

)( v
R

)n
p

)
≤ inf

y∈Rn

(
inf

v∈[R+‖x−y‖∞,∞)
φ(y, v)

( v
R

)n
p

)
= ψ(x,R).

This proves (3).

The following compatibility condition:

ψ(x, r) ∼ ψ(y, r) (|x− y| ≤ r) (5)

can be naturally postulated.
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Proposition 2.4. Let 0 < p < ∞ and let ψ : Rn × (0,∞) → (0,∞) be a
function satisfying (1) and (3). Then ψ satisfies (5).

Proof. By (3), we have ψ(x, r) ≥ ψ(x, 3r) and by (1) ψ(x, 3r) & ψ(y, r).

With Lemma 2.3 in mind, we always assume that φ ∈ Gp satisfies (1). We
summarize our observations.

Theorem 2.5. Let 0 < p <∞ and let φ : Rn × (0,∞)→ (0,∞) be a function.
Then there exists a function ψ : Rn×(0,∞)→ (0,∞) satisfying (1), (3) and (5)
such that Mp,φ(Rn) =Mp,ψ(Rn) with norm coincidence.

The main structure of this generalized Morrey spaceMp,φ(Rn) is as follows:

Proposition 2.6. Let 0 < p <∞ and φ ∈ Gp.
1. If r ∈ (0, p), then

‖f‖Mr,φ
≤ ‖f‖Mp,φ

for all f ∈Mp,φ(Rn). (6)

2. If u ∈ (0,∞), then

‖|f |u‖M p
u ,φ

u
= (‖f‖Mp,φ

)u for all f ∈Mp,φ(Rn). (7)

3. Assume (1). Then

1

φ(Q)
≤ ‖χQ‖Mp,φ

.
1

φ(Q)
. (8)

See [34, Proposition 2.1] for the case when p ≥ 1 and φ is independent of x.
The same proof works for this case but for the sake of convenience for readers
we supply the whole proof.

Proof. It is easy to check (6) by using the Hölder inequality and (7) by a direct
calculation. Let us check (8).

By the definition,

‖χQ‖Mp,φ
= sup

R∈Q

1

φ(R)

(
|Q ∩R|
|R|

) 1
p

.

Thus, the left inequality is clear.
Let us check the right inequality. If we write the norm fully, then

‖χQ‖Mp,φ
= sup

R∈Q,Q∩R 6=∅

1

φ(R)

(
|Q ∩R|
|R|

) 1
p

.
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We next claim

‖χQ‖Mp,φ
≤ sup

{
1

φ(R)

(
|Q ∩R|
|R|

) 1
p

: R ∈ Q, Q ∩R 6= ∅, Q ⊂ 3R

}
. (9)

In fact, if R is a cube that intersects both Q and Rn \ 3Q, then choose a cube S
such that Q ∩R ⊂ S ⊂ R and that `(S) = `(Q). Then S ⊂ 3Q and

1

φ(R)

(
|Q ∩R|
|R|

) 1
p

≤ 1

φ(S)

(
|Q ∩R|
|S|

) 1
p

≤ 1

φ(S)

(
|Q ∩ S|
|S|

) 1
p

from (1), which yields (9).
Let R be a cube intersecting Q. We let S be a cube concentric to R having

sidelength 10`(Q). Then since φ ∈ Gp,

1

φ(R)

(
|Q ∩R|
|R|

) 1
p

≤ 1

φ(R)
.

1

φ(S)
.

1

φ(Q)
.

Thus, we obtain the right inequality.

A direct consequence of the assumption φ ∈ Gp is the following equivalent
expression:

‖f‖Mp,φ
∼ sup

Q∈D

1

φ(Q)

(
1

|Q|

∫
Q

|f(y)|p dy
) 1

p

.

3. Boundedness of the maximal operator

The following result is standard and we aim to extend it to generalized Morrey
spaces:

Theorem 3.1 ([4]). Let 0 < λ < n. Then

(1) M is bounded on Mp,λ(Rn) if 1 < p <∞;

(2) M is bounded from M1,λ(Rn) to WM1,λ(Rn).

We denote by L∞,v(0,∞) the space of all non-negative functions g(t), t > 0
such that

‖g‖L∞,v(0,∞) ≡ sup
t>0

v(t)g(t)

is finite. The space M(0,∞) is defined to be the set of all Lebesgue-measurable
functions on (0,∞) and M+(0,∞) is defined to be its subset consisting of all
nonnegative functions on (0,∞). We denote by M+(0,∞;↑) the cone of all
functions in M+(0,∞) which are non-decreasing on (0,∞) and

A ≡
{
φ ∈M+(0,∞; ↑) : lim

t→0+
φ(t) = 0

}
.
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Let u be a continuous and non-negative function on (0,∞). We define the
supremal operator Su on g ∈M(0,∞) by

(Sug)(t) ≡ ‖u g‖L∞(t,∞), t ∈ (0,∞).

We invoke the following theorem:

Theorem 3.2 ([2, Lemma 5.2]). Let v1, v2 ∈M+(0,∞) satisfy

0 < ‖v1‖L∞(t,∞) <∞

for any t > 0 and let u ∈M+(0,∞) be continuous.

Then the operator Su is bounded from L∞,v1(0,∞) to L∞,v2(0,∞) on the

cone A if and only if
∥∥∥v2Su

(
‖v1‖−1

L∞(·,∞)

)∥∥∥
L∞(0,∞)

<∞.

We recall that the dual weighted Hardy operator is given by

H∗wg(t) ≡
∫ ∞
t

g(s)w(s)ds, 0 < t <∞,

where w is a weight. Remark that the following theorem in the special case
w = 1 was proved in [2, Theorem 5.1]:

Theorem 3.3 ([9, Theorem 3.1]). Let v1, v2 and w be weights on (0,∞) and
assume that v1 is bounded outside a neighborhood of the origin. The inequality

sup
t>0

v2(t)H∗wg(t) ≤ C sup
t>0

v1(t)g(t) (10)

holds for some C > 0 for g ∈M+(0,∞) if and only if

B ≡ sup
t>0

v2(t)

∫ ∞
t

w(s)ds

sups<τ<∞ v1(τ)
<∞. (11)

Moreover, the value C = B is the best constant for (10).

Remark 3.4. In (10) and (11) it will be understood that 1
∞ ≡ 0 and 0 ·∞ ≡ 0.

See [10, Theorem 1] as well for some applications.

The following statement, extending the results in Mizuhara and Nakai
[21,23], was proved in [6–8]:

Proposition 3.5. Let 1 ≤ p <∞. Moreover, let φ1, φ2 ∈ Gp satisfy∫ ∞
r

φ1(x, t)
dt

t
. φ2(x, r) (12)

for all x ∈ Rn and r > 0. Then, for p > 1, M is bounded from Mp,φ1(Rn) to
Mp,φ2(Rn) and, for p = 1, M is bounded from M1,φ1(Rn) to WM1,φ2(Rn).
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As is seen from the paper [30, Theorem 2.3], (12) is too strong. The following
statements, containing Proposition 3.5, was proved by Akbulut, Guliyev and
Mustafayev [1, Theorem 3.4]; note that (12) is stronger than (13):

Proposition 3.6. Let 1 ≤ p < ∞ and suppose the couple (φ1, φ2) of the func-
tions in Gp satisfies the following condition:

φ1(x, t) . φ2(x, t) (13)

where the impicit constant does not depend on x and t.

1. If p > 1, then M is bounded from Mp,φ1(Rn) to Mp,φ2(Rn). Namely, if
p > 1, ‖Mf‖Mp,φ2

. ‖f‖Mp,φ1
for all f ∈Mp,φ1(Rn)

2. If p ≥ 1, then M is bounded from M1,φ1(Rn) to WM1,φ2(Rn). Namely, if
p ≥ 1, ‖Mf‖WMp,φ2

. ‖f‖Mp,φ1
for all f ∈Mp,φ1(Rn).

From this proposition, when φ1 = φ2 = φ, we have the following bounded-
ness:

Corollary 3.7 ([23, Theorem 1], [30, Theorem 2.3]). Let 1 ≤ p < ∞ and
φ ∈ Gp.

1. Let 1 < p <∞. Then ‖Mf‖Mp,φ
. ‖f‖Mp,φ

for all f ∈Mp,φ(Rn).

2. Let 1 ≤ p <∞. Then ‖Mf‖WMp,φ
. ‖f‖Mp,φ

for all f ∈Mp,φ(Rn).

We know that there is no requirement when we consider the boundedness
of the maximal operator [30, Theorem 2.3] when φ is independent of x. Propo-
sition 3.6 naturally extends the assertion above.

4. Vector-valued boundedness of the maximal operator

Our aim here is to extend the Fefferman-Stein vector-valued inequality to our
function spaces for M in addition to Corollary 5.3;

‖{Mfj}∞j=1‖Lp(`u) . ‖{fj}∞j=1‖Lp(`u), (14)

and
‖{Mfj}∞j=1‖WL1(`u) . ‖{fj}∞j=1‖L1(`u), (15)

where 1 < p <∞ and 1 < u ≤ ∞; see [5, Theorem 1(1)] and [5, Theorem 1(2)]
for the proof of (14) and (15), respectively. When q = ∞, it is understood
that (14) reads ∥∥∥∥sup

j∈N
Mfj

∥∥∥∥
Lp

.

∥∥∥∥sup
j∈N
|fj|
∥∥∥∥
Lp

.

Write MF ≡ {Mfj}∞j=1, when we are given a sequence F = {fj}∞j=1.
Thus, (14) reads

‖MF‖Lp(`u) . ‖F‖Lp(`u).

Our main result here is as follows:
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Theorem 4.1. Let 1 ≤ p < ∞, 1 < q ≤ ∞ and suppose that the couple
(φ1, φ2) ∈ Gp × Gp satisfies the condition∫ ∞

r

φ1(x, t)
dt

t
. φ2(x, r) (x ∈ Rn, r > 0), (16)

where the implicit constant does not depend on x and t.

(1) For 1 < p < ∞, M is bounded from Mp,φ1(lq,Rn) to Mp,φ2(lq,Rn), i.e.,
‖MF‖Mp,φ2

(lq) . ‖F‖Mp,φ1
(lq) holds for all F ∈Mp,φ1(lq,Rn).

(2) For 1 ≤ p <∞, M is bounded fromMp,φ1(lq,Rn) to WMp,φ2(lq,Rn), i.e.,
‖MF‖WM1,φ2

(lq) . ‖F‖M1,φ1
(lq) holds for all F ∈M1,φ1(lq,Rn).

Remark that (16) is natural in view of [11, Theorem 4].
As a corollary, by letting φ1 = φ2 we can recover the vector-valued inequality

obtained in [34, Theorem 5.3].

Corollary 4.2 ([34, Theorem 5.3]). Let 1 < p < ∞ and 1 < u < ∞. Assume
that φ is independent of x.

1. Assume in addition that φ ∈ Gp satisfies (12). Then ‖MF‖Mp,φ(`u) .
‖F‖Mp,φ(`u) for any sequence of measurable functions F = {fj}∞j=1 ∈
Mp,φ(`u).

2. We have ‖MF‖Mp,φ(`∞) . ‖F‖Mp,φ(`∞) for any sequence of measurable
functions F = {fj}∞j=1 ∈Mp,φ(`∞).

Now we are oriented to the proof of Theorem 4.1. We first prove the fol-
lowing auxiliary estimate:

Lemma 4.3. Let 1 < p <∞ and 1 < q ≤ ∞.

1. The inequality

‖χB(x,r)MF‖Lp(`q) . ‖χB(x,2r)F‖Lp(`q) + r
n
p

∫ ∞
r

‖χB(x,t)F‖L1(`q)

tn+1
dt

∼ ‖χB(x,2r)F‖Lp(`q) + r
n
p

∫ ∞
2r

‖χB(x,t)F‖L1(`q)

tn+1
dt

(17)

holds for all F = {fj}∞j=0 ⊂ Lp,loc(Rn) and for any ball B = B(x, r).

2. The inequality

‖χB(x,r)MF‖WL1(`q) . ‖χB(x,2r)F‖L1(`q) + rn
∫ ∞
r

‖χB(x,t)F‖L1(`q)

tn+1
dt

∼ ‖χB(x,2r)F‖L1(`q) + rn
∫ ∞

2r

‖χB(x,t)F‖L1(`q)

tn+1
dt

(18)

holds for all F = {fj}∞j=0 ⊂ L1,loc(Rn) and for any ball B = B(x, r).
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Proof. We split F = {fj}∞j=1 with F1 = χB(x,2r)F and F2 = F−F1. We estimate
each term.

By the triangle inequality

‖χB(x,r)MF‖Lp(`q) ≤ ‖χB(x,r)MF1‖Lp(`q) + ‖χB(x,r)MF2‖Lp(`q).

First, we shall estimate ‖χB(x,r)MF1‖Lp(`q) for 1 < p <∞ and 1 < q ≤ ∞.
Thanks to (14), we have

‖χB(x,r)MF1‖Lp(`q) ≤ ‖MF1‖Lp(`q) . ‖F1‖Lp(`q) = ‖χB(x,2r)F‖Lp(`q), (19)

where the implicit constant is independent of the vector-valued function F .
Thus, the estimate for MF1 is valid.

Now we handle MF2. Freeze a point y in B(x, r). For all j ∈ N0 and
y ∈ B(x, r),

‖MF2(y)‖`q .
∞∑
k=1

1

|2kQ(x, r)|

∫
2kQ(x,r)

‖F (y)‖`q dy

according to [34, Lemma 4.2]. As a result, we obtain

r−
n
p ‖χB(x,r)MF2‖Lp(`q) .

∫ ∞
2r

s−n−1‖χB(x,s)F‖L1(`q) ds (20)

for all y ∈ B(x, s). Thus, the estimate for MF2 is valid. Then we obtain (17)
from (19) and (20).

Let p = 1. By the quasi-triangle inequality for any ball B = B(x, r)

‖χB(x,r)MF‖WL1(`q) . ‖χB(x,r)MF1‖WL1(`q) + ‖χB(x,r)MF2‖WL1(`q).

We estimate each term.
By the weak-type Fefferman-Stein maximal inequality (15) we have

‖χB(x,r)MF1‖WL1(`q) ≤ ‖MF1‖WL1(`q) . ‖F1‖L1(`q) = ‖χB(x,2r)F‖L1(`q), (21)

where the implicit constant is independent of the vector-valued function F .
Then by (20) and (21), we obtain the inequality (18).

We transform Lemma 4.3 to an inequality to prove Theorem 4.1.

Lemma 4.4. Let 1 < q ≤ ∞.

1. Let 1 ≤ p <∞. Then, for any ball B = B(x, r), the inequality

‖χB(x,r)MF‖WLp(`q) . r
n
p

∫ ∞
2r

t−
n
p
−1‖χB(x,t)F‖Lp(`q) dt (22)

holds for all F = {fj}∞j=1 ⊂ Lp,loc(Rn).
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2. For any ball B = B(x, r), the inequality

‖χB(x,r)MF‖WL1(`q) . rn
∫ ∞

2r

t−n−1‖χB(x,t)F‖L1(`q) dt (23)

holds for all F = {fj}∞j=1 ⊂ L1,loc(Rn).

Proof. Note that, for all 1 ≤ p <∞

‖χB(x,2r)F‖Lp(`q) . r
n
p

∫ ∞
2r

t−
n
p
−1‖χB(x,t)F‖Lp(`q) dt (24)

r
n
p

∫ ∞
r

t−n−1‖χB(x,t)F‖L1(`q) dt . r
n
p

∫ ∞
2r

t−
n
p
−1‖χB(x,t)F‖Lp(`q) dt

by the Hölder inequality. We deduce (22) from (17) and (24). Likewise we
deduce (23) from (18) and (24).

With these estimates in mind, let us prove Theorem 4.1.

Proof of Theorem 4.1. Let v1(r) = φ1(x, r)−1r−
n
p , v2(r) = φ2(x, r)−1, g(r) =

‖ ‖F‖`q‖Lp(B(x,r)) and w(r) = r−
n
p
−1. By (16), Lemma 4.4 and Theorem 3.3, we

have
‖MF‖Mp,φ2

(lq) . sup
x∈Rn, r>0

φ2(x, r)−1

∫ ∞
2r

t−
n
p
−1‖χB(x,t)F‖Lp(`q) dt

. sup
x∈Rn, r>0

φ1(x, r)−1 r−
n
p ‖χB(x,r)F‖Lp(`q)

= ‖F‖Mp,φ1
(lq),

if 1 < p <∞ and

‖MF‖WM1,φ2
(lq) . sup

x∈Rn, r>0
φ2(x, r)−1

∫ ∞
2r

t−n−1‖χB(x,t)F‖L1(`q) dt

. sup
x∈Rn, r>0

φ1(x, r)−1 r−n‖χB(x,r)F‖L1(`q)

= ‖F‖M1,φ1
(lq)

if p = 1.

As a corollary, we can recover the results in [11,30].

Corollary 4.5. Let 1 ≤ p < ∞, 1 ≤ q < ∞ and φ : (0,∞) → (0,∞) be a
decreasing function satisfying φ(t)t

n
p . φ(T )T

n
p for all 0 < t < T <∞. Assume

in addition φ is independent of x and that∫ ∞
r

φ(t)
dt

t
. φ(r).

1. [30, Theorem 2.5] Let 1 < p < ∞. Let F = {fj}∞j=1 be a sequence in
Mp,φ(lq). Then

‖MF‖Mp,φ(lq) . ‖F‖Mp,φ(lq).

2. [11, Theorem 6] Let p = 1. Let F = {fj}∞j=1 be a sequence in M1,φ(lq).
Then

‖MF‖WM1,φ(lq) . ‖F‖M1,φ(lq).
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5. A basic tool for the theory of generalized Nikol’skij-
Besov-Triebel-Lizorkin-Morrey spaces

We now consider generalized Nikol’skij-Besov-Triebel-Lizorkin-Morrey spaces
based on our maximal inequalities. For 0 < p < ∞ and φ ∈ Gp, denote by
Mp,φ,Ω(Rn) the set of all functions f ∈ Mp,φ,Ω(Rn) ∩ L1,loc(Rn) ∩ S ′(Rn) for
which Ff is supported on Ω. By using the Planchrel-Pólya-Nikol’skij inequal-
ity [27], we have the following estimate of the Peetre maximal operator:

Theorem 5.1. Let 0<r≤p<∞ and suppose that the couple (φ1, φ2)∈Gp×Gp
satisfies the condition

φ1(x, t) . φ2(x, t), (25)

where the implicit constant does not depend on x ∈ Rn and t > 0. Let Ω be a
compact set, d be the diameter of Ω. Let f ∈Mp,φ1,Ω(Rn).

(1) If r < p <∞, then
∥∥∥supy∈Rn

|f(·−y)|
1+|dy|

n
r

∥∥∥
Mp,φ2

. ‖f‖Mp,φ1
.

(2) If p = r, then
∥∥∥supy∈Rn

|f(·−y)|
1+|dy|

n
r

∥∥∥
WMr,φ2

. ‖f‖Mr,φ1
.

Remark 5.2. Theorem 5.1 is proved in [36, 38] in the case of classical Morrey
spaces.

We also need the following corollary to Proposition 5.1.

Corollary 5.3. Let 1 ≤ p ≤ ∞, 0 < q ≤ ∞ and suppose that the couple (φ1, φ2)
of the functions in Gp satisfies the condition (13).

1. Let 1 < p <∞. Then M is bounded from `q (Mp,φ1 ,Rn) to `q (Mp,φ2 ,Rn).

2. Let p = 1. Then M is bounded from `q (M1,φ1 ,Rn) to `q (WM1,φ2 ,Rn).

Let Ω = {Ωj}∞j=1 be a sequence of compact sets. Denote by `q(Mp,φ1,Ω) the
set of all sequences {fj}∞j=1 of the functions in Mp,φ1(Rn) ∩ S ′(Rn) such that
supp(Ffj) ⊂ Ωj for each j ∈ N.

We have the following estimate, which is a counterpart to Theorem 5.1:

Theorem 5.4. Let 0 < p < ∞, 0 < q ≤ ∞, 0 < r < p and suppose that the
couple (φ1, φ2) ∈ Gp × Gp satisfies the condition (25). Let Ω = {Ωj}∞j=1 be a
sequence of compact sets, and let dj denote the diameter of Ωj. Then exists a
positive constant C such that∥∥∥∥∥

{
sup
y∈Rn

|fj(· − y)|
1 + |djy|

n
r

}∞
j=1

∥∥∥∥∥
`q(Mp,φ2

)

.
∥∥{fj}∞j=1

∥∥
`q(Mp,φ1

)
, (26)

if we are given a collection of measurable functions {fj}∞j=1 ⊂ `q(Mp,φ1,Ω).
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If we use Theorem 4.1, we can prove the following theorem, which corre-
sponds to Theorem 5.4:

Theorem 5.5. Let 0 < p < ∞, 0 < q ≤ ∞, 0 < r < min{p, q} and suppose
that the couple (φ1, φ2) ∈ Gp × Gp satisfies the condition (25). Let Ω = {Ωj}∞j=1

be a sequence of compact sets, and let dj be the diameter of Ωj. Then exists a
positive constant C such that∥∥∥∥∥

{
sup
y∈Rn

|fj(· − y)|
1 + |djy|

n
r

}∞
j=1

∥∥∥∥∥
Mp,φ2

(`q)

.
∥∥{fj}∞j=1

∥∥
Mp,φ1

(`q)
, (27)

if we are given a collection of measurable functions {fj}∞j=1 ∈Mp,φ1,Ω(`q).

The proof of this theorem is omitted since it is the same as Theorem 5.4.
Using Theorem 5.4, we can develop a theory of generalized Nikol’skij-Besov-

Triebel-Lizorkin-Morrey spaces, which we define below.

Definition 5.6. Let 0 < q < ∞, 0 < r ≤ ∞, s ∈ R and φ ∈ Gq. Let θ and τ
be compactly supported functions satisfying

0 /∈ supp(τ), θ(ξ) > 0 if ξ ∈ Q(2), τ(ξ) > 0 if ξ ∈ Q(2) \Q(1).

Define τk(ξ) ≡ τ(2−kξ) for ξ ∈ Rn and k ∈ N.

1. One defines the (nonhomogeneous) generalized Nikol’skij-Besov-Morrey
space N s

Mq,φ,r
(Rn) as the set of all f ∈ S ′(Rn) for which the quasi-norm

‖f‖N sMq,φ,r
≡


‖θ(D)f‖Mq,φ

+

(
∞∑
j=1

2jsr‖τj(D)f‖rMq,φ

)1
r

(r<∞),

‖θ(D)f‖Mq,φ
+ sup

j∈N
2js‖τj(D)f‖Mq,φ

(r=∞)

(28)

is finite.

2. One defines the (nonhomogeneous) generalized Triebel-Lizorkin-Morrey
space EsMq,φ,r

(Rn) as the set of all f ∈ S ′(Rn) for which the quasi-norm

‖f‖EsMq,φ,r
≡


‖θ(D)f‖Mq,φ

+

∥∥∥∥∥∥
(
∞∑
j=1

2jsr|τj(D)f |r
)1
r

∥∥∥∥∥∥
Mq,φ

(r<∞),

‖θ(D)f‖Mq,φ
+

∥∥∥∥sup
j∈N

2js|τj(D)f |
∥∥∥∥
Mq,φ

(r=∞)

(29)

is finite.

3. The space AsMq,φ,r
(Rn) denotes either N s

Mq,φ,r
(Rn) or EsMq,φ,r

(Rn).
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Much about generalized Nikol’skij-Besov-Triebel-Lizorkin-Morrey spaces is
investigated in [25]. The difference of the definitions in [25] and this paper
is that this paper extends the condition on φ: φ depends on x as well in the
present paper but φ depends on r in [25]. Further inverstigation is left as a
future work.

Let us survey the progress on Nikol’skij-Besov-Morrey spaces before we
conclude this section. In 1984, Netrusov defined Nikol’skij-Besov-Morrey spa-
ces [26]. Netrusov obtained some embedding results. Later on Nikol’skij-Besov-
Morrey spaces shed light on by Kozono and Yamazaki [19] from the context of
differential equations. It is Kozono and Yamazaki that applied Nikol’skij-Besov-
Morrey spaces to investigate the Cauchy problem for the Navier-Stokes equa-
tion. Najafov considered Nikol’skij-Besov-Morrey spaces of the mixed deriva-
tive in [22]. Motivated by this, Tang and Xu [38] defined non-homogeneous
Triebel-Lizorkin-Morrey spaces, or equivalently, non-homogeneous Morrey type
Triebel-Lizorkin spaces in word of the original paper [38]. After this, Sawano
and Tanaka defined homogeneous Triebel-Lizorkin-Morrey spaces [37]. Sawano
and Wang obtained the trace theorem independently in [33, Theorem 1.1] and
[40, Proposition 1.10], respectively. The wavelet characterization of Nikol’skij-
Besov-Morrey spaces and Triebel-Lizorkin-Morrey spaces can be found in
[28, 29]. Triebel-Lizorkin-Morrey spaces cover Hardy-Morrey spaces; see [31,
Theorem 4.2]. We refer to [12–14, 32, 37, 38] for embedding relations of these
function spaces. We refer to [3,18] for weighted Nikol’skij-Besov-Morrey spaces
and weighted Triebel-Lizorkin-Morrey spaces. See the textbooks [39,41] for an
exhaustive account of these spaces. More and more axiomatic approach to define
new function spaces based on a solid function spaces was taken in [15–17,20].
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