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Abstract. The stability with initial data difference for nonlinear nonautonomous
Caputo fractional differential equation is introduced. This type of stability generalizes
the concept of stability in the literature and it enables us to compare the behavior of
two solutions when both the initial times and initial values are different. Our theory
is based on a new definition of the derivative of a Lyapunov like function along
the given fractional equation. Comparison results for scalar fractional differential
equations are presented and sufficient conditions for stability, uniform stability and
asymptotic stability with initial time difference are obtained.
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1. Introduction

One of the main areas in the qualitative theory of differential equations is sta-
bility of solutions. The analysis of stability of fractional differential equations is
more complicated than classical differential equations, since fractional deriva-
tives are nonlocal and have weakly singular kernels. Recently, Li and Zhang [19]
presented an overview on stability results of fractional differential equations.
One of the approaches used to study the stability of non-linear systems is the
Lyapunov second method which provides a way to analyze stability without ex-
plicitly solving the differential equation. The extension of the Lyapunov second
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method to fractional differential systems was discussed in a number of papers.
For example, the Mittag-Leffler stability and the fractional Lyapunov second
method were discussed in [20, 21], and a sufficient stability condition for non-
linear FrDEs is derived in [9].

In this paper we introduce and study a generalization of the classical concept
of stability which involve a change in both the initial time and the initial values.
This type of stability allows us to investigate the behavior of two solutions when
both the initial times and initial values are different.

Recently, some types of stability with initial time difference were studied
for

- ordinary differential equations ([15,22,22,25,25–27,30,31]);

- fractional differential equations ([7, 29]);

- functional differential equations ([1, 12]).

In studying stability for fractional differential equations, there are several
approaches in the literature, one of which is the Lyapunov approach. As is noted
in [28] there are several difficulties encountered when one applies the Lyapunov
technique to fractional differential equations. Results on stability for nonlinear
fractional differential equations in the literature via Lyapunov functions could
be divided into two main groups:

a. continuously differentiable Lyapunov functions (see, for example, the pa-
pers [4, 6, 9, 21,32]);

b. continuous Lyapunov functions (see, for example, the papers [10,16,17]).

In this paper we define in an appropriate way the Caputo fractional Dini
fractional derivative with initial time difference of Lyapunov functions. With
appropriate examples we show the natural relationship between the defined
derivative and Caputo fractional derivative used in the studied equations. Sev-
eral sufficient conditions for stability with initial data difference for nonlinear
fractional differential equations based on Lyapunov’s functions and comparison
results for a nonlinear scalar fractional differential equation with a parameter
are obtained. Stability, uniform stability and asymptotic uniform stability with
initial time difference are studied. Some examples are given to illustrate the
results.

2. Notes on fractional calculus

Fractional calculus generalizes the derivative and the integral of a function to
a non-integer order [16, 23, 24] and there are several definitions of fractional
derivatives and fractional integrals. In engineering, the fractional order q is
often less than 1, so we restrict our attention to q ∈ (0, 1).

1. The Riemann-Liouville (RL) fractional derivative of order q ∈ (0, 1)
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of m(t) is given by (see, for example, [8, 1.4.1.1], or [23])

t0D
qm(t) =

1

Γ(1− q)

d

dt

∫ t

t0

(t− s)−qm(s)ds, t ≥ t0.

where Γ(.) denotes the Gamma function.

2. The Caputo (C) fractional derivative of order q ∈ (0, 1) is defined by
(see, for example, [8, 1.4.1.3])

c
t0
Dqm(t) =

1

Γ (1− q)

∫ t

t0

(t− s)−q m′(s)ds, t ≥ t0. (1)

The Caputo and Riemann-Liouville formulations coincide when m(t0) = 0.
The properties of the Caputo derivative are quite similar to those of ordinary
derivatives. Also, the initial conditions of fractional differential equations with
the Caputo derivative has a clear physical meaning and as a result the Caputo
derivative is usually used in real applications.

3. The Grunwald-Letnikov (GL) fractional derivative is given by (see, for
example, [8, 1.4.1.2])

t0D̃
qm(t) = lim

h→0+

1

hq

[
t−t0
h

]∑
r=0

(−1)r(qCr)m(t− rh), t ≥ t0,

and the Grunwald-Letnikov fractional Dini derivative by

t0D̃
q
+m(t) = lim sup

h→0+

1

hq

[
t−t0
h

]∑
r=0

(−1)r(qCr)m(t− rh), t ≥ t0, (2)

where qCr = q(q−1)···(q−r+1)
r!

, r is a natural number, q is a real number, and [ t−t0
h

]
denotes the integer part of the fraction t−t0

h
.

The relations between the three types of fractional derivatives are given by

the equalities c
t0
Dqm(t) = t0D̃

q[m(t)−m(t0)] and t0D̃
qm(t) = t0D

qm(t). Also,

according to [11, Lemma 3.4] the equality c
t0
Dq

tm(t) = t0D
q
tm(t)−m(t0)

(t−a)−q

Γ(1−q)

holds.
From the relation between the C fractional derivative and the GL fractional

derivative using (2) we define the Caputo fractional Dini derivative as

c
t0
Dq

+m(t) = t0D̃
q
+[m(t)−m(t0)], (3)

i.e.

c
t0
Dq

+m(t) = lim sup
h→0+

1

hq

[
m(t)−m(t0)−

[
t−t0
h

]∑
r=1

(−1)r+1(qCr)
(
m(t−rh)−m(t0)

)]
. (4)
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Definition 2.1. ([10]) We say m ∈ Cq([t0, T ],Rn) if m(t) is differentiable
(i.e. m′(t) exists), the Caputo derivative c

t0
Dqm(t) exists and satisfies (1) for

t ∈ [t0, T ].

Remark 2.2. If m ∈ Cq([t0, T ],Rn) then c
t0
Dq

+m(t) = c
t0
Dqm(t).

In this paper we will use the following existence result:

Proposition 2.3 ([5, Theorem 2]). Let f ∈ C(R+ × Rn,Rn) be such that

∥f(t, x)− f(t, y)∥ = F (t)∥x− y∥

for all t ≥ 0, x, y ∈ Rn where F ∈ C(R+,R+). Then the integral equation

x(t) = x0 +
1

Γ(q)

∫ t

0

f(s, x(s))

(t− s)1−q
ds, t ≥ 0

has a unique solution defined in R+.

3. Statement of the problem

Consider the following initial value problem for the system of fractional differ-
ential equations (FrDE) with a Caputo derivative for 0 < q < 1

c
t0
Dqx(t) = f(t, x(t)) for t > t0, x(t0) = x0, (5)

where x, x0 ∈ Rn, t0 ∈ R+, f ∈ C[R+ × Rn,Rn].
The main goal of the paper is to study fractional differential equations with

initial time difference. Note any change of initial time reflects not only on the
initial condition but also on the fractional equation.

Let τ0 ∈ R+, τ0 ̸= t0 and y0 ∈ Rn and consider the following IVP for FrDE

c
τ0
Dqx(t) = f(t, x(t)) for t > τ0, x(τ0) = y0. (6)

We will assume in the paper that the function f ∈ C[R+ × Rn,Rn] is such
that for any initial data (t0, x0) ∈ R+×Rn the corresponding IVP for FrDE (5)
has a solution x(t; t0, x0) ∈ Cq([t0,∞),Rn). Note some sufficient conditions for
global existence of solutions of (5) are given in [5, 11, 16].

Lemma 3.1. Let the function x ∈ Cq(R+,Rn), a ≥ 0, be a solution of the
initial value problem for FrDE

c
aD

qx(t) = f(t, x(t)) for t > a, x(a) = x0. (7)

Then the function x̃(t) = x(t+ η) satisfies the initial value problem for the
FrDE

c
bD

qx̃(t) = f(t+ η, x̃(t)) for t > b, x̃(b) = x0 (8)

where b ≥ 0, η = a− b.
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Proof. The function x(t) is a solution of (7) iff it satisfies the Volterra fractional
integral equation ([11, Lemma 6.2])

x(t) = x0 +
1

Γ(q)

∫ t

a

(t− s)q−1
(
f(s, x(s))

)
ds for t ≥ a. (9)

The function x̃(t) satisfies the initial condition of (8), i.e. x̃(b) = x0.

Change the variable in the integral of (9) with s = ξ + η and obtain

x(t) = x0 +
1

Γ(q)

∫ t−η

b
(t− η − ξ)q−1

(
f(ξ + η, x(ξ + η))

)
dξ for t ≥ a or

x(t+ η) = x0 +
1

Γ(q)

∫ t

b

(t− ξ)q−1
(
f(ξ + η, x(ξ + η))

)
dξ for t+ η ≥ a.

Therefore,

x̃(t) = x(t+ η) = x0 +
1

Γ(q)

∫ t

b

(t− ξ)q−1
(
f(ξ + η, x̃(ξ))

)
dξ for t ≥ b,

which proves x̃(t) is a solution of the initial value problem for FrDE (8).

As mentioned in Remark 3.3 in [21, Remark 3.3] any equilibrium point
of a FrDE could by shifted to the origin via an appropriate change of variable.
From Lemma 3.1 we obtain the result for the shift of any solution of a fractional
differential equation.

Corollary 3.2. Let the function x ∈ Cq(R+,Rn) be a solution of the initial
value problem for FrDE

c
0D

qx(t) = f(t+ t0, x(t)) for t > 0, x(0) = x0. (10)

Then the function x̃(t) = x(t− t0) satisfies the FrDE

c
t0
Dqx̃(t) = f(t, x̃(t)) for t > t0, x̃(t0) = x0 (11)

where t0 ∈ R+.

Corollary 3.3. For any solution x(t) = x(t; t0, x0) of (5) the function
x̃(t) = x(t+ t0) is a solution of the initial value problem for FrDE

c
0D

qx̃(t) = f(t+ t0, x̃(t)) for t > 0, x̃(0) = x0 (12)

and conversely, for any solution x̃(t) = x̃(t; 0, x0) of (12) the function
x(t) = x̃(t− t0) is a solution of (5).

The relation between (5) and (6) is given by the following result.
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Corollary 3.4. For any solution x(t) = x(t; τ0, y0) of (6) the function
x̃(t) = x(t+ η) is a solution of IVP for FrDE

c
t0
Dqx̃(t) = f(t+ η, x̃(t)) for t ≥ t0, x̃(t0) = y0, (13)

where η = τ0 − t0 .

Remark 3.5. Without loss of generality we will consider the case when τ0 > t0.

In the paper we will use the following sets:

K={a ∈ C[R+,R+] : a is strictly increasing and a(0) = 0},
B(H) = {u ∈ R : |u| < H}, H = const > 0,

S̄(λ) = {x ∈ Rn : ∥x∥ ≤ λ},
S(λ) = {x ∈ Rn : ∥x∥ < λ}, λ = const > 0.

The goal of the paper is to study the stability with initial time difference
for FrDE (5), i.e. we will study the difference between a solution of IVP for
FrDE (5) and a solution of (6).

Definition 3.6. Let x∗(t) = x(t; t0, x0) be a given solution of FrDE (5). The
solution x∗(t) is said to be

• stable with initial time difference (ITD) if for every ϵ > 0 there exist
δ = δ(ϵ, t0) > 0 and σ = σ(ϵ, t0) > 0 such that for any y0 ∈ Rn and
any τ0 ∈ R+ the inequalities ∥y0 − x0∥ < δ and |τ0 − t0| < σ imply
∥x(t+ η; τ0, y0)− x∗(t)∥ < ϵ for t ≥ t0 where η = τ0 − t0 and x(t; τ0; y0) is
a solution of (6);

• attractive with initial time difference (ITD) if there exist β > 0 and σ > 0
such that for every ϵ > 0 there exists T = T (ϵ, t0) > 0 such that for any
τ0 ∈ R+, y0 ∈ Rn with ∥y0 − x0∥ < β and |τ0 − t0| < σ the inequality
∥x(t + η; τ0, y0) − x∗(t)∥ < ϵ holds for t ≥ t0 + T where η = τ0 − t0 and
x(t; τ0; y0) is a solution of (6);

• asymptotically stable with initial time difference if the solution x∗(t) is
stable with ITD and attractive with ITD.

Example 3.7. Consider the initial value problem for the scalar fractional dif-
ferential equation

c
0D

qx(t) = a ta−1 x(0) = x0 (14)

where a > 1 and x0 ̸= 0 is fixed. The solution of (14) is given by x∗(t) =
aΓ(a)t(a+q)−1

Γ(a+q)
+x0. Consider the solution of (14) with another initial value y0 ̸= x0

but with an unchanged initial time t0 = 0. The solution of (14) with x(0) = y0

is given by x̃(t) = aΓ(a)t(a+q)−1

Γ(a+q)
+ y0. Then, |x∗(t)− x̃(t)| = |x0 − y0|. Therefore,

the solution x∗(t) is stable.
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Now, we consider different initial data, i.e. different initial values y0 ̸= x0

and initial time τ0 ̸= 0. Let y(t) be a solution of the corresponding IVP for the
scalar FrDE c

τ0
Dqx(t) = a ta−1, x(τ0) = y0. According to Lemma 3.1 the function

ỹ(t) = y(t + τ0), satisfies the IVP for FrDE c
0D

qỹ(t) = a(t + τ0)
a−1, ỹ(0) = y0.

Consider the difference of both solutions z(t) = ỹ(t)− x∗(t) = y(t+ τ0)− x∗(t).
The function z(t) is a solution of the FrDE c

0D
qz(t) = a

(
(t+ τ0)

a−1− ta−1
)
with

z(0) = y0−x0. This FrDE has no zero solution. If a = 2 then c
0D

qz(t) = aτ0,
z(0) = y0 − x0 and according to [11, Lemma 6.2],

z(t) = y0 − x0 +
1

Γ(q)

∫ t

0

(t− s)q−12τ0ds = y0 − x0 +
2τ0t

q

qΓ(q)
for t ≥ 0. (15)

Now (15) shows the solution x∗(t) is not stable with ITD, i.e. the change in the
initial time does not save the stability property of the solution.

Definition 3.8. The system of FrDE (5) is said to be

• uniformly stable with initial time difference (ITD) if for every ϵ > 0 there
exist δ = δ(ϵ) > 0 and σ = σ(ϵ) > 0 such that for any x0, y0 ∈ Rn and
any t0, τ0 ∈ R+ the inequalities ∥y0 − x0∥ < δ and |τ0 − t0| < σ imply
∥x(t+ η)− x∗(t)∥ < ϵ for t ≥ t0 where η = τ0 − t0 and x∗(t) = x(t; t0, x0)
and x(t) = x(t; τ0, y0) are solutions of initial value problems for FrDE (5)
and (6) correspondingly;

• uniformly attractive with initial time difference (ITD) if there exists β > 0
and σ such that for every ϵ > 0 there exist T = T (ϵ) > 0 such that for
any t0, τ0 ∈ R+, x0, y0 ∈ Rn with ∥y0 − x0∥ < β and |τ0 − t0| < σ the
inequality ∥x(t+η; τ0, y0)−x∗(t)∥ < ϵ holds for t ≥ t0+T where η = τ0−t0
and x∗(t) = x(t; t0, x0) and x(t) = x(t; τ0, y0) are solutions of initial value
problems for FrDE (5) and (6) correspondingly;

• uniformly asymptotically stable with initial time difference if FrDE (5) is
uniformly stable with ITD and uniformly attractive with ITD.

Remark 3.9. The stability with initial time difference is important only in the
case of nonautonomous fractional differential equations.

Consider IVP for FrDE (5) in the autonomous case, i.e. f(t, x) ≡ f(x) with
a given solution x∗(t) = x(t; t0, x0). Define the function f̃ : R+ × Rn → Rn

by f̃(t, z) = f(z + x∗(t)) − f(x∗(t)). Then f̃(t, 0) ≡ 0. To study the stability
with ITD of x∗(t) we consider the difference z(t) = x(t + η) − x∗(t), where
x(t) = x(t; τ0, y0), η = τ0 − t0, t0 ̸= τ0, is a solution of IVP for FrDE (6).
The function z(t) is a solution of FrDE c

t0
Dqz(t) = c

t0
Dqx(t+ η)− c

t0
Dqx∗(t) =

f(x(t+η))−f(x∗(t)) ≡ f̃(t, z(t)) which has a zero solution. Therefore, studying
the stability with ITD is reduced to studying the stability of the zero solution
of the corresponding FrDE (see Example 3.10).
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The situation is not the same for nonautonomous FrDE. Similarly, define the
function f̃ : R+×Rn×B(H) → Rn by f̃(t, z, η) = f(t+η, z+x∗(t))−f(t, x∗(t))
where x∗(t) = x(t; t0, x0) is a given solution of (5). In the general case τ0 ̸= t0
note f̃(t, 0, η) ̸= 0 holds. Consider the difference z(t) = x(t + η) − x∗(t),
where x(t) = x(t; τ0, y0), t0 ̸= τ0, is a solution of IVP for FrDE (6). The
function z(t) is a solution of FrDE c

t0
Dqz(t) = c

t0
Dqx(t + η) − c

t0
Dqx∗(t) =

f(t + η, x(t + η)) − f(t, x∗(t)) = f̃(t, z, η) which has not a zero solution (in
the general case). Therefore, studying the stability with ITD could not be
reduced to studying the stability of the zero solution of a corresponding FrDE
(see Example 3.7).

Example 3.10. Consider the IVP for the autonomous FrDE

c
0D

qx(t) = x(t) + 1 for t > 0, x(0) = 0. (16)

The solution of (16) is x∗(t) = tqEq,q+1(t
q) (see, [13, Example 4]), where the

Mittag-Leffler function is defined by Eq,β(z) =
∑∞

k=0
zk

Γ(qk+β)
, q > 0, β > 0.

Now, choose τ0 > 0 and y0 ̸= 0 and let x(t) = x(t; τ0, y0) be the solution of
FrDE c

τ0
Dqx(t) = x(t)+1 for t > τ0, with x(τ0) = y0. According to Lemma 3.1

for a = τ0, b = 0, η = τ0 the function x̃(t) = x(t+ τ0) is a solution of c
0D

qx(t) =
x(t) + 1, t > 0 with x(0) = y0. Consider the difference z(t) = x(t + τ0)− x∗(t)
which satisfies the IVP for FrDE c

0D
qz(t) = z(t), z(0) = y0. This FrDE has

a zero solution, so, studying the stability with initial time difference of x(t) is
reduced to studying the stability of the zero solution of an appropriate FrDE.

We will use comparison results for the IVP for scalar FrDE with a parameter

c
t0
Dqu = g (t, u, η) for t > t0, u(t0) = u0 (17)

where u ∈ R, g : [t0,∞) × R × B(H) → R, g(t, 0, 0) ≡ 0. We will assume in
the paper that the function g : [t0,∞) × R × B(H) → R is such that for any
initial data (t0, u0) ∈ R+ × R and any value of the parameter η∗ ∈ B(H) the
scalar FrDE (17) with u(t0) = u0 and η = η∗ has a solution u(t; t0, u0, η

∗) ∈
Cq([t0,∞),R) (we assume the existence of a maximal solution in Section 5).
Also, we assume that for any compact subset I ⊂ [t0,∞) and any fixed value
η∗ ∈ B(H) of the parameter there exists a small enough number L = L(η∗) > 0
such that the corresponding FrDE c

t0
Dqu = g (t, u, η∗) + γ with γ ∈ (0, L] has a

solution u(t; t0, u0, η
∗) ∈ Cq(I,R) where (t0, u0) ∈ I × R.

In the definition below we assume u(t; t0, u0, η) is any solution of (17) with
u(t0) = u0 and a given η ∈ B(H).
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Definition 3.11. The zero solution of the scalar FrDE with a parameter (17)
is said to be

(i) stable w.r.t. a parameter if for any ϵ > 0 and t0 ∈ R+ there exist
δ = δ(t0, ϵ) > 0 and σ = σ(t0, ϵ) > 0 such that for any u0 ∈ R : |u0| < δ
and any η ∈ B(σ) the inequality |u(t; t0, u0, η)| < ϵ holds for t ≥ t0;

(ii) uniformly stable w.r.t. a parameter if above δ and σ don’t depend on t0;

(iii) attractive w.r.t. a parameter if for any ϵ > 0 and t0 ∈ R+ there exist
δ = δ(t0, ϵ) > 0, σ = σ(t0, ϵ) > 0 and T = T (t0, ϵ) > 0 such that for any
u0 ∈ R : |u0| < δ and any η ∈ B(σ) the inequality |u(t; t0, u0, η)| < ϵ
holds for t ≥ t0 + T .

Example 3.12. Consider the IVP for the scalar FrDE (17) with g(t, u, η) =
−au+ Cη:

c
t0
Dqu(t) = −Au+ Cη, t ≥ t0, u(t0) = u0 (18)

where A > 0, C > 0, η is a parameter.
From [14, Example 4.9] and [14, Equation (4.1.66)] with α = q, a = t0,

λ = −A, f(t) = Cη, b = u0 the solution of (18) is given by

u(t; t0, u0, η) = u0Eq,1(−A(t− t0)
q)+

∫ t

t0

(t− τ)q−1Eq,q(−A(t−τ)q)Cηdτ. (19)

From [23, Equation (1.99)] with λ = −A,α = q, β = q, z = t− t0 we obtain∣∣∣∣∫ t−t0

0

(s)q−1Eq,q(−A(s)q)ds

∣∣∣∣ = (t− t0)
qEq,q+1(−A(t− t0)

q).

From [11, Theorem 4.2] with n1 = q, n2 = q+1, x = −A(t− t0)
q we get the

equality (t− t0)
qEq,q+1((t− t0)

q) = 1
A

(
1

Γ(q)
− Eq,q(−A(t− t0)

q)
)
.

Then
∣∣∣∫ t

t0
(t− τ)q−1Eq,q(−A(t− τ)q)dτ

∣∣∣ =
∣∣∣∫ t−t0

0
sq−1Eq,q(−Asq)ds

∣∣∣ ≤
1
A
(1− Eq,q(−A(t− t0)

q)) ≤ 1
A
, so

|u(t; t0, u0, η)| ≤ |u0|+
1

A
C |η| . (20)

The inequality (20) proves the zero solution of (18) is uniformly stable w.r.t. a
parameter.

In this paper we will study the connection between the stability with initial
time difference of the system of FrDE (5) and the stability w.r.t. a parameter
of the zero solution of the scalar FrDE (17).

We now introduce the class Λ of Lyapunov-like functions which will be used
to investigate the stability with ITD for fractional differential equations.
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Definition 3.13. Let I⊂R+ and ∆⊂Rn, 0∈∆. We will say that the function
V (t, x) : I×∆ → R+ belongs to the class Λ(I,∆) if V (t, x) ∈ C(I×∆,R+) is
locally Lipschitzian with respect to its second argument.

For fractional differential equations some authors used the Caputo frac-
tional derivative of Lyapunov functions of the unknown solutions (for example,
[4, 6, 9, 21, 32]). This approach requires the function to be smooth enough (at
least continuously differentiable) and also some conditions involved are quite
restrictive. Other authors use the Lakshmikantham et al. derivative of Lya-
punov functions ([16,17]) and this definition requires only the continuity of the
Lyapunov function. However it can be quite restrictive (see Example 3.15).

In [2, 3] the derivative of Lyapunov functions is introduced based on the
Caputo fractional Dini derivative of a function m(t) given by (4). It is used
to study stabiity and strict stability of Caputo fractional differential equations.
Now we generalize this definition with initial time difference. We define the
Caputo fractional Dini derivative with initial time difference (ITD) of the func-
tion V (t, x) ∈ Λ(I,∆) along trajectories of solutions of the system FrDE (5) as
follows:

c
t0
Dq

(5)V (t, x, y, η, x0, y0)

= lim sup
h→0+

1

hq

{
V (t, y − x)− V (t0, y0 − x0)−

[
t−t0
h

]∑
r=1

(−1)r+1qCr

×
[
V
(
t− rh, y − x− hq

(
f(t+ η, y)− f(t, x)

))
− V (t0, y0 − x0)

]}
,

(21)

where t, t0 ∈ I, y − x, y0 − x0 ∈ ∆, and there exists h1 > 0 such that t− h ∈ I,
y − x− hq

(
f(t+ η, y)− f(t, x)

)
∈ ∆ for 0 < h ≤ h1 and η ∈ B(H).

Lemma 3.14. Let n = 1, x(t) = x(t; t0, x0) be a solution of (5) and x̃(t) =
x(t; τ0, y0) be a solution of (6) and V (x) = x2. Then c

t0
DqV (x̃(t + η)− x(t)) =

c
t0
Dq

(5)V (x(t), x̃(t+ η), η, x0, y0) where η = τ0 − t0.

Proof. Let y(t) = x̃(t+ η). Apply (3) and definition (21) and we obtain

c
t0
Dq

(
x̃(t+η)−x(t))2

= t0D̃
q
+

[
(x̃(t+η)− x(t))2−(y0−x0)

2
]

=− lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=0

(−1)rqCr(y0−x0)
2

+lim sup
h→0+

1

hq

{[
t−t0
h

]∑
r=0

(−1)rqCr

[(
y(t)−x(t)−hq

[
f(t+η, y(t))−f(t, x(t))

])2]}
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+lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=0

(−1)rqCr

×
[(
y(t−rh)−x(t−rh)

)2

−
(
y(t)−x(t)−hq

[
f(t+η, y(t))−f(t, x(t))

])2]
= c

t0
Dq

(5)V (x(t), y(t), η, x0, y0)

+lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=0

(−1)rqCr

[
rh

(
y′(ξ)−x′(ς)

)
+hq

(
f(t+η, y(t))−f(t, x(t)

)]
×
[(
y(t−rh)+y(t)

)
−
(
x(t−rh)+x(t)

)
−hq

(
f(t+η, y(t)−f(t, x(t))

)]}
,

(22)

where ξ, ς ∈ (t− rh, t).

Use the equality lim suph→0+ hα
∑[

t−t0
h

]

r=0 (−1)rqCr = 0 for α > 0, the limit
limN→∞

∑N
r=0(−1)rqCr=0, whereN is a natural number, and limh→0+ [

t−t0
h

]=∞
and we obtain

lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=0

(−1)rqCr

[
rh

(
y′(ξ)−x′(ς)

)
+hq

(
f(t+η, y(t))−f(t, x(t)

)]
×
[(
y(t−rh)+y(t)

)
−
(
x(t−rh)+x(t)

)
−hq

(
f(t+η, y(t)−f(t, x(t))

)]

= lim sup
h→0+

[
t−t0
h

]∑
r=0

(−1)rqCr
(
f(t+η, y(t))−f(t, x(t)

)
×
[(
y(tc−rh)+y(t)

)
−
(
x(t−rh)+x(t)

)]

= lim sup
h→0+

[
t−t0
h

]∑
r=0

(−1)rqCr
(
f(t+η, y(t))−f(t, x(t)

)(
2y(t)−2x(t)

)
= 0.

(23)

From (22) and (23), the result follows.

A generalization of the derivative with initial time difference of a Lyapunov
function is defined and used in [10,16,17] :

Dq
+V (t, y − x, η)

= lim sup
h→0+

1

hq

(
V (t, y − x)− V (t− h, y − x− hq

(
f(t+ η, y)− f(t, x)

))
.

(24)

Note formula (24) is simpler than that introduced in formula (21) but it
gives us quite different results than those in the literature.
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Example 3.15. Let V (t, x) = x2

(t+1)2
for x ∈ R, x ∈ B(A), A > 0, and consider

the case t0 ≥ 0, x0 ̸= y0, η = τ0 > 0.

Apply formula (24) to obtain the derivative of V , namely

Dq
+V (t, y − x, η) =

= lim sup
h→0

{(
− (y − x)h1−q +

(
f(t+ η, y)− f(t, x)

)
(t+ 1)

)
(t+ 1)2(t+ 1− h)2

×
(
2(y − x)(t+ 1)− (y − x)h− hq

(
f(t+ η, y)− f(t, x)

)
(t+ 1)

)
(t+ 1)2(t+ 1− h)2

}

=
2(y − x)

(
f(t+ η, y)− f(t, x)

)
(t+ 1)2

.

(25)

Use formula (21) to obtain the derivative of V , namely

c
t0
Dq

(5)V (t, x, y, η, x0, y0)

= −(y0−x0)
2

(1+t0)2
lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=0

(−1)rqCr

+
1

(1t)2
lim sup
h→0+

(y−x)2−
(
y−x−hq

(
f(t+η, y)−f(t, x)

))2
hq

+ lim sup
h→0+

(
y−x−hq

(
f(t+η, y)−f(t, x)

)2) 1

hq

[
t−t0
h

]∑
r=0

(−1)rqCr
1

(t+1−rh)2
.

(26)

Apply the equality limN→∞
∑N

r=0(−1)rqCr = 0 for a natural number N,

lim suph→0+
1
hq

∑[
t−t0
h

]

r=0 (−1)rqCr 1
(t+1−rh)2

= t0D̃
q
+

(
1

(t+1)2

)
= t0D

q
(

1
(t+1)2

)
,

lim sup
h→0+

(
y−x−hq

(
f(t+η, y)−f(t, x)

)2) 1

hq

[
t−t0
h

]∑
r=0

(−1)rqCr
1

(t+1−rh)2

=
(
lim sup
h→0+

(y−x−hq
(
f(t+η, y)−f(t, x)

)2)(
lim sup
h→0+

1

hq

[
t−t0
h

]∑
r=0

(−1)rqCr
1

(t+1−rh)2

)
=(y−x)2 t0D

q

(
1

(t+1)2

)

and lim suph→0+
(y−x)2−(y−x−hq(f(t+η,y)−f(t,x)))2

hq = 2(y − x)
(
f(t + η, y)− f(t, x)

)
,
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from (26) we obtain the following

c
t0
Dq

(5)V (t, x, y, η, x0, x0)

=
2(y − x)

(
f(t+ η, y)− f(t, x)

)
(t+ 1)2

+ (y − x)2 t0D
q

(
1

(t+ 1)2

)
− (y0 − x0)

2
t0D

q

(
1

(t0 + 1)2

)
=

2(y − x)
(
f(t+ η, y)− f(t, x)

)
(t+ 1)2

+ t0D
q

(
(y − x)2

(t+ 1)2
− (y0 − x0)

2

(t0 + 1)2

)
.

(27)

Now consider the well known case q=1. The Dini derivative of the Lyapunov
function with respect to the ordinary differential equation x′=f(t, x) is

DV (t, y − x, η)

= lim sup
h→0+

1

h

(
V (t, y − x)− V (t− h, y − x− h(f(t+ η, y)− f(t, x))

)
=

2(y − x)
(
f(t+ η, y)− f(t, x)

)
(t+ 1)2

− 2
(y − x)2

(t+ 1)3

=
2(y − x)

(
f(t+ η, y)− f(t, x)

)
(t+ 1)2

+
d

dt

(
(y − x)2

(t+ 1)2

)
.

(28)

In formula (25), we obtain only the first term of DV (t, x) in (28). Formulas (27)
and (28) are quite similar.

4. Fractional differential inequalities with initial time dif-
ference and comparison results for scalar FrDE

Lemma 4.1 ([3, Lemma 1]). Let m∈C([t0, T ],R) and suppose that there exists
t∗∈(t0, T ], such that m(t∗)=0, m(t)<0 for t0≤ t<t∗ and the Caputo fractional
Dini derivative c

t0
Dq

+m(t∗) exists. Then the inequality c
t0
Dq

+m(t∗)>0 holds.

Now we present a comparison result applying the Caputo fractional Dini
derivative of Lyapunov functions.

Lemma 4.2 (Comparison result). Assume the following conditions are satisfied:

1. The function x∗(t) = x(t; t0, x0) ∈ Cq([t0, t0 + T ],Rn) is a solution of (5)
and x̃(t) = x(t; τ0, y0) ∈ Cq([τ0, τ0 + T ],Rn) is a solution of (6) such
that x̃(t + η∗) − x∗(t) ∈ ∆ for t ∈ [t0, t0 + T ] where ∆ ⊂ Rn, 0 ∈ ∆,
t0, τ0 ∈ R+ : η∗ = τ0 − t0 ∈ B(H), H,T > 0 are given constants,
x0, y0 ∈ Rn : y0 − x0 ∈ ∆.

2. The function g ∈ C([t0, t0 + T ]× R×B(H),R).
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3. The function V ∈ Λ([t0, t0 + T ],∆) and for t ∈ [t0, t0 + T ] the inequality

c
t0
Dq

(5)V (t, x∗(t), x̃(t+ η∗), η∗, x0, y0) ≤ g(t, V (t, x̃(t+ η∗)− x∗(t)), η∗)

holds.

4. The function u∗(t) = u(t; t0, u0, η
∗), u∗ ∈ Cq([t0, t0 + T ],R), is the maxi-

mal solution of the initial value problem (17) for initial data (t0, u0) and
parameter η = η∗.
Then the inequality V (t0, y0−x0) ≤ u0 implies V (t, x̃(t+η)−x∗(t)) ≤ u∗(t)
for t ∈ [t0, t0 + T ].

Proof. Let γ > 0 be an arbitrary enough small number (i.e. γ ≤ L = L(η∗) as
described after (17)) and consider the initial value problem for the scalar FrDE

c
t0
Dqu = g(t, u, η∗) + γ for t ∈ [t0, t0 + T ], u(t0) = u0 + γ. (29)

The function u(t; γ) = u(t; t0, u0 + γ, η∗) is a solution of the IVP for the scalar
FrDE (29) iff it satisfies the Volterra fractional integral equation [11, Lemma 6.2]

u(t; γ)=u0+γ+
1

Γ(q)

∫ t

t0

(t−s)q−1
(
g(s, u(s; γ), η∗)+γ

)
ds for t∈ [t0, t0+T ]. (30)

Let the function m(t) ∈ C([t0, t0+T ],R+) be m(t) = V (t, x̃(t+η∗)−x∗(t)).
We now prove that

m(t) < u(t; γ) for t ∈ [t0, t0 + T ] and γ ∈ (0,min{H,L}). (31)

Let γ∗ ≤ min{H,L} be a fixed positive value. Note that the inequality (31)
holds for t = t0 and γ = γ∗ since m(t0) = V (t0, x0) ≤ u0 < u(t0; γ

∗). Assume
that inequality (31) is not true for t ∈ (t0, t0+T ] and γ = γ∗. Then there exists
a point t∗ such that m(t∗) = u(t∗; γ∗), m(t) < u(t; γ∗) for t ∈ [t0, t

∗). Now
Lemma 4.1 (applied to m(t)− u(t; γ∗)) yields c

t0
Dq

+(m(t∗)− u(t∗; γ∗)) > 0, i.e.

c
t0
Dq

+m(t∗) > g(t∗, u(t∗; γ∗), η∗) + γ∗ > g(t∗,m(t∗), η∗). (32)

According to Corollary 3.4 the function x∗(t + η) satisfies IVP for FrDE (13).
Then from Remark 2.2, formula (4) and the IVP for FrDE (13) we obtain for
t ∈ (t0, t0 + T ] the equality

lim sup
h→0+

1

hq

[
x̃(t+ η∗)− x∗(t)− y0 + x0 − S(x̃(t), x∗(t), h, η∗)

]
= f(t+ η∗, x̃(t+ η∗))− f(t, x∗(t))

where

S (x̃(t), x∗(t), h, η∗) =

[
t−t0
h

]∑
r=1

(−1)r+1qCr
[
x̃(t+η∗−rh)−x∗(t−rh)−y0+x0]. (33)



Stability of Caputo Fractional Differential Equations 63

Therefore S(x̃(t), x∗(t), h, η∗)= x̃(t+η∗)−x∗(t)−y0+x0−hq
(
f(t+η∗, x̃(t+η∗))−

f(t, x∗(t)
)
−Λ(hq) or

x̃(t+ η∗)− x∗(t)− hq
(
f(t+ η∗, x̃(t+ η∗))− f(t, x∗(t)

)
= S (x̃(t), x∗(t), h, η∗) + y0 − x0 + Λ(hq)

(34)

with Λ(hq)
hq → 0 as h → 0. Then using (34) for any t ∈ (t0, t0 + T ] we obtain

c
t0
Dq

+m(t)

=

{
V (t, x̃(t+ η∗)− x∗(t))− V (t0, y0 − x0)

−
[
t−t0
h

]∑
r=1

(−1)r+1qCr
[
V (t− rh, x̃(t+ η∗)− x∗(t)

− hq
(
f(t+ η∗, x̃(t+ η∗))− f(t, x∗(t)

)
− V (t0, y0 − x0)

]}

+

[
t−t0
h

]∑
r=1

(−1)r+1qCrV
(
t− rh, S (x̃(t), x∗(t), h, η∗) + y0 − x0 + Λ(hq)

)

−
[
t−t0
h

]∑
r=1

(−1)r+1qCrV
(
t− rh, x̃(t− rh+ η∗)− x∗(t− rh)

)
.

(35)

Since V is locally Lipschitzian in its second argument with a Lipschitz constant
L > 0 applying (33) we obtain

[
t−t0
h

]∑
r=1

(−1)r+1qCr

{
V
(
t−rh, S(x̃(t), x∗(t), h, η∗)+y0−x0+Λ(hq)

)
−V

(
t−rh, x̃(t−rh+η∗)−x∗(t−rh)

)}

≤ L
∥∥∥[

t−t0
h

]∑
r=1

qCr

[
t−t0
h

]∑
j=1

(−1)j+1qCj
[
x̃(t+η∗−jh)−x∗(t−jh)−y0+x0

]

−
[
t−t0
h

]∑
r=1

qCr
(
x̃(t−rh+η∗)−x∗(t−rh)−y0+x0

)∥∥∥+LΛ(hq)

[
t−t0
h

]∑
r=1

qCr

= L
∥∥∥([

t−t0
h

]∑
r=0

(−1)r+1qCr
)([

t−t0
h

]∑
j=1

qCj
(
x̃(t+η∗−jh)−x∗(t−jh)−y0+x0

))∥∥∥
+LΛ(hq)

[
t−t0
h

]∑
r=1

qCr.

(36)
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Substitute (36) in (35), divide both sides by hq, take the limit as h → 0+

and
∑∞

r=0 qCrzr = (1 + z)q if |z| ≤ 1, and we obtain for any t ∈ (t0, t0 + T ] the
inequality (note (4) and (21) and condition 3 of Lemma 4.2)

c
t0
Dq

+m(t)

≤ c
t0
Dq

(5)V (t, x∗(t), x̃(t+ η∗), η∗, x0, y0)

+ L lim
h→0+

Λ(hq)

hq
lim
h→0+

[
t−t0
h

]∑
r=1

qCr + L lim
h→0+

sup
∥∥∥( [

t−t0
h

]∑
r=0

(−1)r+1qCr
)

×
( 1

hq

[
t−t0
h

]∑
j=1

qCj
(
x̃(t+ η∗ − jh)− x∗(t− jh)− y0 + x0

))∥∥∥
= c

t0
Dq

(5)V (t, x∗(t), x̃(t+ η∗), η∗, x0, y0)

≤ g(t, V (t, x̃(t+ η∗)− x∗(t)), η∗)

= g(t,m(t), η∗).

(37)

Now (37) with t = t∗ contradicts (32). Therefore (31) holds on [t0, t0 + T ] for
any arbitrary γ ∈ (0, C], where C = min{1, L, η∗)}.

We now show if γ2 < γ1 then

u(t; γ2) < u(t; γ1) for t ∈ [t0, t0 + T ]. (38)

Note that the inequality (38) holds for t = t0. Assume that inequality (38) is not
true. Then there exists a point t∗ ∈ (t0, t0+T ] such that u(t∗; γ2) = u(t∗; γ1) and
u(t; γ2) < u(t; γ1) for t ∈ [t0, t

∗). Now Lemma 4.1 (applied to u(t; γ2)−u(t; γ1))
yields c

t0
Dq

+(u(t
∗; γ2)− u(t∗; γ1))) > 0. However

cDq
+(u(t

∗; γ2)−u(t∗; γ1))) = g(t∗, u(t∗; γ2), η
∗)+γ2− [g(t∗, u(t∗; γ1), η

∗)+γ1] < 0,

a contradiction. Thus (38) is true.

Now 0 < γ ≤ C, and (31) and (38) guarantee that the family of solutions
{u(t; γ)}, t ∈ [t0, t0+T ] of (29) is uniformly bounded i.e there exists K > 0 with
|u(t, γ)| ≤ K for (t, γ) ∈ [t0, t0 + T ] × [0, C]. Let M = sup{|g(t, x)| : (t, x) ∈
[t0, t0+T ]× [−K,K]}. Take a decreasing sequence of positive numbers {γj}∞j=0,
γ0 ≤ C, such that limj→∞ γj = 0 and consider the sequence of functions u(t; γj).
Now for t1, t2 ∈ [t0, t0 + T ], t1 < t2, using the inequalities aq − bq ≤ 2(a − b)q

for a ≥ b ≥ 0, (t1 − s)q ≤ (t2 − s)q for s ∈ [t0, t1] and∫ t1

t0

(
(t2−s)q−1−(t1−s)q−1

)
ds =

1

q

(
(t2−t0)

q−(t1−t0)
q−(t2−t1)

q
)
≤ (t2 − t1)

q

q
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we get

|u(t2; γj)− u(t1; γj)|

≤ 1

Γ(q)

∣∣∣ ∫ t1

t0

(
(t2 − s)q−1 − (t1 − s)q−1

)(
g(s, u(s; γj) + γj

)
ds
∣∣∣

+
∣∣∣ ∫ t2

t1

((t2 − s)q−1)(g(s, u(s; γj)) + γj)ds
∣∣∣

≤ M + 1

Γ(q)

{(t2 − t1)
q

q
+

(t2 − t1)
q

q

}
= 2

M + 1

qΓ(q)
(t2 − t1)

q.

(39)

Thus the family {u(t; γj)} is equicontinuous on [t0, t0 + T ]. The Arzela-Ascoli
Theorem guarantees that there exists a subsequence, {u(t; γjk)} that is uni-
formly convergent in the interval [t0, t0 + T ]. Let limk→∞ u(t; γjk) = w(t). Take
the limit in (30) as k → ∞ and we see that w(t) satisfies the initial value prob-
lem (17) for t ∈ [t0, t0 + T ]. Now from (31) we have m(t) ≤ w(t) ≤ u∗(t) on
[t0, t0 + T ].

If g(t, x) ≡ 0 in Lemma 4.2 we obtain the following result:

Corollary 4.3. Assume the following conditions are fulfilled:

1. The condition 1 of Lemma 4.2 is satisfied.

2. The function V ∈ Λ([t0, t0 + T ],∆) and the inequality

c
t0
Dq

(5)V (t, x∗(t), x̃(t+ η∗), η∗, x0, y0) ≤ 0 for t ∈ [t0, t0 + T ]

holds.

Then for t ∈ [t0, t0 + T ] the inequality V (t, x̃(t + η∗) − x∗(t)) ≤ V (t0, y0 − x0)
holds.

Proof. The proof follows from the fact that the Caputo fractional differential
equation cDqx = 0 has a constant solution. Apply Lemma 4.2 with u0 =
V (t0, y0 − x0).

The result of Lemma 4.2 is also true on the half line. The idea is to fix
T > 0 and once again we have (30) and (31). Take the limit in (30) as k → ∞
and we see that limk→∞ u(t; γjk)) satisfies the initial value problem (17) for
t ∈ [t0, t0 + T ]. We can do this argument for each T < ∞. This yields the
following result.

Corollary 4.4. Let the conditions in Lemma 4.2 be satisfied where the interval
[t0, t0+T ] is replaced by [t0,∞). Then the inequality V (t0, y0−x0) ≤ u0 implies
V (t, x̃(t+ η∗)− x∗(t)) ≤ u∗(t) for t ≥ t0.
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From Corollary 4.4 we have the following global result.

Corollary 4.5. Assume the following conditions are fulfilled:

1. The condition 1 of Corollary 4.3 is satisfied.

2. The function V ∈ Λ([t0,∞),∆) and the inequality

c
t0
Dq

(5)V (t, x∗(t), x̃(t+ η∗), η∗, x0, y0) ≤ 0 for t ≥ t0

holds.

Then the inequality V (t, x̃(t+ η∗)− x∗(t)) ≤ V (t0, y0 − x0) holds for t ≥ t0.

If the derivative of the Lyapunov function is negative, the following result
is true.

Lemma 4.6. Assume the following conditions are satisfied:

1. The condition 1 of Lemma 4.2 is satisfied.

2. The function V ∈ Λ([t0, t0 + T ],∆) and for t ∈ [t0, t0 + T ] the inequality

c
t0
Dq

(5)V (t, x∗(t), x̃(t+ η∗), η∗, x0, y0) ≤ −c(∥x̃(t+ η∗)− x∗(t)∥)

holds where c ∈ K.

Then for t ∈ [t0, t0 + T ] the inequality

V (t, x̃(t+η∗)−x∗(t))≤V (t0, x0)−
1

Γ(q)

∫ t

t0

(t−s)q−1c(∥x̃(s+η∗)−x∗(s)∥)ds (40)

holds.

Proof. Define the function m(t) ∈ C([t0, t0+T ],R+) by m(t) = V (t, x̃(t+ η∗)−
x∗(t)) and the function p ∈ C([t0, t0 + T ],R+) by p(t) = c(∥x̃(t+ η∗)− x∗(t)∥).
As in the proof of (37) we have for t ∈ [t0, t0 + T ]

c
t0
Dq

+m(t)≤ c
t0
Dq

(5)V (t, x̃(t+η∗)−x∗(t), η∗)≤−c(∥x̃(t+η∗)−x∗(t)∥)=−p(t). (41)

Let γ > 0 be arbitrary. Consider the following initial value problem for the
scalar FrDE

c
t0
Dqu(t) = −p(t), t ≥ t0, u(t0) = m(t0) + γ. (42)

The function u(t; γ) is a solution of (42) iff it satisfies the following fractional
integral equation

u(t) = m(t0)−
1

Γ(q)

∫ t

t0

(t− s)q−1p(s)ds+ γ. (43)

According to Proposition 2.3 there exists an unique solution u(t; γ) ∈
Cq([t0, t0 + T ],R) of (43).
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We now prove that for any γ > 0

m(t) < u(t; γ), t ∈ [t0, t0 + T ]. (44)

Assume the contrary. Therefore there exist γ∗ > 0 and t∗ ∈ (t0, t0 + T ] such
that

m(t∗) = u(t∗; γ∗), and m(t) < u(t; γ∗) for t ∈ [t0, t
∗).

From Lemma 4.1 (applied to m(t)− u(t; γ∗)) we obtain

c
t0
Dq

+m(t∗) > c
t0
Dq

+u(t
∗; γ∗) = c

t0
Dqu(t∗; γ∗) = −p(t∗), (45)

and this contradicts (41). Therefore (44) is satisfied for γ∗. From (43) and (44)
since γ∗ > 0 is arbitrary we obtain (40).

If the Lyapunov function V (t, x) is differentiable we could use its Caputo
fractional derivative instead of the Caputo fractional Dini derivative and we
obtain the following comparison result.

Lemma 4.7 (Comparison result for Caputo fractional derivative). Let the fol-
lowing conditions be satisfied:

1. The conditions 1 and 2 of Lemma 4.2 are satisfied.

2. The function V ∈ Λ([t0, t0 + T ],∆) is continuously differentiable and

c
t0
DqV (t, x̃(t+ η∗)− x∗(t)) ≤ g(t, V (t, x̃(t+ η∗)− x∗(t))), η∗)

for t ∈ [t0, t0 + T ] holds.

4. The function u∗(t) = u(t; t0, u0, η
∗), u∗ ∈ Cq([t0, t0 + T ],R), is the maxi-

mal solution of the initial value problem (17) for initial data (t0, u0) and
parameter η = η∗.

Then the inequality V (t0, y0 − x0) ≤ u0 implies V (t, x̃(t + η∗) − x∗(t)) ≤ u∗(t)
for t ∈ [t0, t0 + T ].

The proof of Lemma 4.6 is similar to the one in Lemma 4.2 and we omit it.

5. Main result

We will obtain sufficient conditions for stability with ITD of the system of
FrDE (5) in the case 0 < q < 1. We will consider the general case when the
Lyapunov function is not differentiable and we use its Caputo fractional Dini
derivative defined by (21).
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Theorem 5.1. Let the following conditions be satisfied:

1. The function x∗(t) = x(t; t0, x0) ∈ Cq([t0,∞),Rn) is a solution of the IVP
for FrDE (5) where t0 ∈ R+, x0 ∈ Rn.

2. The function g ∈ C([t0,∞)×R×B(H),R), g(t, 0, 0) ≡ 0 where H > 0 is
a given number.

3. There exists a function V ∈ Λ([t0,∞),Rn) such that V (t, 0) = 0 and

(i) for any y, y0 ∈ Rn and η ∈ B(H) the inequality

c
t0
Dq

(5)V (t, x∗(t), y, η, x0, y0)≤g(t, V (t, y−x∗(t)), η) for t≥ t0 (46)

holds.

(ii) b(∥x∥) ≤ V (t, x) for t ∈ R+, x ∈ Rn, where b ∈ K.

4. The zero solution of the scalar FrDE (17) is stable w.r.t. a parameter
(attractive w.r.t. a parameter).

Then the solution x∗(t) is stable with ITD (attractive with ITD).

Proof. Let ϵ > 0 be given and the zero solution of the scalar FrDE (17) is stable
w.r.t. a parameter. From condition 4 it follows there exist δ1 = δ1(t0, ϵ) > 0
and σ = σ(t0, ϵ) > 0 such that for any u0 ∈ R : |u0| < δ1 and any η ∈ B(σ) the
inequality

|u(t; t0, u0, η)| < b(ϵ), t ≥ t0 (47)

holds where u(t; t0, u0, η) is a solution of the IVP for the scalar FrDE (17). It
is clear we can choose σ < H.

Since V (t0, 0) = 0 there exists δ2 = δ2(t0, δ1) > 0 such that V (t0, x) < δ1
for ∥x∥ < δ2. Let y0 ∈ Rn with ∥y0 − x0∥ < δ2. Then V (t0, y0 − x0) < δ1. Let
τ0 ∈ R+ be such that η∗ = τ0 − t0 ∈ B(σ).

Consider any solution x(t) = x(t; τ0, y0), t ≥ τ0, x ∈ Cq([τ0,∞),Rn) of
the IVP for the FrDE (6). Now let u∗

0 = V (t0, y0 − x0). Then u∗
0 < δ1 and

inequality (47) holds for any solution u(t; t0, u
∗
0, η

∗) of the IVP for the scalar
FrDE (17). Then from Corollary 4.3 and (47) we have

V (t, x(t)− x∗(t)) ≤ u(t; t0, u
∗
0, η

∗) < b(ϵ), t ≥ t0;

here u(t; t0, u
∗
0, η

∗) is the maximal solution of the IVP for the scalar FrDE (17)
(with the initial point (t0, u

∗
0) and parameter η = η∗). Then for any t ≥ t0 from

condition 3(ii) we obtain

b(∥x(t)− x∗(t)∥) ≤ V (t, x(t)− x∗(t)) < b(ϵ), t ≥ t0,

so the result follows.
If the zero solution of the scalar FrDE (17) is attractive w.r.t. a parameter

then following an argument similar to the above shows that the solution x∗(t)
is attractive with ITD.
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Corollary 5.2. Suppose for any t0 ≥ 0 that there exist a positive T (t0) such that
inequality (46) of Theorem 5.1 is satisfied for t≥T (t0). Then the solution x∗(t)
of (5) is attractive with ITD.

Now we present some sufficient conditions for uniform stability with ITD of
FrDE in the case when the condition for the Caputo fractional Dini derivative
of the Lyapunov function is satisfied only on a ball.

Theorem 5.3. Let the following conditions be satisfied:

1. The function g ∈ C(R+ × R × B(H),R), g(t, 0, 0) ≡ 0 where H > 0 is a
given number.

2. There exists a function V ∈ Λ(R+, S̄(λ)) such that

(i) for any t0 ≥ 0, x, y, x0, y0 ∈ Rn : y − x ∈ S̄(λ), y0 − x0 ∈ S̄(λ) and
η ∈ B(H) the inequality

c
t0
Dq

(5)V (t, x, y, η, x0, y0) ≤ g(t, V (t, y − x), η) for t ≥ t0 (48)

holds where λ > 0 is a given number.

(ii) b(∥x∥) ≤ V (t, x) ≤ a(∥x∥) for t ∈ R+, x ∈ S̄(λ), where a, b ∈ K.

3. The zero solution of the scalar FrDE (17) is uniformly stable w.r.t. a
parameter.

Then the FrDE (5) is uniformly stable with ITD.

Proof. Let ϵ ∈ (0, λ] be given. From condition 3 of Theorem 5.3 it follows there
exist δ1 = δ1(ϵ) > 0 and σ = σ(ϵ) > 0 such that for any u0 ∈ R : |u0| < δ1,
t0 ∈ R+ and any η ∈ B(σ) the inequality

|u(t; t0, u0, η)| < b(ϵ), t ≥ t0 (49)

holds where u(t; t0, u0, η) is any solution of the scalar FrDE (17) with initial
data (t0, u0) and parameter η. We can choose σ < H and δ1 < min{ϵ, b(ϵ)}.

From a∈K there exists δ2= δ2(ϵ)> 0 so that a(δ2)<δ1. Let δ=min(ϵ, δ2).
Choose the initial values x0, y0∈Rn : y0−x0∈S(δ), t0, τ0∈R+, η

∗=τ0−t0∈B(σ).
Let x∗(t) = x(t; t0, x0) ∈ Cq([t0, t0 + T ],Rn) be a solution of (5) and x̃(t) =
x(t; τ0, y0) ∈ Cq([τ0, τ0 + T ],Rn) be a solution of (6) with initial data (t0, x0)
and (τ0, y0) respectively. We now prove that

∥x̃(t+ η)− x∗(t)∥ < ϵ, t ≥ t0. (50)

From the choice of initial data it follows that inequality (50) holds for t = t0.
Assume inequality (50) is not true for all t > t0. Therefore, there exists a point
t∗ > t0 such that

∥x̃(t∗ + η)− x∗(t∗)∥ = ϵ, and ∥x̃(t+ η)− x∗(t)∥ < ϵ, t ∈ [t0, t
∗). (51)
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Now let u∗
0=V (t0, y0−x0). Then from 2(ii) we get u∗

0≤a(∥y0−x0∥)<a(δ2)<δ1.
Let u∗(t) = u(t; t0, u

∗
0, η

∗) ∈ Cq([t0, t
∗],R) be the maximal solution of the scalar

FrDE (17) on [t0, t
∗] for the initial data (t0, u

∗
0) and parameter η = η∗. Since

|u∗
0| < δ1 and η∗ ∈ B(σ) the maximal solution u∗(t) satisfies inequality (49) for

t ∈ [t0, t
∗]. From the choice of the point t∗ it follows that x̃(t+η)−x∗(t) ∈ S̄(λ)

for t ∈ [t0, t
∗]. Then from the reasoning in Lemma 4.6 for the interval [t0, t

∗] we
have

V (t, x̃(t+ η)− x∗(t)) ≤ u∗(t), t ∈ [t0, t
∗]. (52)

From inequalities (49), (52), the choice of t∗, and condition 2(ii) of Theorem 5.3
we obtain b(ϵ)>u∗(t∗)≥ V (t∗, x̃(t∗+η)−x∗(t∗))≥ b(∥x̃(t∗+η)−x∗(t∗)∥) = b(ϵ).
The contradiction proves (50) and therefore, the uniform stability of the
FrDE (5).

Corollary 5.4. Let condition 2 of Theorem 5.3 be satisfied with g(t, u, η) ≡ 0.
Then the FrDE (5) is uniformly stable with ITD.

Proof. The proof follows from the fact that the Caputo fractional differential
equation c

t0
Dqx = 0 has a constant solution which is uniformly stable and con-

sequently it is uniformly stable w.r.t. a parameter.

Corollary 5.5. Suppose for any t0 ≥ 0 that there exist a positive T (t0) such
that inequality (48) of Theorem 5.3 is satisfied for t ≥ T (t0). Then the FrDE (5)
is uniformly attractive with ITD.

Now we present some sufficient conditions for uniform asymptotic stability
with ITD of the FrDE.

Theorem 5.6. There exists a function V ∈ Λ(R+,Rn) such that

(i) for any t0 ≥ 0, x, y, x0, y0 ∈ Rn : y − x ∈ S̄(λ), y0 − x0 ∈ S̄(λ) and
η ∈ B(H) the inequality

c
t0
Dq

(5)V (t, x, y, η, x0, y0) ≤ −c(∥y − x∥) for t ≥ t0 (53)

holds where c ∈ K, λ > 0 is a given number;

(ii) b(∥x∥) ≤ V (t, x) ≤ a(∥x∥) for t ∈ R+, x ∈ Rn, where a, b ∈ K.

Then the FrDE (5) is uniformly asymptotically stable with ITD.

Proof. From Corollary 5.4 the FrDE (5) is uniformly stable with ITD. Therefore,
for the number λ there exists α = α(λ) ∈ (0, λ) and and σ = σ(λ) > 0 such
that for any x0, y0 ∈ Rn and any t0, τ0 ∈ R+ the inequalities ∥y0 − x0∥ < α and
|τ0 − t0| < σ imply

∥x̃(t+ η)− x∗(t)∥ < λ for t ≥ t0 (54)
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where η = τ0−t0 and x∗(t) = x(t; t0, x0) and x̃(t) = x(t; τ0, y0) are any solutions
of FrDE (5) with x(t0) = x0 and x(τ0) = y0 respectively.

Now we will prove the fractional differential equations (5) is uniformly at-
tractive with ITD. Consider the constant β > 0 such that a(β) ≤ b(α). Let
ϵ ∈ (0, λ] be an arbitrary number. Choose t0, τ0 ∈ R+ and x0, y0 ∈ Rn such
that ∥y0 − x0∥ < β and |τ0 − t0| < σ. Let x∗(t) = x(t; t0, x0) ∈ Cq([t0,∞),Rn)
and x̃(t) = x(t; τ0, y0) ∈ Cq([τ0,∞),Rn) be solutions of FrDE (5) with the
chosen above initial data. Then b(∥y0 − x0∥) ≤ a(∥y0 − x0∥) < a(β) < b(α),
i.e. ∥y0 − x0∥ < α and therefore the inequality (54) is satisfied for t ≥ t0, i.e.
x̃(t+ η)− x∗(t) ∈ S(λ) for t ≥ t0.

Choose constants γ = γ(ϵ) ∈ (0, ϵ] and T = T (ϵ) > 0 such that a(γ) < b(ϵ)

and T > qΓ(q)a(α)
c(γ)

. We now prove that

∥x̃(t+ η)− x∗(t)∥ < ϵ for t ≥ t0 + T. (55)

Assume
∥x̃(t+ η)− x∗(t)∥ ≥ γ for every t ∈ [t0, t0 + T ]. (56)

Then from Lemma 4.7 (applied to the interval [t0, t0+T ] and ∆ = S̄(λ)) we get

V (t0 + T, x̃(t0 + T + η)− x∗(t0 + T ))

≤ V (t0, y0 − x0)−
1

Γ(q)

∫ t0+T

t0

(t0 + T − s)q−1c(∥x̃(s+ η)− x∗(s)∥)ds

≤ a(∥y0 − x0∥)−
c(γ)

Γ(q)

∫ t0+T

t0

(t0 + T − s)q−1ds

= a(∥y0 − x0∥)−
c(γ)

Γ(q)

T

q

< a(α)− c(γ)

Γ(q)

T

q

< 0.

(57)

The contradiction proves there exists t∗∈ [t0, t0+T ] such that ∥x̃(t∗+η)−x∗(t∗)∥
< γ. From Corollary 4.3 applied for t0 = t∗ and ∆ = S̄(λ) we obtain

V (t, x̃(t+ η)− x∗(t)) ≤ V (t∗, x̃(t∗ + η)− x∗(t∗))), t ≥ t∗.

Then for any t ≥ t∗ the inequalities b(∥x̃(t+η)−x∗(t)∥) ≤ V (t, x̃(t+η)−x∗(t)) ≤
V (t∗, x̃(t∗+η)−x∗(t∗)) ≤ a(∥x̃(t∗+η)−x∗(t∗)∥) ≤ a(γ) < b(ϵ) hold. Therefore
(55) holds for t ≥ t∗ (hence for t ≥ t0 + T ).

In the case when the Lyapunov function is differentiable, we could use the
Caputo fractional derivative instead of the Caputo fractional Dini derivative
and obtain the following sufficient conditions for stability with ITD.
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Theorem 5.7. Let the following conditions be satisfied:

1. The condition 1 and 2 of Theorem 5.1 are satisfied.

2. There exists a differentiable function V ∈ Λ(R+,Rn) such that V (t, 0) = 0
and

(i) for any solution x̃(t) = x̃(t; τ0, y0) of (6) such that η = τ0−t0 ∈ B(H)
the inequality for the Caputo fractional derivative

c
t0
DqV (t, x̃(t+ η)− x∗(t)) ≤ g(t, V (t, x̃(t+ η)− x∗(t)), η)

holds.

(ii) b(∥x∥) ≤ V (t, x) for t ∈ R+, x ∈ Rn, where b ∈ K.

3. The zero solution of the scalar FrDE (17) is stable w.r.t. a parameter.

Then the solution x∗(t) of the FrDE (5) is stable with ITD.

Theorem 5.8. Let the following conditions be satisfied:

1. Condition 1 of Theorem 5.3 is satisfied.

2. There exists a differentiable function V ∈ Λ(R+, S̄(λ)) such that

(i) for any solution x(t) = x(t; t0, x0) of (5) and any solution x̃(t) =
x̃(t; τ0, y0) of (6) such that x̃(t+η)−x(t)∈ S̄(λ), t≥ t0 and η=τ0−t0∈
B(H) the inequality for the Caputo fractional derivative of V
c
t0
DqV (t, x̃(t+ η)− x(t)) ≤ g(t, V (t, x̃(t+ η)− x(t)), η) for t ≥ t0

holds where λ > 0 is a given number.

(ii) b(∥x∥) ≤ V (t, x) ≤ a(∥x∥) for t ∈ R+, x ∈ S̄(λ), where a, b ∈ K.

3. The zero solution of the scalar FrDE (17) is uniformly stable w.r.t. a
parameter.

Then the FrDE (5) is uniformly stable with ITD.

The proofs of Theorem 5.7 and 5.8 are similar to those in Theorem 5.1
and 5.3 where instead of Lemma 4.6 we use Lemma 4.7.

Remark 5.9. In the case τ0 = t0, x
∗(t) ≡ 0 Theorem 5.7 and 5.8 gives us

sufficient conditions for stability of the zero solution of a fractional differential
equation which was also studied in [9, 28].

6. Applications

We will give some examples which illustrate the usefulness of the Lyapunov
function to fractional differential equations for establishing stability with initial
time difference.

In physical systems, the Lyapunov function used is often an expression for
total energy of the system, i.e. the Lyapunov function V (x) = xTx, x ∈ Rn. In
connection with this we will give an example of an application of the quadratic
Lyapunov function to study stability with ITD.
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Example 6.1. Consider the following system of fractional differential equations

c
ξ0
Dqu1(t) = −u1 − u2 + p1(t),

c
ξ0
Dqu2(t) = −u2 + u1 + p2(t) for t > ξ0

(58)

with initial condition

u1(ξ0) = u0
1 and u2(ξ0) = u0

2,

where u1, u2 ∈ R, ξ0 ∈ R+, p1, p2 ∈ C(R+,R) are Lipschitz functions with
constants L1, L2, respectively.

Let t0, τ0∈R+ : η= τ0−t0 ̸=0 and x, y, x0, y0∈R2 : x=(x1, x2), y=(y1, y2),
x0 = (x0

1, x
0
2), y0 = (y01, y

0
2), x0 ̸= y0, y−x∈ S̄(λ), y0−x0 ∈ S̄(λ), λ> 0 is given

number.
Consider the Lyapunov function V (x) = x2

1 + x2
2 where x ∈ R2. Now

condition 2(ii) of Theorem 5.3 is satisfied for a, b ∈ K with a(s) = 1
2
s, b(s) = s.

Also

c
t0
Dq

(58)V (t, x, y, η, x0, y0)

≤ lim sup
h→0+

1

hq

{
(y1−x1)

2+(y2−x2)
2−

(
y1−x1−hqΨ

)2−(
y2−x2−hqΦ

)2
+

[
t−t0
h

]∑
r=0

(−1)rqCr
[(
y1−x1−hqΨ

)2
+
(
y2−x2−hqΦ

)2]}
≤−

(
2− (t−t0)

−q

Γ(1−q)

)(
(y1−x1)

2(y2−x2)
2
)

+2(y1−x1)
(
p1(t+η)−p1(t)

)
+2(y2−x2)

(
p2(t+η)−p2(t)

)
≤−

(
2− (t−t0)

−q

Γ(1−q)

)(
(y1−x1)

2(y2−x2)
2
)
+C|η|,

(59)

where C = 2(L1+L2)λ, Ψ =−y1−y2+p1(t+η)+x1+x2−p1(t), Φ=−y2+y1+
p2(t+η)+x2−x1−p2(t).

For any point T >t0 there exists A(T )>0 such that −
(
2−(t−t0)−q

Γ(1−q)

)
≤−A(T ),

t ≥ T.
Therefore condition 2(i) of Theorem 5.3 is satisfied for t ≥ T0 with the

function g(t, u, η) = −u + Cη, u ∈ R, η > 0. The corresponding comparison
scalar fractional differential equation is

c
t0
Dqu = −2u+ Cη. (60)

According to Example 3.12 the zero solution of (60) is uniformly stable
w.r.t. a parameter and according to Corolarry 5.5 the FrDE (58) is uniformly
attractive with initial time difference.
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Now we give an example for an application of a non-quadratic Lyapunov
function and the Caputo fractional Dini derivative with initial time difference
given by (21).

5 10 15 20 25 30
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Figure 1: Graph of 2g1(t+η)− t−q

Γ(1−q)

for η = 0, 0.1, 0.5.

2 4 6 8 10
t

-0.4
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x

Figure 2: Graph of 0D
qm(t)−0.5m(t)

≤ 0.

Example 6.2. Consider the following IVP for the system of FrDE
c
0D

qx1(t) = −g1(t)x1 + g2(t)x2,
c
0D

qx2(t) = −g2(t)x1 − g1(t)x2 for t > 0

x1(0) = 0, x2(0) = 0

(61)

where x = (x1, x2) ∈ R2, f = (f1, f2), f1(t, x) = −g1(t)x1 − g2(t)x2, f2(t, x) =
−g2(t)x1− g1(t)x2, g1(t) = 1−2 t0.8

t+1
and g2 ∈ C(R+,R) is an arbitrary function.

The IVP for the system of FrDE has a zero solution x∗(t) ≡ 0. Similar to
that in Example 6.1 we obtain for the quadratic Lyapunov function V (t, x) =
x2
1 + x2

2

c
0D

q
(61)V (t, 0, y, η, 0, y0) ≤ −

(
2g1(t+ η)− t−q

Γ(1− q)

)(
(y1)

2 + (y2)
2
)

= −
(
2g1(t+ η)− t−q

Γ(1− q)

)
V (y).

For example, if q = 0.8 then the function 2g1(t + η) − t−q

Γ(1−q)
is negative for

t ≥ 28 (see, the graph of 2g1(t+ η)− t−q

Γ(1−q)
, η = 0, 0.1, 0.5 in Figure 1).

Now consider the Lyapunov function V (t, x) = m(t)
(
x2
1 + x2

2

)
where

x = (x1, x2), m(t) = e−t+0.1, t ≥ 0. Let y, y0 ∈ R2, y = (y1, y2), y0 = (y
(0)
1 , y

(0)
2 )

and τ0 > 0. Then η = τ − 0 > 0 and according to formula (21) we obtain

c
0D

q
(61)V (t, 0, y, η, 0, y0) = −2m(t)g1(t+η)(y21+y22)−m(0)

(
(y

(0)
1 )2+(y

(0)
2 )2

)
+
(
(y1)

2+(y2)
2
)
lim sup
h→0+

1

hq

{ [ t
h
]∑

r=0

(−1)rqCrm(t−rh)

}
.
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Using lim suph→0+
1
hq

{∑[ t
h
]

r=0(−1)rqCrm(t − rh)
}

= 0D̃
q
+m(t) = 0D̃

qm(t) =

0D
qm(t) = 1

Γ(1−q)
d
dt

( ∫ t

0
(t− s)−q m(s)ds

)
and g1(t+ η) ≥ −0.25 for |η| ≤ 1 we

obtain

c
0D

q
(61)V (t, 0, y, η, 0, y0) ≤

(
0
Dqm(t) + 0.5m1(t)

)(
(y1)

2 + (y2)
2
)
.

If q = 0.8 we obtain 0D
qm(t) = 1

Γ(0.2)t0.8
0.2(0.5 + 5e−t

1 F1(0.2; 1.2; t) +
t0.2

Γ(0.2)
(−5e−t

1 F1(0.2; 1.2; t) +
2.5
3
e−t
1 F1(1.2; 1.2; t)) where 1F1(a; b; z) is confluent

hypergeometric function of the first kind given by

1F1(a; b; z) =
∞∑
k=0

Γ(a+k)
Γ(a)

Γ(b+k)
Γ(b)

zk

k!

Then 0D
qm(t)− 0.5m(t) ≤ 0 for t ≥ 0.15 (see Fig. 2).

Therefore, since the bound for the time variable 0.15 is better than the
bound 28, the application of the Lyapunov function V (t, x) = m(t)

(
x2
1 + x2

2

)
gives a better result. According to Corollary 5.2 the zero solution of the system
of FrDE (61) is attractive with ITD (for q = 0.8).
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