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Abstract. In this paper we will study the existence of solutions depending on two
variables of a nonlinear integral equation of Volterra-Stieltjes type in two variables, in
the space of real functions which are continuous and bounded on the set R+× [0,M ].
Moreover, we will give the characterization of those solutions. In our study we will
utilize the Darbo type of fixed point theorem and apply a measure of noncompactness.
In the last section we present particular cases of the considered equation.
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1. Introduction

While considering the applications of the integral equations to the description of
several real world events, which appear in different aspects of branches of science
and applied mathematics, e.g., in engineering, mechanics, physics etc., we can
distinguish some classes of integral equations that have significant meaning (cf.
[2, 12,15,17–21,26,29,30]).

One of the mentioned classes of integral equations, is the class of the “so-
called” nonlinear integral equations of fractional order. Differential and integral
calculus of fractional order play a very important role in describing some real
world problems. The present interest in the mathematical analysis of the frac-
tional calculus derives from its usefulness in constructing mathematical models
of various occurrences in a more precise way. For example those equations can
be used to describe some problems occurring in physics, mechanics, chemistry,
control theory, electricity, chaos and fractals, capacitor theory, viscoelasticity.
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In recent years numerous research papers and monographs devoted to differen-
tial and integral equations of fractional order have been published. They contain
a lot of various types of existence results (cf. [1, 9, 11,19–21,23,24,28–30]).

Another important class of integral equations is the class of the “so-called”
quadratic integral equations of Volterra-Chandrasekhar type. In 1950 the astro-
physicist Chandrasekhar published the manuscript [14], in which he investigated
the “so-called” Chandrasekhar integral equation. Since this time numerous pub-
lications have appeared, in which the equations of this type were considered (cf.
[6, 13]).

The principal aim of this paper is to investigate the solvability of the non-
linear integral equations of Volterra-Stieltjes type in two variables. Using the
Darbo fixed point theorem in combination with the technique of measures of
noncompactness we will show that there exists a solution of the aforementioned
equation in the space of functions which are continuous and bounded on the
set R+ × [0,M ]. Such an approach is one of the most frequently applied meth-
ods in the study of the existence of solutions of various functional, differential
and integral equations (cf. [3, 7, 8, 10, 17]). In the last section we will discuss
a few special cases of the investigated nonlinear integral equation. The results
obtained in this paper create generalization of the results obtained in [17].

2. Notation and some auxiliary facts

In this section we present a few auxiliary facts which will be applied in our
further investigations. At the beginning we assume that (E, ‖·‖E) is a real
infinite dimensional Banach space with the zero element θ. Let us denote by
B (x, r) the closed ball of radius r and center x. The symbol Br stands for the
ball B (θ, r). If X is the subset of E, then X denotes the closure of X and
ConvX denotes the convex closure of X. Further, we denote by ME the family
of all nonempty and bounded subsets of E and by NE its subfamily consisting
of all relatively compact sets.

We accept the following definition of the notion of a measure of noncom-
pactness [8].

Definition 2.1. A mapping µ : ME → R+ = [0,∞) is said to be a measure of
noncompactness in E if it satisfies the following conditions:

10 The family kerµ = {X ∈ME : µ(x) = 0} is nonempty and kerµ ⊂ NE.

20 X ⊂ Y ⇒ µ(x) ≤ µ (Y ) .

30 µ
(
X
)

= µ(x).

40 µ (ConvX) = µ(x).

50 µ (λX + (1− λ)Y ) ≤ λµ(x) + (1− λ)µ (Y ) for λ ∈ [0, 1] .
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60 If (Xn) is a sequence of closed sets from ME such that Xn+1 ⊂ Xn (n =
1, 2, . . .) and if limn→∞ µ (Xn) = 0, then the intersection X∞ =

⋂∞
n=1Xn

is nonempty.

The family kerµ described in 10 is said to be the kernel of the measure of
noncompactness µ. We observe that the intersection set X∞ from 60 belongs to
kerµ. Indeed, since µ (X∞) ≤ µ (Xn) for any n then we deduce that µ (X∞) = 0,
so X∞ ∈ kerµ. This observation will be crucial in our further considerations.
For other facts concerning measures of noncompactness we refer to [8] (cf. also
[3, 7]).

In our considerations we will use the following fixed point theorem [8,16].

Theorem 2.2. Let Ω be a nonempty, bounded, closed and convex subset of
the Banach space E and let Q : Ω → Ω be a continuous mapping, such that
there exists a constant k ∈ [0, 1) such that µ(QX) ≤ kµ(x) for any nonempty
subset X of Ω. Then Q has a fixed point in the set Ω.

Remark 2.3. It can be shown [8] that the set FixQ of all fixed points of the
operator Q belonging to Ω, is an element of the family kerµ.

Our considerations will be placed in the space BC = BC (R+ × [0,M ],R),
where M is a positive number. This space consists of all functions u(t, x) = u :
R+× [0,M ]→ R defined, continuous and bounded on the set R+× [0,M ] with
the supremum norm

‖u‖BC = sup {|u(t, x)| : (t, x) ∈ R+ × [0,M ]} .

For further purposes we will use the measure of noncompactness in the space
BC (R+ × [0,M ],R) described below. So, let us consider a nonempty, bounded
subset U of BC (R+ × [0,M ],R). Fix a positive number T > 0. For u =
u(t, x) ∈ U and ε > 0 let us consider the modulus of continuity of the function u
on the set [0, T ]× [0,M ], defined as follows

ωT (u, ε) = sup

{
|u(t2, x2)− u(t1, x1)|

∣∣∣∣ t1, t2 ∈ [0, T ], x1, x2 ∈ [0,M ],

|t2 − t1| ≤ ε, |x2 − x1| ≤ ε

}
.

Next, let us put

ωT (U, ε) = sup
{
ωT (u, ε) : u ∈ U

}
,

ωT0 (U) = lim
ε→0

ωT (U, ε),

ω∞0 (U) = lim
T→∞

ωT0 (U) .

Further, for the bounded set U ⊂ BC (R+ × [0,M ],R) and for arbitrarily fixed
(t, x) ∈ R+ × [0,M ] we define

U(t, x) = {u(t, x) : u ∈ U}
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and

diam U(t, x) = sup {|u2(t, x)− u1(t, x)| : u1, u2 ∈ U} ,
a (U) = lim sup

t→∞

{
sup{diam U(t, x) : x ∈ [0,M ]}

}
.

Finally, for U ∈MBC(R+×[0,M ],R) consider the mapping µ defined by the formula

µ (U) = ω∞0 (U) + a (U) . (1)

The mapping µ is a sublinear measure of noncompactness in the space
BC = BC (R+ × [0,M ],R). The kernel kerµ of this measure consists of all
nonempty and bounded sets U such that functions from U are equicontinuous on
each compact subset of the rectangle R+× [0,M ] (in particular, these functions
are equicontinuous on each rectangle of the form [0, T ]×[0,M ]) and the thickness
of the slice formed by surfaces being graphs of the functions belonging to the
set U and intersected in the point t (t ∈ R+), tends to zero at infinity. This
property and Remark 2.3 will allow us to characterize solutions of the integral
equation investigated in the next section.

In the sequel we recall the concept of the superposition operator. Let us
consider a function f : D × R → R, where D ⊂ R2. Then for each function u
acting from D into R we can assign the function Fu defined as follows

(Fu) (t, x) = f (t, x, u(t, x)) for (t, x) ∈ D.

The operator F defined in such a way is called the superposition operator gen-
erated by the function f = f (t, x, u). The theory concerning the superposition
operator may be found in monographs, e.g., [5, 27].

Now, we give the definitions of the concepts of global attractivity, local
attractivity and asymptotic stability of solutions depending on two variables
of the nonlinear integral equations in two variables in the space BC. These
concepts, in case of the solutions of the equations in one variable, may be
found, e.g., in the papers [1, 9, 10,22].

We assume that Ω is a nonempty subset of the space BC and Q is an
operator acting from Ω into BC. Let us consider the following operator equation

u(t, x) = (Qu) (t, x), (t, x) ∈ R+ × [0,M ] . (2)

Definition 2.4. The solution u = u(t, x) of equation (2) is said to be globally
attractive if for each solution v = v(t, x) of equation (2) we have for arbitrarily
fixed x ∈ [0,M ] that

lim
t→∞

(u(t, x)− v(t, x)) = 0. (3)

In other words, we may say that solutions of equation (2) are globally attractive
if for arbitrary solutions u(t, x) and v(t, x) of this equation and for arbitrarily
fixed x ∈ [0,M ] condition (3) is satisfied.
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Definition 2.5. We say that solutions of equation (2) are locally attractive if
there exists a ball B (u0, r) in the space BC such that B (u0, r)∩Ω 6= ∅ and for
arbitrary solutions u(t, x) and v(t, x) of (2) belonging to the set B (u0, r) ∩ Ω
and for arbitrarily fixed x ∈ [0,M ], condition (3) does hold.
In the case when limit (3) is uniform with respect to the set B (u0, r) ∩ Ω, i.e.,
when x ∈ [0,M ] is arbitrarily fixed and for each ε > 0 there exists T > 0 such
that

|u(t, x)− v(t, x)| ≤ ε (4)

for all solutions u(t, x), v(t, x) of equation (2) from B (u0, r) ∩ Ω and for any
t ≥ T , we will say that solutions of equation (2) are uniformly locally attractive.

Definition 2.6. We say that solutions of equation (2) are asymptotically stable
if there exists a ball B (u0, r) in the space BC such that B (u0, r) ∩Ω 6= ∅, and
such that for each ε > 0 there exists T > 0 such that for arbitrary solutions
u(t, x) and v(t, x) of (2) belonging to the set B (u0, r) ∩ Ω and for arbitrarily
fixed x ∈ [0,M ], inequality (4) is satisfied for any t ≥ T .

Let us notice that the concept of uniform local attractivity of solutions is
equivalent to the concept of asymptotic stability introduced in [10]. So we can
use these concepts exchangeably.

Further on, we recall some basic facts concerning functions of bounded
variation (cf. [4, 25]). If f is a real function defined on the interval [a, b], then
the symbol

∨b
a f will denote the variation of the function f on the interval [a, b].

We say that f is of bounded variation on [a, b] whenever
∨b
a f is finite. If we

have a real function of two variables g(w, z) defined on the set A ⊂ R2 with
nonempty interior, then the symbol

∨b
z=a g(w, z) denotes the variation of the

function z → g(w, z) on the interval [a, b] contained in the domain of a function
z → g(w, z), where the variable w is fixed. Analogously, we define the quantity∨q
w=p g(w, z). For the properties of functions of bounded variation we refer to,

e.g., [4, 25].
If f and g are two real functions defined on the interval [a, b], then under

some additional conditions we can define the Stieltjes integral (in the Riemann-
Stieltjes sense) ∫ b

a

f(t) dg(t)

of the function f with respect to the function g. In this case we say that f
is Stieltjes integrable on the interval [a, b] with respect to g. Let us mention
that several conditions are known which guarantee the Stieltjes integrability (cf.
[4, 25]). One of the most frequently used requires that f is continuous and g is
of bounded variation on [a, b].

In what follows, we will use a few properties of the Stieltjes integral gathered
in the below formulated lemmas [4].
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Lemma 2.7. If f is Stieltjes integrable on the interval [a, b] with respect to a
function g of bounded variation, then∣∣∣∣∫ b

a

f(t) dg(t)

∣∣∣∣ ≤ ∫ b

a

|f(t)| d

(
t∨
a

g

)
.

Lemma 2.8. Let f1, f2 be Stieltjes integrable functions on the interval [a, b]
with respect to a nondecreasing function g such that f1(t) ≤ f2(t) for t ∈ [a, b].
Then ∫ b

a

f1(t) dg(t) ≤
∫ b

a

f2(t) dg(t).

In the sequel we will also consider the double Stieltjes integral of the form∫ d

c

(∫ d

c

f(t, x) dyg2(x, y)

)
dsg1(t, s),

where gi : [a, b] × [c, d] → R (i = 1, 2) and the symbol dy indicates the inte-
gration with respect to the variable y (similarly we define the symbol ds). For
convenience, instead of this notation we will use the following notation∫ d

c

∫ d

c

f(t, x) dyg2(x, y) dsg1(t, s).

3. Main result

We will investigate the existence of solutions of the following nonlinear quadratic
integral equation of Volterra-Stieltjes type in two variables

u(t, x)=h(t, x)+f(t, x, u(t, x))

∫ t

0

∫ x

0

v(t, s, x, y, u(s, y)) dyg2(x, y) dsg1(t, s), (5)

where t ∈ R+ = [0,+∞) and x ∈ [0,M ] (M is a fixed positive number).
Moreover, we denote by ∆i (i = 1, 2) the following triangles

∆1 =
{

(t, s) ∈ R2 : 0 ≤ s ≤ t
}
,

∆2 =
{

(x, y) ∈ R2 : 0 ≤ y ≤ x ≤M
}

and

∆T
1 =

{
(t, s) ∈ R2 : 0 ≤ s ≤ t ≤ T

}
,

where T > 0 is an arbitrarily fixed number. We will investigate equation (5)
under the assumptions formulated below:
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(i) h ∈ BC.
(ii) The function f (t, x, u) = f : R+ × [0,M ] × R → R is continuous and

satisfies the Lipschitz condition with respect to the variable u, i.e., there
exists a constant k > 0 such that

|f (t, x, u1)− f (t, x, u2)| ≤ k |u1 − u2|

for all t ∈ R+, x ∈ [0,M ] and u1, u2 ∈ R. Moreover, we assume that the
function (t, x)→ f (t, x, 0) belongs to the space BC.

For further purposes denote F = sup {|f (t, x, 0)| : t ∈ R+, x ∈ [0,M ]}. Of
course, we have that F <∞.

(iii) The function gi(w, z) = gi : ∆i → R is continuous on the triangle ∆i

(i = 1, 2).

(iv) The function z → gi(w, z) is of bounded variation on the interval [0, w]
for each fixed w ∈ R+ if i = 1 and for w ∈ [0,M ] if i = 2.

(v) a) For any T > 0 and ε > 0 there exists δ > 0 such that for all
t1, t2 ∈ [0, T ] such that t1 < t2 and t2−t1 ≤ δ the following inequality
holds

t1∨
s=0

[g1(t2, s)− g1(t1, s)] ≤ ε.

b) For any ε > 0 there exists δ > 0 such that for all x1, x2 ∈ [0,M ] such
that x1 < x2 and x2 − x1 ≤ δ the following inequality holds

x1∨
y=0

[g2(x2, y)− g2(x1, y)] ≤ ε.

(vi) gi(w, 0) = 0 for each w ∈ R+ if i = 1 and for w ∈ [0,M ] if i = 2.

(vii) The function v : ∆1 × ∆2 × R → R is continuous and there exists a
continuous and nondecreasing function φ : R+ → R+ such that

|v (t, s, x, y, u)| ≤ φ (|u|)

for all (t, s) ∈ ∆1, (x, y) ∈ ∆2 and u ∈ R.

(viii) limt→∞
(∨t

s=0 g1(t, s)
)

= 0.

Before we formulate our last assumption we will provide a few lemmas,
which will be needed in our investigations (cf. [11, 17,30]).

Lemma 3.1. Assume that hypotheses (iii)–(v) are satisfied. Then:

a) The function x→
∨x
y=0 g2(x, y) is continuous on the interval [0,M ].

b) For an arbitrarily fixed number x2 ∈ [0,M ] and for any ε > 0 there exists
δ > 0 such that if x1 ∈ [0,M ], x1 < x2 and x2 − x1 ≤ δ, then

x2∨
y=x1

g2(x2, y) ≤ ε.
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Lemma 3.2. Let assumptions (iii)–(v) be satisfied and let T > 0 be arbitrarily
fixed. Then:

a) The function t→
∨t
s=0 g1(t, s) is continuous on the interval [0, T ].

b) For an arbitrarily fixed number t2 ∈ [0, T ] and for any ε > 0 there exists
δ > 0 such that if t1 ∈ [0, T ], t1 < t2 and t2 − t1 ≤ δ, then

t2∨
s=t1

g1(t2, s) ≤ ε.

Now, taking into account Lemmas 3.1 and 3.2, we have the following corol-
lary.

Corollary 3.3. There exist finite positive constants K1 and K2 such that

K1 = sup

{
t∨

s=0

g1(t, s) : t ∈ [0, T ]

}
, where T > 0 is arbitrarily fixed

and K2 = sup

{
x∨
y=0

g2(x, y) : x ∈ [0,M ]

}
.

Now we prove the following lemma.

Lemma 3.4. Let assumptions (iii)–(v) and (viii) be satisfied and let k1(t) be
the function defined by the formula k1(t) =

∨t
s=0 g1 (t, s). Then

K1 = sup {k1(t) : t ∈ R+}

is a finite positive constant.

Proof. Let us fix T > 0. In the case, when t ∈ [0, T ] we have from Corollary 3.3
that K1 = K1 is a finite positive constant.

If t > T , then from assumption (viii) we have that for any ε > 0 there exists
t0 > 0 such that

∨t
s=0 g1(t, s) < ε for all t > t0. Now, from our assumptions we

get that sup {k1(t) : t > T} is finite. Linking these facts we conclude that the
quantity

K1 = sup {k1(t) : t ∈ R+} = sup

{
t∨

s=0

g1(t, s) : t ∈ R+

}
is a finite positive constant.

Now we will formulate our last assumption.

(ix) There exists a positive solution r0 of the inequality

‖h‖BC +
(
kr + F

)
φ (r)K1K2 ≤ r

such that φ (r0) kK1K2 < 1.
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It is worthwhile noticing that although the last inequality appears to be quite
complicated, it is almost always satisfied.

Based on assumption (v) we may define the functions M1(ε) and M2(ε) by
the following formulas

M1(ε) = sup

{
t1∨
s=0

[g1(t2, s)−g1(t1, s)] : t1, t2∈ [0, T ], t1<t2, t2−t1≤ε

}
, (6)

where T > 0 is an arbitrarily fixed number,

M2(ε) = sup

{
x1∨
y=0

[g2(x2, y)−g2(x1, y)]

∣∣∣∣ x1, x2∈ [0,M ],

x1<x2, x2−x1≤ε

}
. (7)

From the assumption (v) we deduce that Mi(ε)→ 0 as ε→ 0 for i = 1, 2.
Next, we define the functions N1(ε) and N2(ε) by putting

N1(ε) = sup

{
t2∨
s=t1

g1(t2, s) : t1, t2∈ [0, T ], t1<t2, t2−t1≤ε

}
, (8)

where T > 0 is an arbitrarily fixed number,

N2(ε) = sup

{
x2∨
y=x1

g2(x2, y) : x1, x2∈ [0,M ], x1<x2, x2−x1≤ε

}
. (9)

We observe that Ni(ε)→ 0 as ε→ 0 for i = 1, 2, which is a simple consequence
of Lemmas 3.1 and 3.2.

Now we can formulate our main theorem.

Theorem 3.5. Let assumptions (i)–(ix) be satisfied. Then equation (5) has at
least one solution u = u(t, x) ∈ BC = BC (R+ × [0,M ],R). Moreover, all so-
lutions of this equation belonging to the ball Br0 are uniformly locally attractive.

Proof. For arbitrarily fixed function u ∈ BC and t ∈ R+, x ∈ [0,M ], where M
is a fixed positive number, let us put

(Qu) (t, x) = h(t, x)+f(t, x, u(t, x))

∫ t

0

∫ x

0

v(t, s, x, y, u(s, y)) dyg2(x, y) dsg1(t, s).

If we denote
(Fu) (t, x) = f (t, x, u(t, x))

and

(V u) (t, x) =

∫ t

0

∫ x

0

v (t, s, x, y, u (s, y)) dyg2(x, y) dsg1(t, s),
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we get
(Qu) (t, x) = h(t, x) + (Fu) (t, x) (V u) (t, x).

Let us fix arbitrarily T > 0 and ε > 0. Take t1, t2 ∈ [0, T ] such that
|t2 − t1| ≤ ε. Without loss of generality we can assume that t1 < t2, and then
t2 − t1 ≤ ε. Next, choose x1, x2 ∈ [0,M ] such that |x2 − x1| ≤ ε. Without loss
of generality we can assume that x1 < x2, and then x2− x1 ≤ ε. Then, keeping
in mind our assumptions, for an arbitrarily fixed function u ∈ BC we obtain:

|(V u) (t2, x2)− (V u) (t1, x1)|

≤
∣∣∣∣∫ t2

0

∫ x2

0

v (t2, s, x2, y, u(s, y)) dyg2(x2, y) dsg1(t2, s)

−
∫ t1

0

∫ x2

0

v (t2, s, x2, y, u(s, y)) dyg2(x2, y) dsg1(t2, s)

∣∣∣∣
+

∣∣∣∣∫ t1

0

∫ x2

0

v (t2, s, x2, y, u(s, y)) dyg2(x2, y) dsg1(t2, s)

−
∫ t1

0

∫ x2

0

v (t1, s, x1, y, u(s, y)) dyg2(x2, y) dsg1(t2, s)

∣∣∣∣
+

∣∣∣∣∫ t1

0

∫ x2

0

v (t1, s, x1, y, u(s, y)) dyg2(x2, y) dsg1(t2, s)

−
∫ t1

0

∫ x1

0

v (t1, s, x1, y, u(s, y)) dyg2(x2, y) dsg1(t2, s)

∣∣∣∣
+

∣∣∣∣∫ t1

0

∫ x1

0

v (t1, s, x1, y, u(s, y)) dyg2(x2, y) dsg1(t2, s)

−
∫ t1

0

∫ x1

0

v (t1, s, x1, y, u(s, y)) dyg2(x1, y) dsg1(t2, s)

∣∣∣∣
+

∣∣∣∣∫ t1

0

∫ x1

0

v (t1, s, x1, y, u(s, y)) dyg2(x1, y) dsg1(t2, s)

−
∫ t1

0

∫ x1

0

v (t1, s, x1, y, u(s, y)) dyg2 (x1, y) dsg1(t1, s)

∣∣∣∣ .

(10)

Now, we estimate the terms occurring on the right hand side of the above
inequality. In our estimations we use Lemmas 2.7 and 2.8 and our assumptions.
We get:∣∣∣∣∫ t2

0

∫ x2

0

v (t2, s, x2, y, u(s, y)) dyg2(x2, y) dsg1(t2, s)

−
∫ t1

0

∫ x2

0

v (t2, s, x2, y, u(s, y)) dyg2(x2, y) dsg1(t2, s)

∣∣∣∣
≤
∫ t2

t1

∫ x2

0

|v (t2, s, x2, y, u(s, y))| dy

(
y∨
q=0

g2(x2, q)

)
ds

(
s∨

p=t1

g1 (t2, p)

)
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≤
∫ t2

t1

∫ x2

0

φ (|u|) dy

(
y∨
q=0

g2 (x2, q)

)
ds

(
s∨

p=t1

g1 (t2, p)

)
(11)

≤ φ (‖u‖BC)

(
x2∨
y=0

g2(x2, y)

)(
t2∨
s=t1

g1(t2, s)

)
≤ φ (‖u‖BC)K2N1 (ε) ,

where the function N1(ε) was defined earlier by (8). Now, using Lemmas 2.7
and 2.8 and assumption (iv), we derive the following estimate:∣∣∣∣∫ t1

0

∫ x2

0

v (t2, s, x2, y, u(s, y)) dyg2(x2, y) dsg1(t2, s)

−
∫ t1

0

∫ x2

0

v (t1, s, x1, y, u(s, y)) dyg2(x2, y) dsg1(t2, s)

∣∣∣∣
≤
∫ t1

0

∫ x2

0

|v (t2, s, x2, y, u(s, y))− v (t1, s, x1, y, u(s, y))|

dy

(
y∨
q=0

g2(x2, q)

)
ds

(
s∨

p=0

g1(t2, p)

)

≤
∫ t1

0

∫ x2

0

ω13(v, ε) dy

(
y∨
q=0

g2 (x2, q)

)
ds

(
s∨

p=0

g1 (t2, p)

)

≤ ω13(v, ε)

(
x2∨
y=0

g2(x2, y)

)(
t2∨
s=0

g1(t2, s)

)
≤ ω13(v, ε)K2K1,

(12)

where we put

ω13(v, ε)=sup

|v(t2, s, x2, y, u)−v(t1, s, x1, y, u)|

∣∣∣∣∣∣∣∣∣
(t1, s), (t2, s)∈∆T

1 ,

(x1, y), (x2, y)∈∆2,

|t2−t1|≤ε, |x2−x1|≤ε,
u∈ [−‖u‖BC , ‖u‖BC ]

.
Since the function v = v (t, s, x, y, u) is uniformly continuous on the set
∆T

1 ×∆2 × [−‖u‖BC , ‖u‖BC ], we have that ω13(v, ε)→ 0 as ε→ 0.
By proceeding similarly as when estimating the (11) and using the functions

defined by (6),(7),(9) we obtain estimates of other terms occurring in (10) and
finally we have:

|(V u) (t2, x2)−(V u) (t1, x1)|
≤ ω13(v, ε)K2K1+ φ (‖u‖BC)

[
(M2(ε)+N2(ε))K1+(M1(ε)+N1(ε))K2

]
.

(13)
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Taking into account the properties of the functions M1(ε), M2(ε), N1(ε), N2(ε)
and the fact established after (12) we conclude that the function V u is contin-
uous on [0, T ] × [0,M ]. The arbitrariness of T permits us to deduce that V u
is continuous on the set R+ × [0,M ]. Hence, keeping in mind assumptions (i)
and (ii) we deduce that the function Qu is continuous on the set R+ × [0,M ].

Subsequently, we show that for any function u ∈ BC, the function Qu is
bounded on R+ × [0,M ]. To this end let us fix t ∈ R+ and x ∈ [0,M ]. Then,
we get

|(Qu) (t, x)|
≤ ‖h‖BC+

(
|f(t, x, u(t, x))−f(t, x, 0)|+|f(t, x, 0)|

)
×
∫ t

0

∫ x

0

|v(t, s, x, y, u(s, y))| dy

(
y∨
q=0

g2(x, q)

)
ds

(
s∨

p=0

g1(t, p)

)

≤ ‖h‖BC+
(
k‖u‖BC+F

)
φ (‖u‖BC)

∫ t

0

∫ x

0

dy

(
y∨
q=0

g2(x, q)

)
ds

(
s∨

p=0

g1(t, p)

)
.

(14)

Finally, from (14), Corollary 3.3 and in view of Lemma 3.4 we have

|(Qu) (t, x)| ≤ ‖h‖BC +
(
k ‖u‖BC + F

)
φ (‖u‖BC)K2K1. (15)

From estimate (15) follows that the function Qu is bounded on the set
R+× [0,M ]. This fact in conjunction with earlier obtained corollary concerning
the continuity of Qu on R+× [0,M ] allows us to deduce that Q transforms the
space BC into itself. Apart from this observe that estimate (15) yields

‖Qu‖BC ≤ ‖h‖BC +
(
k ‖u‖BC + F

)
φ (‖u‖BC)K2K1. (16)

Further, from (16) and assumption (ix) we deduce that there exists a number
r0 > 0 such that Q transforms the ball Br0 into itself. Moreover, we have that
φ (r0) kK1K2 < 1.

In the next step we show that the operator Q is continuous on the ball Br0 .
To this end fix ε > 0 and u0 ∈ Br0 . Next, take an arbitrary function u ∈ Br0

such that ‖u− u0‖BC ≤ ε. For arbitrarily fixed (t, x) ∈ R+ × [0,M ] we have

| (Qu) (t, x)−(Qu0) (t, x)|
≤ |f(t, x, u(t, x))−f(t, x, u0(t, x))|

×
∫ t

0

∫ x

0

|v(t, s, x, y, u(s, y))| dy

(
y∨
q=0

g2(x, q)

)
ds

(
s∨

p=0

g1(t, p)

)
+
[
|f(t, x, u0(t, x))−f(t, x, 0)|+|f(t, x, 0)|

]
×
∫ t

0

∫ x

0

|v(t, s, x, y, u(s, y))−v(t, s, x, y, u0(s, y))| dy

(
y∨
q=0

g2(x, q)

)
ds

(
s∨

p=0

g1(t, p)

)
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≤ k ‖u−u0‖BC φ(‖u‖BC)

∫ t

0

∫ x

0

dy

(
y∨
q=0

g2(x, q)

)
ds

(
s∨

p=0

g1(t, p)

)
+
(
k ‖u0‖BC+F

)
×
∫ t

0

∫ x

0

|v(t, s, x, y, u(s, y))−v(t, s, x, y, u0(s, y))| dy

(
y∨
q=0

g2(x, q)

)
ds

(
s∨

p=0

g1(t, p)

)
.

Taking into account assumption (viii) we can choose T > 0 such that

t∨
s=0

g1(t, s) < ε for all t > T. (17)

Now, we consider two cases.

10. For t ∈ [0, T ] we get

|(Qu) (t, x)− (Qu0) (t, x)| ≤ kεφ (r0)K2K1 +
(
kr0 + F

)
ωr0(v, ε)K2K1,

where

ωr0(v, ε)=sup

{
|v(t, s, x, y, u1)−v(t, s, x, y, u2)|

∣∣∣∣ (t, s)∈∆T
1 , (x, y)∈∆2,

u1, u2∈ [−r0, r0], |u1−u2|≤ε

}
.

Because the function v is uniformly continuous on the set ∆T
1 ×∆2 × [−r0, r0]

we deduce that ωr0(v, ε)→ 0 as ε→ 0.

20. For t > T , applying (17), we get

|(Qu) (t, x)− (Qu0) (t, x)|

≤ k ‖u− u0‖BC φ (‖u‖BC)

∫ t

0

∫ x

0

dy

(
y∨
q=0

g2 (x, q)

)
ds

(
s∨

p=0

g1(t, p)

)

+
(
k ‖u0‖BC + F

) ∫ t

0

∫ x

0

[
|v (t, s, x, y, u(s, y))|

+ |v (t, s, x, y, u0(s, y))|
]
dy

(
y∨
q=0

g2(x, q)

)
ds

(
s∨

p=0

g1(t, p)

)
≤ kεφ (r0)K2ε+

(
kr0 + F

)
2φ (r0)K2ε.

Now, joining cases 10 and 20 we obtain that the operator Q is continuous on
the ball Br0 .

In the next step we will investigate the behavior of the operator Q with
respect to previously defined measure of noncompactness (1). Let us take a
nonempty subset U of the ball Br0 . Further on, choose an arbitrary function
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u ∈ U . Next, fix T > 0 and ε > 0 and take (t1, x1), (t2, x2) ∈ [0, T ]× [0,M ] such
that |t2 − t1| ≤ ε and |x2 − x1| ≤ ε. Without loss of generality we can assume
that t1 < t2 and x1 < x2. Then we get:

|(Qu) (t2, x2)− (Qu) (t1, x1)|
≤ |h(t2, x2)− h(t1, x1)|

+ |(Fu) (t2, x2) (V u) (t2, x2)− (Fu) (t2, x2) (V u) (t1, x1)|
+ |(Fu) (t2, x2) (V u) (t1, x1)− (Fu) (t1, x1) (V u) (t1, x1)|
≤ ωT (h, ε) + (k |u (t2, x2)|+ |f (t2, x2, 0)|) |(V u) (t2, x2)− (V u) (t1, x1)|

+ |(V u) (t1, x1)| (k |u(t2, x2)− u(t1, x1)|+ ω(f, ε))

≤ ωT (h, ε) +
(
k ‖u‖BC + F

)
|(V u) (t2, x2)− (V u) (t1, x1)|

+ |(V u) (t1, x1)|
(
kωT (u, ε) + ω(f, ε)

)
,

(18)

where we denoted

ωT (h, ε) = sup

{
|h (t2, x2)− h(t1, x1)|

∣∣∣∣ t1, t2 ∈ [0, T ], x1, x2 ∈ [0,M ],

|t2 − t1| ≤ ε, |x2 − x1| ≤ ε

}
,

ω(f, ε)=sup

{
|f(t2, x2, u)−f(t1, x1, u)|

∣∣∣∣ t1, t2∈ [0, T ], x1, x2∈ [0,M ],

u∈ [−r0, r0], |t2−t1|≤ε, |x2−x1|≤ε

}
and ωT (u, ε) was defined previously in the Section 2.

Since the functions h and u are uniformly continuous on the set
[0, T ] × [0,M ], thus we have that ωT (h, ε) → 0 as ε → 0 and ωT (u, ε) → 0
as ε → 0. Analogously, the function f is uniformly continuous on the set
[0, T ]× [0,M ]× [−r0, r0], and hence we conclude that ω(f, ε)→ 0 as ε→ 0.

From estimate (13) we obtain

ωT(Vu, ε)≤ω13(v, ε)K2K1+φ(r0)
[
(M2(ε)+N2(ε))K1+(M1(ε)+N1(ε))K2

]
. (19)

Subsequently, from Lemma 2.7 and assumptions (iv) and (vii), we derive

|(V u) (t1, x1)| ≤ φ (‖u‖BC)

(
x1∨
y=0

g2(x1, y)

)(
t1∨
s=0

g1(t1, s)

)
≤ φ(r0)K2K1. (20)

Finally, combining estimates (18)–(20), we get

ωT (QU, ε)

≤ ωT (h, ε)+φ(r0)K2K1

(
kωT (U, ε)+ω(f, ε)

)
+(kr0+F )

{
ω13(v, ε)K2K1+φ(r0)

[
(M2(ε)+N2(ε))K1+(M1(ε)+N1(ε))K2

]}
.
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Linking the properties of the functions Mi(ε), Ni(ε) (i = 1, 2) and the functions
ε → ωT (h, ε), ε → ω13(v, ε), ε → ω(f, ε), we deduce the following inequality
ωT0 (QU) ≤ φ (r0)K2K1kω

T
0 (U) . This yields

ω∞0 (QU) ≤ φ (r0)K2K1kω
∞
0 (U) . (21)

In the next step, let us take the functions u1, u2 ∈ U ⊂ Br0 . Then, for
arbitrarily fixed t ∈ R+ and x ∈ [0,M ] we obtain:

|(Qu2)(t, x)− (Qu1)(t, x)|
≤ |(Fu2)(t, x)||(V u2)(t, x)− (V u1)(t, x)|

+ |(V u1)(t, x)||(Fu2)(t, x)− (Fu1)(t, x)|
≤ (k|u2(t, x)|+ |f(t, x, 0)|)|(V u2)(t, x)− (V u1)(t, x)|

+ |(V u1)(t, x)|k|u2(t, x)− u1(t, x)|.

(22)

Further, from our assumptions, Corollary 3.3 and in view of Lemma 3.4 we have

|(V u1) (t, x)| ≤ φ (‖u1‖BC)

(
x∨
y=0

g2 (x, y)

)(
t∨

s=0

g1(t, s)

)
≤ φ (r0)K2K1 (23)

and
|(V u2) (t, x)− (V u1) (t, x)|

≤
∫ t

0

∫ x

0

(
|v (t, s, x, y, u2(s, y))|

+ |v (t, s, x, y, u1(s, y))|
)
dy

(
y∨
q=0

g2(x, q)

)
ds

(
s∨

p=0

g1(t, p)

)

≤ 2φ (r0)K2

(
t∨

s=0

g1(t, s)

)
.

(24)

Combining (22)–(24) we derive the estimate

diam(QU)(t, x) ≤ (kr0+F ) 2φ(r0)K2

(
t∨

s=0

g1(t, s)

)
+ φ(r0)K2K1k diam U(t, x).

Hence, in view of assumption (viii) we get

lim sup
t→∞

{sup {diam (QU) (t, x) : x ∈ [0,M ]}}

≤ φ (r0)K2K1k lim sup
t→∞

{sup {diam U(t, x) : x ∈ [0,M ]}} .

This implies
a (QU) ≤ φ (r0)K2K1ka (U) . (25)

Finally, linking estimates (21) and (25) we obtain µ (QU) ≤ φ (r0)K2K1kµ (U) .
Taking into account Theorem 2.2 and the definition of the measure of noncom-
pactness given by formula (1), in view of assumption (ix), we conclude that
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there exists at least one function u = u(t, x) belonging to the ball Br0 , which is
the solution of equation (5). Keeping in mind the description of the kernel of
the measure of noncompactness µ defined by the formula (1) in the space BC
and taking into account Remark 2.3 and Definition 2.5 we deduce that solutions
of equation (5) belonging to the ball Br0 are uniformly locally attractive. The
proof is complete.

Remark 3.6. Notice that in our considerations the interval [0,M ] can be re-
placed by any interval [a, b], a < b.

4. Some special cases

In this section we will discuss a few special cases of the nonlinear quadratic
integral equation (5) studied in the previous section. In the paper [17] there
was investigated the nonlinear quadratic integral equation of Volterra-Stieltjes
type in two variables of form (5), but the domain of consideration was the
bounded rectangle [0, 1]× [0, 1].

Further on, let us observe that in the case, when we have g1(t, s) = s and
g2 (x, y) = y and Fu ≡ 1, equation (5) reduces to the classical nonlinear Volterra
integral equation in two variables of the form

u(t, x) = h(t, x) +

∫ t

0

∫ x

0

v (t, s, x, y, u (s, y)) dyds

and when we have g1(t, s) = s and g2(x, y) = y and h(t, x) ≡ 0 we obtain the
following equation

u(t, x) = f (t, x, u(t, x))

∫ t

0

∫ x

0

v (t, s, x, y, u (s, y)) dyds.

Obviously solutions of these equations should be investigated under other as-
sumptions.

Now, we give examples of functions gi(w, z) = gi : ∆i → R (i = 1, 2)
occurring in equation (5). First, we recall the lemma associated with these
functions (cf. [11, 17,30]).

Lemma 4.1. Suppose that the function gi = gi(w, z) satisfies assumptions (iii)
and (vi) for i = 1, 2 and the following condition:

(v’) The function z → gi (w2, z)−gi (w1, z) (i = 1, 2) is monotone on the inter-
val [0, w1] for arbitrarily fixed w1, w2 such that 0 ≤ w1 < w2. Moreover,
w2 ≤M in the case i = 2.

Then gi satisfies assumption (v) (i = 1, 2).



Volterra-Stieltjes Integral Equations in Two Variables 95

As example of functions defined on the triangle ∆2 = {(x, y) ∈ R2 : 0 ≤ y ≤
x ≤M} we can take the functions g2(x, y) = g2 : ∆2 → R, g̃2(x, y) = g̃2 : ∆2 →
R defined as follows

g2(x, y) =
1

α
[xα − (x− y)α] , where α ∈ (0, 1), (26)

g̃2(x, y) =

{
x ln x+y

x
for 0 < y ≤ x ≤M

0 for x = 0
. (27)

Then we get

dyg2(x, y) =
1

(x− y)1−α
dy and dyg̃2(x, y) =

x

x+ y
dy.

Of course, it can be easily verified that these functions satisfy assumptions (iii),
(iv), (v)b) and (vi) (cf. [11, 17, 30]). The constant K2 from Corollary 3.3 is
finite and for the function g2 this constant is equal K2 = 1

α
Mα while for the

function g̃2 we have K̃2 = M ln 2.
We could not consider the functions given by the formulas (26) and (27) as

the function g1 defined on the triangle ∆1 = {(t, s) ∈ R2 : 0 ≤ s ≤ t}, because
then assumption (viii) is not satisfied.
On the other hand consider the function g1(t, s) = g1 : ∆1 → R, defined on the
triangle ∆1 and having the form

g1(t, s) = a(t)b(s),

where a : R+ → R, b : R+ → R. Then assumption (viii) has the form

(viii’) limt→∞
(
|a(t)|

∨t
s=0 b(s)

)
= 0.

In such a situation we can consider interesting cases. For example, the assump-
tion (viii’) is satisfied, when limt→∞ a(t) = 0 and

∨t
s=0 b(s) is bounded on R+.

If we additionally assume that the function b(t) is continuous on R+, b (0) = 0
and the function a(t) satisfies the Lipschitz condition on the [0, T ] for any fixed
T > 0, then we get that the assumptions (iii), (iv), (v)a) and (vi) are satisfied.
Moreover, the assumption (v)a) has the form:

(v’) a) For any T > 0 and ε > 0 there exists δ > 0 such that for all
t1, t2 ∈ [0, T ] such that t1 < t2 and t2−t1 ≤ δ the following inequality
holds

|a (t2)− a (t1)|
t1∨
s=0

b(s) ≤ ε.

We will verify now the assumptions concerning the function g1(t, s) = g1 :
∆1 → R, if this function is given by

g1(t, s) =
k∑
i=1

ai(t)bi(s),
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where ai : R+ → R, bi : R+ → R for i = 1, 2, . . . , k. Then we have

t∨
s=0

g1(t, s) =
k∑
i=1

(
|ai(t)|

t∨
s=0

bi(s)

)
.

Let us assume that the functions bi = bi(t) (i = 1, 2, . . . , k) are continuous
on R+. Additionally, we require that bi (0) = 0 for i = 1, 2, . . . , k and

∨t
s=0 bi(s)

is bounded on R+ for i = 1, 2, . . . , k. Moreover, let us assume that the functions
ai = ai(t) (i = 1, 2, . . . , k) satisfy the Lipschitz condition on [0, T ] for each fixed
T > 0, i.e., for any T > 0 there exist the constants Li > 0 (i = 1, 2, . . . , k) such
that |ai (t2)− ai (t1)| ≤ Li |t2 − t1| for all t1, t2 ∈ [0, T ], i = 1, 2, . . . , k. Apart
from this we assume that limt→∞ ai(t) = 0 for i = 1, 2, . . . , k. It is not difficult
to check, that when these conditions are fulfilled, then assumptions (iii), (iv),
(v)a), (vi) and (viii) are satisfied.

Now, we provide an example illustrating the main result contained in The-
orem 3.5.

Example 4.2. Consider the following integral equation

u(t, x) =
ln(x+1)

t+2
+

arctg (x2+ u(t, x))

et+x+1

×
∫ t

0

∫ x

0

3
√
|u(s, y)|x sin(t2+s2+xy+1)

[
(t+s) ln(1+ s

t
)+s

]
(x+y)(t+s)(t2+1)

dyds,

(28)

where t ∈ R+ = [0,+∞) and x ∈ [0, 1] (i.e., M = 1). Equation (28) is a special
case of equation (5), if we put

h(t, x) =
ln (x+ 1)

t+ 2
,

f (t, x, u) =
arctg (x2 + u)

et+x + 1
,

v (t, s, x, y, u) = 3
√
|u| sin

(
t2 + s2 + xy + 1

)
,

g1(t, s) =

{
s

t2+1
ln
(
1 + s

t

)
for 0 < s ≤ t

0 for t = 0
,

dsg1(t, s) =
(t+ s) ln

(
1 + s

t

)
+ s

(t+ s) (t2 + 1)
ds,

g2 (x, y) =

{
x ln

(
1 + y

x

)
for 0 < y ≤ x ≤ 1

0 for x = 0
,

dyg2 (x, y) =
x

x+ y
dy.

It is easy to check that assumptions (i)–(viii) of the Theorem 3.5 are satis-
fied. Indeed, after standard calculations we obtain that

‖h‖BC =
1

2
ln 2, F =

π

2
, k = 1, K1 =

1

2
ln 2, K2 = ln 2 and φ (r) = 3

√
r.
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The inequality from assumption (ix) has the form ‖h‖BC+(kr+F ) 3
√
r K1K2

≤ r. Keeping in mind the above indicated estimates we get 2(ln 2)2r
4
3 − 4r +

π(ln 2)2r
1
3 + 2 ln 2 ≤ 0 and we deduce that, e.g., the number r0 = 1 is a solution

of this inequality, such that φ (r0) kK1K2 < 1. Thus, in view of Theorem 3.5
we conclude that equation (28) has a solution in the space BC belonging to
the ball B1. Moreover, all solutions of equation (28), which belong to B1, are
uniformly locally attractive in the sense of Definition 2.5.
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[9] Banaś, J. and O’Regan, D., On existence and local attractivity of solutions of
a quadratic Volterra integral equation of fractional order. J. Math. Anal. Appl.
345 (2008), 573 – 582.
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