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Abstract. Our aim in this paper is to deal with the boundedness of the generalized
fractional integral operators on generalized Morrey spaces Lp,φ;2(X;µ) over metric
measure spaces. We also discuss a necessary condition for the boundedness of the
generalized fractional integral operators. As applications, we establish new results
for the predual spaces.
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1. Introduction

In the present paper, we aim to show boundedness of the generalized fractional
integral operators on generalized Morrey spaces Lp,φ;2(X;µ) over connected met-
ric measure spaces (X, d, µ) assuming that the µ-measure of any ball is finite.
We also discuss a necessary condition for the boundedness of the generalized
fractional integral operators. Our results will extend [11, 14, 18, 22, 25, 36] and
[12, Theorems 1.1–1.3]. As applications, we establish new results for the predual
spaces.

Before we describe our results, let us place ourselves in the Euclidean
space Rn and view an elementary results for Morrey spaces and fractional in-
tegral operators. For 0 < α < n, we define the Riesz potential of order α for a
locally integrable function f on Rn by

Iαf(x) ≡
∫
Rn

f(y)

|x− y|n−α
dy (x ∈ Rn).
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The operator Iα is also called the fractional integral operator.
We denote by B(z, r) the ball {x ∈ Rn : |x − z| < r} with center z and

of radius r > 0, and by |B(z, r)| its Lebesgue measure, i.e. |B(z, r)| = ωnr
n,

where ωn is the volume of the unit ball in Rn.
For 1 ≤ p < ∞ and φ : (0,∞) → (0,∞), let the generalized Morrey space

Lp,φ(Rn) be the family of all f ∈ Lploc(Rn) such that ‖f‖Lp,φ <∞, where

‖f‖Lp,φ ≡ sup
z∈Rn, r>0

1

φ(r)

(
1

|B(z, r)|

∫
B(z,r)

|f(x)|p dx
) 1

p

.

When φ(r) ≡ r−
λ
p (r > 0), Lp,φ(Rn) coincides with Lp,λ(Rn) in Adams [1].

When φ(r) ≡ r−
n
q , then we have the scaling relation

‖f(t·)‖Lp,φ = t−
n
q ‖f‖Lp,φ

for all t > 0 and f ∈ Lp,φ(Rn).
If φ ≡ 1, then Lp,φ(Rn) ∼ L∞(Rn) with norm equivalence.
Adams [1, Theorem 3.1] showed that

‖Iαf‖Lq,λ ≤ C‖f‖Lp,λ

provided that the parameters p, q, λ satisfy

1 < p < q <∞, 0 < λ ≤ n, −λ
p

+ α = −λ
q
.

If λ = n, then this is the Hardy–Littlewood–Sobolev theorem. See also [7–9,14,
17,22,26,29,30,42].

For a function ρ : (0,∞) → (0,∞), the generalized Riesz potential Iρf is
defined by

Iρf(x) ≡
∫
Rn

ρ(|x− y|)
|x− y|n

f(y) dy (x ∈ Rn).

The operator Iρ is also called the generalized fractional integral operator. If
ρ(r) = rα for 0 < α < n, then Iρf coincides with the usual Riesz potential
of order α. The generalized Riesz potential Iρf was introduced in [23]. The
boundedness of Iρf of functions in Lp,φ(Rn) was investigated in [14]. For the
boundedness of Iρf , we also refer the reader to [9, 24, 36].

Now let us formulate our main results. Let X be a connected separable
metric space equipped with a non-negative Radon measure µ. By B(x, r) we
denote the open ball centered at x ∈ X of radius r > 0. We write d(x, y) for
the distance of the points x and y in X. We assume that µ({x}) = 0 and that
0 < µ(B(x, r)) < ∞ for x ∈ X and r > 0 for simplicity. We do not postulate
on µ the “so called” doubling condition to show the boundedness of fractional
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integral operator; see Theorems 1.2, 1.5, 1.8 and 1.12. Recall that a Radon
measure µ is said to be doubling, if there exists a constant C > 0 such that
µ(B(x, 2r)) ≤ Cµ(B(x, r)) for all x ∈ supp(µ)(= X) and r > 0. Otherwise µ
is said to be non-doubling. In connection with the 5r-covering lemma, the
doubling condition had been a key condition in harmonic analysis. However,
Nazarov, Treil and Volberg showed that the doubling condition is not necessary
by using the modified maximal operator [27,28]. See also [32–35,39].

Let G be the set of all functions from (0,∞) to itself with the doubling
condition; that is, there exists a constant cφ ≥ 1 such that

1

cφ
≤ φ(r)

φ(s)
≤ cφ for r, s > 0 with

1

2
≤ r

s
≤ 2. (1)

We call the smallest number cφ satisfying (1) the doubling constant of φ.
For φ ∈ G, let the generalized Morrey space Lp,φ;κ(X;µ) be the set of all

functions f ∈ Lploc(X;µ) such that ‖f‖Lp,φ;κ(X;µ) <∞, where

‖f‖Lp,φ;κ(X;µ) ≡ sup
z∈X, r>0

1

φ(r)

(
1

µ(B(z, κr))

∫
B(z,r)

|f(x)|p dµ(x)

) 1
p

.

Observe that in [34, Section 2] we showed that ‖f‖Lp,φ;2(X;µ) and ‖f‖Lp,φ;4(X;µ)

can be norms which are not equivalent. We also define the generalized Riesz
potential Iρ,µ,τf by:

Iρ,µ,τf(x) ≡
∫
X

ρ(d(x, y))

µ(B(x, τd(x, y)))
f(y) dµ(y) (x ∈ X)

for τ > 0 and a measurable function ρ : (0,∞)→ (0,∞).
In this paper we aim to give a general version of boundedness of generalized

Riesz potentials Iρ,µ,32f of functions in generalized Morrey spaces Lp,φ;2(X;µ)
over metric measure spaces. We also discuss necessity of conditions for the
boundedness of Iρ,µ,32f . Our results extend those in [11,12,14,18,25,36].

We postulate the following conditions on ρ : (0,∞) → (0,∞): There exist
constants Cρ > 0 and 0 < k1 < k2 ≤ 2k1 <∞ such that∫ 1

0

ρ(t)

t
dt <∞,

sup
r
2
≤s≤r

ρ(s) ≤ Cρ

∫ k2r

k1r

ρ(t)

t
dt (r > 0). (2)

We denote the set of all such functions by G0.
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Example 1.1. Let (X, d, µ) be the Euclidean space. In view of [2], we see that
(1−∆)−

α
2 falls under the scope of our main results. As r ↓ 0, when 0 < α < n,

r−nρ(r) ∼ 1

2απ
n
2

Γ
(α

2

)−1
Γ

(
n− α

2

)
rα−n,

when α = n

r−nρ(r) ∼ 1

2n−1π
n
2

Γ
(α

2

)−1
log

1

r
,

and when α > n,

r−nρ(r) ∼ 1

2nπ
n
2

Γ
(α

2

)−1
Γ

(
α− n

2

)
.

See [2, (4.2)]. Remark that when α > n, the integral kernel is trivially in-
tegrable, so that r−nρ(r) behaves like a constant function as r goes to zero.
Furthermore, as r →∞,

r−nρ(r) ∼ r
α−n−1

2 e−r

2
n+α−1

2 π
n−1
2 Γ

(
α
2

) .
See [2, (4.3)]. The above estimates mean that we have (2) with k1 = 1

4
and

k2 = 1
2
. Note that ρ ∈ G implies (2). See [38, Remark 2.2] as well as [21,

Lemma 2.5].

Set

ρ̃(r) ≡
∫ r

0

ρ(s)

s
ds for r > 0. (3)

Let G1 be the set of all almost decreasing functions in G from (0,∞) to itself,
that is, φ ∈ G1 if and only if φ ∈ G and there exists a constant C > 0 such that

φ(r) ≤ Cφ(s) for all r ≥ s > 0.

Remark that we are given three classes G,G0,G1. With these definitions
in mind, we state the following result in the metric setting, which extends
[12, Theorem 1.1]. See also research papers [3–9,17,22,29,30,42].

Theorem 1.2. Let 1 < p < q <∞, ρ ∈ G0 and φ ∈ G1. Assume that∫ ∞
r

ρ(t)φ(t)

t
dt ≤ Cρ(r)φ(r) (r > 0), (4)

and that ∫ ∞
r

φ(t)

t
dt ≤ Cφ(r) (r > 0) (5)

for some constant C > 0. If there exists a constant C ′ > 0 such that

ρ̃(r) ≤ C ′φ(r)
p
q
−1 (r > 0), (6)

then Iρ,µ,32 is bounded from Lp,φ;2(X;µ) to L
q,φ

p
q ;4

(X;µ).
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Next we will show that condition (6) is necessary for the boundedness of
Iρ,µ,32f ; the next result extends [12, Theorem 1.1] to homogeneous spaces.

Theorem 1.3. Let µ be a doubling measure. Let 1 < p < q < ∞, ρ ∈ G ∩ G0
and φ ∈ G1. Assume that there exists a constant C > 0 such that

φ(r)µ(B(x, r))
1
p ≤ Cφ(r′)µ(B(x, r′))

1
p (7)

whenever x ∈ X and 0 < r ≤ r′. If Iρ,µ,32 is bounded from Lp,φ;2(X;µ) to
L
q,φ

p
q ;4

(X;µ), then (6) holds for some constant C ′ > 0.

Before we go further, a couple of helpful remarks may be in order.

Remark 1.4. 1. Observe that condition (6) corresponds to the scaling con-
dition in the classical case. Indeed, if we let

ρ(t) = tα, φ(t) = tβ (t > 0)

with α > 0 > β, then (6) reads α = β
(
p
q
− 1
)
. In the setting of Lebesgue

measure, this says that Iα is bounded from Lp,φ(Rn) to L
q,φ

p
q
(Rn) if and

only if α = β
(
p
q
− 1
)
. So, this condition can be taken as the scaling

condition.

2. In Theorem 1.3, Iρ,µ,32 is bounded if and only if Iρ,µ,1 is bounded.

The following result extends [14, Theorem B] and [12, Theorem 1.2].

Theorem 1.5. Let 1 < p < q < ∞, ρ ∈ G0 and φ ∈ G1. Assume (5) for some
constant C > 0. If, in addition, there exists a constant C ′ > 0 such that

φ(r)

∫ r

0

ρ(t)

t
dt+

∫ ∞
r

ρ(t)φ(t)

t
dt ≤ C ′φ(r)

p
q (r > 0), (8)

then Iρ,µ,32 is bounded from Lp,φ;2(X;µ) to L
q,φ

p
q ;4

(X;µ).

Theorem 1.5 extends [33, Theorem 3.3] in that the underlying space and
the integral kernel of the fractional integral operator are generalized.

We will show that condition (8) is necessary for the boundedness of Iρ,µ,32f.
This result extends [12, Theorem 1.2].

Theorem 1.6. Let µ be a doubling measure. Let 1 < p < q < ∞, ρ ∈ G ∩ G0
and φ ∈ G1. Assume (7) and that there exists a constant C > 0 such that∫ r

0

µ(B(x, t))
1
p
φ(t)

t
dt ≤ Cµ(B(x, r))

1
pφ(r) (9)

for x ∈ X and r > 0. If, in addition, Iρ,µ,32 is bounded from Lp,φ;2(X;µ) to
L
q,φ

p
q ;4

(X;µ), then there exists a constant C ′ > 0 such that (8) holds.
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Remark 1.7. We have a counterpart for the weak spaces considered in [15].
Here we omit the detail, since the proof is a minor modification of the above
results.

Let φ ∈ G1 and 1 ≤ p < ∞. Define p′ = p
p−1 , the harmonic conjugate. We

consider applications of the results above: We can pass these results to predual
spaces. Following [40,45], we say that a µ-measurable function b is said to be a
(p′, φ)-block, if b is supported on a ball B(x, r) such that

‖b‖Lp′ (X;µ) ≤
1

µ(B(x, 2r))
1
pφ(r)

. (10)

A function f is said to belong Hp′,φ(X;µ), if f has an expression:

f =
∞∑
j=1

λjbj, (11)

where each bj is a (p′, φ)-block and {λj}∞j=1 ∈ `1(N). The norm of such f is
given by

‖f‖Hp′,φ(X;µ) = inf
∞∑
j=1

|λj|, (12)

where the sequence {λj}∞j=1 runs over all expressions as above. Observe that (7)
guarantees the µ-a.e. absolute convergence of the right-hand side of (11). In-
deed, for each (p′, φ)-block a and g ∈ Lp,φ;2(X;µ), we have∫

X

|a(x)g(x)| dµ(x) ≤ ‖g‖Lp,φ;2(X;µ)

by virtue of the Hölder inequality. By (7), we can take g = χB(x,r) in the above.
A direct consequence of this choice is that any (p′, φ)-block has integral over
B(x, r) less than a constant depending only on r. Therefore, in (11), the series
converges absolutely µ-a.e. About the predual space Hp′,φ(X;µ) above, we have
the following result:

Theorem 1.8. Let 1 < p <∞, ρ ∈ G0 and φ ∈ G1.

(1) (a) Let f ∈ Hp′,φ(X;µ). Then, for all g ∈ Lp,φ;2(X;µ), f · g ∈ L1(X;µ)
and ∫

X

|f(x)g(x)| dµ(x) ≤ ‖f‖Hp′,φ(X;µ)‖g‖Lp,φ;2(X;µ).

In particular, any g ∈ Lp,φ;2(X;µ) defines a continuous linear func-
tional Lg on Hp′,φ(X;µ).

(b) Conversely, any continuous linear functional L on Hp′,φ(X;µ) can
be realized as Lg by some g ∈ Lp,φ;2(X;µ).
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(2) The mapping g ∈ Lp,φ;2(X;µ) 7→ Lg ∈ B(Hp′,φ(X;µ),C) is an isomor-
phism, where B(Hp′,φ(X;µ),C) denotes the dual of Hp′,φ(X;µ).

Theorem 1.9. Let 1 < p < q <∞, ρ ∈ G0 and φ ∈ G1.
(1) Assume (4)–(6) for some constant C > 0 and C ′ > 0. Then, Iρ,µ,33 is

bounded from H
q′,φ

p
q
(X;µ) to Hp′,φ(X;µ).

(2) Assume (5) and (8) for some constant C > 0 and C ′ > 0. Then Iρ,µ,33 is
bounded from H

q′,φ
p
q
(X;µ) to Hp′,φ(X;µ).

Parts (1) and (2) of Theorem 1.9 can be considered as the dual of Theo-
rems 1.2 and 1.5, respectively.

Theorems 1.3 and 1.6 are readily transplanted into the space Hp′,φ(X;µ) as
follows:

Theorem 1.10. Let µ be a doubling measure. Let 1 < p < q <∞, ρ ∈ G ∩ G0
and φ ∈ G1. Assume that there exists a constant C > 0 such that (7) holds

whenever x ∈ X and 0 < r ≤ r′. If Iρ,µ,31 is bounded from H
q′,φ

p
q
(X;µ) to

Hp′,φ(X;µ), then there exists a constant C ′ > 0 such that (6) holds.

Theorem 1.11. Let µ be a doubling measure. Let 1 < p < q <∞, ρ ∈ G ∩ G0
and φ ∈ G1. Assume (7) and that there exists a constant C > 0 such that (9)

holds for x ∈ X and r > 0. If Iρ,µ,31 is bounded from H
q′,φ

p
q
(X;µ) to Hp′,φ(X;µ),

then there exists a constant C ′ > 0 such that (8) holds.

Theorems 1.8–1.11 supplement the earlier paper [12], that is, these four
theorems for the predual spaces are new even in the Rn case.

Finally, we treat the case when p = 1, which extends [14], [12, Theorem 1.3],
[36, Theorem 2], [25] and [18].

Theorem 1.12. Let ρ ∈ G0 and φ ∈ G. If, in addition, there exists a constant
C ′ > 0 such that

φ(r)

∫ r

0

ρ(t)

t
dt+

∫ ∞
r

ρ(t)φ(t)

t
dt ≤ C ′ψ(r) (r > 0),

then Iρ,µ,4 is bounded from L1,φ;2(X;µ) to L1,ψ;4(X;µ).

In connection with Theorem 1.12 the functions supported on bounded open
sets were considered in [36, Theorem 2]. Since the proof of Theorem 1.12 is
very similar to that of [36, Theorem 2], we omit the proof.

We will show that condition (8) is a necessary condition for the boundedness
of Iρ,µ,4f . This result extends [12, Theorem 1.3].
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Theorem 1.13. Let µ be a doubling measure. Let ρ ∈ G ∩ G0 and φ ∈ G1.
Assume (7) and that there exists a constant C > 0 such that∫ r

0

µ(B(x, t))
φ(t)

t
dt ≤ Cµ(B(x, r))φ(r).

If, in addition, Iρ,µ,4 is bounded from L1,φ;2(X;µ) to L1,ψ;4(X;µ), then there
exists a constant C ′ > 0 such that (8) holds.

More and more attention is paid to analysis on measure spaces. Here we
present some examples of metric measure space to which our results are appli-
cable.

Example 1.14. In this example, we let X = Rn but the distance function d
is distorted. Let α1, α2, . . . , αn ∈ [1,∞). Define a function F : Rn × (0,∞) →
[0,∞) by

F (x1, x2, . . . , xn; r) =
n∑
i=1

xi
2

r2αi
.

Define a distance d by

d(x, y) = inf{r > 0 : F (x− y; r) ≤ 1}.

The function d is indeed a distance function, since

(a+ b)2
(

1

r1 + r2

)2αi

≤ a2r1
r1 + r2

(
1

r1

)2αi

+
b2r2
r1 + r2

(
1

r2

)2αi

for r1, r2 > 0 and a, b ≥ 0. Then Lp,φ;2(X;µ) is a special case of the norm dealt
in [41]. In [41], Softova considered the case where φ depends on x as well.

Example 1.15. Let p be a fixed prime number. Equip Q with a distance
function as follows: the distance between x, y ∈ Q is

dp(x, y) = p−m,

where the integers q, r,m satisfy x− y = pm q
r

and the integers q and r are not
multiples of p; see [13]. Denote by Qp the completion with respect to dp of Q.
Since Qp carries the structure of a locally compact group, Qp has the Haar
measure µ. Then Lp,φ;2(X;µ) is a special case of the norm dealt in [44]. In [44],
Volosivets considered the case where φ depends on x as well.

A tacit understanding in this paper is that we use the letter C to denote
various positive constants that may differ from line to line. Throughout this
paper, we write A . B to indicate that there exists a constant C independent of
Morrey functions such that A ≤ CB. The symbol A ∼ B stands for A . B . A.

Finally, we shall organize the remaining part of the present paper as follows:
Section 2 collects some fundamental estinates and we prove the above theorems
in Section 3.
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2. Preliminary lemmas

2.1. Norm estimates. We begin with the obtaining a fundamenetal estimate
of the Morrey norm ‖χ‖Lp,φ;2(X;µ) for the indicator function of balls.

Lemma 2.1 (cf. [11, Lemma 3.1]). Let 1 ≤ p < ∞ and φ ∈ G1. Assume
that there exists a constant C ′ > 0 such that (7) holds whenever w ∈ X and
0 < r ≤ r′. Then, there exists a constant C > 0 such that(

µ(B(z, R))

µ(B(z, 2R))

) 1
p

φ(R)−1 ≤ ‖χB(z,R)‖Lp,φ;2(X;µ) ≤ Cφ(R)−1 (13)

for all R > 0 and z ∈ X. In particular, when µ is a doubling measure,

C−1φ(R)−1 ≤ ‖χB(z,R)‖Lp,φ;2(X;µ) ≤ Cφ(R)−1

for all R > 0 and z ∈ X.

Proof. The left inequality of (13) is a consequence of the definition

‖χB(z,R)‖Lp,φ;2(X;µ) ≥
1

φ(R)

(
µ(B(z,R))

µ(B(z, 2R))

) 1
p

.

So we concentrate on the right inequality ‖χB(z,R)‖Lp,φ;2(X;µ) ≤ Cφ(R)−1. In
the equality

‖χB(z,R)‖Lp,φ;2(X;µ) = sup
w∈X, r>0

1

φ(r)

(
µ(B(w, r) ∩B(z,R))

µ(B(w, 2r))

) 1
p

,

we distinguish two cases: r ≥ 2R and 0 < r ≤ 2R. We have

‖χB(z,R)‖Lp,φ;2(X;µ) ≤ sup
w∈X, 0<r≤2R

1

φ(r)

(
µ(B(w, r) ∩B(z,R))

µ(B(w, 2r))

) 1
p

+ sup
w∈X, r≥2R

1

φ(r)

(
µ(B(w, r) ∩B(z,R))

µ(B(w, 2r))

) 1
p

≤ C

φ(2R)
+ sup

w∈X, r≥2R,d(z,w)≤r+R

1

φ(r)

(
µ(B(z, R))

µ(B(w, 2r))

) 1
p

≤ C

φ(R)
+ C sup

w∈X, r≥2R,d(z,w)≤r+R

1

φ( r
2
)

(
µ(B(z,R))

µ(B(z, r
2
))

) 1
p

≤ C

φ(R)
;

we used (7) in the last inequality.
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2.2. Lower bounds for Iρ,µ,32. We need to fundamental estimates for the
bound of Iρ,µ,32 from below. The first one concerns the ball-testing. Recall here
that ρ̃ is given by (3).

Lemma 2.2. Let ρ ∈ G∩G0. Assume that µ is a doubling measure. Fix z ∈ X.
Then there exists a constant C > 0 such that ρ̃(R

2
) ≤ CIρ,µ,32χB(z,R)(x) holds

whenever x ∈ B(z, R
2

) and R > 0.

Remark 2.3. Note that if µ is a doubling measure, there exist constants C > 0
and s ≥ 1 such that

µ(B′)

µ(B)
≥ C

(
r′

r

)s
(14)

for all balls B = B(x, r) and B′ = B(x′, r′) with x′ ∈ B and 0 < r′ ≤ r (see
e.g. [16]).

Proof of Lemma 2.2. Let x ∈ B(z, R
2

). Since ρ ∈ G, we have

Iρ,µ,32χB(z,R)(x) ≥
∫
B(x,R

2
)

ρ(d(x, y))

µ(B(x, 32d(x, y)))
dµ(y)

=
∞∑
j=1

∫
B(x,2−jR)\B(x,2−j−1R)

ρ(d(x, y))

µ(B(x, 32d(x, y)))
dµ(y)

≥ C
∞∑
j=1

∫
B(x,2−jR)\B(x,2−j−1R)

ρ(2−j−1R)

µ(B(x, 2−j+5R))
dµ(y).

Since X is connected, we can find y such that d(x, y) = 2−j−1R+2−jR
2

= 3·2−j−2R.
Let B′ = B(y, 2−j−2R). By (14), we have µ(B′)

µ(B(x,2−j+5R))
≥ C

(
2−j−2R
2−j+5R

)s
= C.

Since B′ ⊂ B(x, 2−jR) \B(x, 2−j−1R), we obtain

Iρ,µ,32χB(z,R)(x) ≥ C
∞∑
j=1

ρ(2−j−1R) ≥ C

∫ R
2

0

ρ(s)

s
ds = Cρ̃

(
R

2

)
,

as required.

Another fundamental estimate of Iρ,µ,32 comes from the one of the function
y ∈ X \B(z,R) 7→ φ(d(y, z)) ∈ [0,∞) with z ∈ X and R > 0 fixed.

Lemma 2.4. Let µ be a doubling measure, ρ ∈ G ∩ G0 and φ ∈ G0. Fix z ∈ X.
For y ∈ X, define

gR(y) ≡ φ(d(y, z))χB(z,R)c(y) (15)

and let k1 be a constant appearing in (2). Then there exists a constant C > 0
such that, for every R > 0,

Iρ,µ,32gR(x) ≤ C

∫ ∞
k1R

ρ(t)φ(t)

t
dt

holds, whenever x ∈ B(z, R
3

).
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Proof. Let y /∈ B(z, R). Since d(x, y) ∼ d(y, z) for x ∈ B(z, R
3

) and φ ∈ G, we
have

Iρ,µ,32gR(x) =

∫
X\B(z,R)

ρ(d(x, y))φ(d(y, z))

µ(B(x, 32d(x, y)))
dµ(y)

≤ C

∫
X\B(x,2R

3
)

ρ(d(x, y))φ(d(x, y))

µ(B(x, 32d(x, y)))
dµ(y)

≤ C

∞∑
j=0

∫
B(x,2jR)\B(x,2j−1R)

ρ(d(x, y))φ(d(x, y))

µ(B(x, 32d(x, y)))
dµ(y)

≤ C
∞∑
j=0

∫
B(x,2jR)\B(x,2j−1R)

sup2j−1R≤s≤2jR ρ(s)φ(2jR)

µ(B(x, 2j+4R))
dµ(y).

Since ρ ∈ G0 and φ ∈ G, we obtain

Iρ,µ,32gR(x)

≤ C

∞∑
j=0

∫
B(x,2jR)\B(x,2j−1R)

φ(2jR)

µ(B(x, 2j+4R))

(∫ 2jk2R

2jk1R

ρ(s)

s
ds

)
dµ(y)

≤ C
∞∑
j=0

∫
B(x,2jR)\B(x,2j−1R)

(∫ 2jk2R

2jk1R

ρ(s)φ(s)

s
ds

)
dµ(y)

µ(B(x, 2j+4R))

≤ C
∞∑
j=0

∫ 2jk2R

2jk1R

ρ(s)φ(s)

s
ds

≤ C

∫ ∞
k1R

ρ(s)φ(s)

s
ds,

as required.

We verify that the function gR above is estimated from above by proving
the next lemma:

Lemma 2.5. Let µ be a doubling measure, ρ ∈ G ∩ G0 and φ ∈ G. Fix z ∈ X.
Define gR(y) by (15) for y ∈ X and R > 0. Then, there exists a constant C > 0
such that, for every R > 0,

Iρ,µ,32gR(x) ≥ C

∫ ∞
R

ρ(t)φ(t)

t
dt (16)

holds, whenever x ∈ B(z, R
3

).

Proof. Let y /∈ B(z,R). Since d(x, y) ∼ d(y, z) for x ∈ B(z, R
3

), ρ ∈ G and
φ ∈ G, we have
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Iρ,µ,32gR(x) =

∫
X\B(z,R)

ρ(d(x, y))φ(d(z, y))

µ(B(x, 32d(x, y)))
dµ(y)

≥ C

∫
X\B(x,2R)

ρ(d(x, y))φ(d(x, y))

µ(B(x, 32d(x, y)))
dµ(y)

≥ C
∞∑
j=1

∫
B(x,2j+1R)\B(x,2jR)

ρ(d(x, y))φ(d(x, y))

µ(B(x, 32d(x, y)))
dµ(y)

≥ C

∞∑
j=1

∫
B(x,2j+1R)\B(x,2jR)

ρ(2jR)φ(2jR)

µ(B(x, 2j+6R))
dµ(y).

As in the proof of Lemma 2.2, in view of (14), we obtain

Iρ,µ,32gR(x) ≥ C

∞∑
j=1

ρ(2jR)φ(2jR) ≥ C

∫ ∞
R

ρ(t)φ(t)

t
dt,

as required.

2.3. Control of fractional integral operators by maximal operators.
Now we are oriented to the control of fractional integral operators. To control
them, we need a pointwise estimate of the maximal operator.

We consider the centered maximal function defined by

M16f(x) ≡ sup
r>0

1

µ(B(x, 16r))

∫
B(x,r)

|f(y)|dµ(y)

for a locally integrable function f on X.
Note that, under (5), we have

lim
r↓0

φ(r) =∞ (17)

and
lim
r→∞

φ(r) = 0. (18)

We “almost” have the mean value theorem for φ as the following lemma
implies:

Lemma 2.6. Let φ ∈ G1 satisfy (17) and (18). Then, for all T ∈ (0,∞), there
exists r0 > 0 such that φ(r0) ∼ T .

Proof. Define
r0 = sup{r > 0 : φ(r) ≥ T}.

Then by the definition of r0 and sup, we have φ(2r0) < T . Again by the definiton
of r0 and sup, there exists v ∈ ( r0

2
, r0] such that φ(v) ≥ T . Since φ is almost

decreasing, φ( r0
2

) ≥ cT . Thus, since φ is doubling, we see that φ(r0) ∼ T .
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Lemma 2.7. Let 1 < p < q <∞, ρ ∈ G0 and φ ∈ G1. Suppose φ satisfies (17)
and (18) and that a µ-measurable function f satifies ‖f‖Lp,φ;2(X;µ) = 1. Assume,
in addition, (4) holds for some constant C ′ > 0 and (6) holds for some constant
C ′′ > 0. Then

|Iρ,µ,32f(x)| ≤ CM16f(x)
p
q for x ∈ X. (19)

Proof. We may assume that M16f(x) <∞. We write

U1 ≡
∫
B(x,r)

ρ(d(x, y))

µ(B(x, 32d(x, y)))
|f(y)| dµ(y)

and

U2 ≡
∫
X\B(x,r)

ρ(d(x, y))

µ(B(x, 32d(x, y)))
|f(y)| dµ(y).

Then, by the triangle inequality, |Iρ,µ,32f(x)| ≤ U1 + U2. If y ∈ B(x, 2jr) \
B(x, 2j−1r) and j ∈ Z, then a geometric observation shows∫

B(x,2jr)\B(x,2j−1r)

ρ(d(x, y))

µ(B(x, 32d(x, y)))
|f(y)| dµ(y)

≤
∫
B(x,2jr)\B(x,2j−1r)

sup2j−1r≤s≤2jr ρ(s)

µ(B(x, 2j+4r))
|f(y)| dµ(y).

If we combine this with (2), then we have∫
B(x,2jr)\B(x,2j−1r)

ρ(d(x, y))

µ(B(x, 32d(x, y)))
|f(y)| dµ(y)

≤ Cρ

∫ 2jk2r

2jk1r

ρ(s)

s
ds× 1

µ(B(x, 2j+4r))

∫
B(x,2jr)

|f(y)| dµ(y).

Thus, we have

U1 =
∞∑
j=0

∫
B(x,2−jr)\B(x,2−j−1r)

ρ(d(x, y))

µ(B(x, 32d(x, y)))
|f(y)| dµ(y)

≤ Cρ

∞∑
j=0

∫ 2−jk2r

2−jk1r

ρ(s)

s
ds× 1

µ(B(x, 2−j+4r))

∫
B(x,2−jr)

|f(y)| dµ(y)

≤ Cρ

(∫ k2r

0

ρ(s)

s
ds

)
M16f(x)

= Cρρ̃(k2r)M16f(x),



172 Y. Sawano and T. Shimomura

where ρ̃ is given by (3). Next note that

1≥ 1

φ(r)

(
1

µ(B(z, 2r))

∫
B(z,r)

|f(x)|p dµ(x)

)1
p

≥ 1

φ(r)

1

µ(B(z, 2r))

∫
B(z,r)

|f(x)| dµ(x)

since ‖f‖Lp,φ;2(X;µ) = 1, so that

1

µ(B(z, 2r))

∫
B(z,r)

|f(x)| dµ(x) ≤ φ(r) (20)

for all r > 0. If we use (2), then we have

U2 =
∞∑
j=1

∫
B(x,2jr)\B(x,2j−1r)

ρ(d(x, y))

µ(B(x, 32d(x, y)))
|f(y)| dµ(y)

≤ Cρ

∞∑
j=1

∫ 2jk2r

2jk1r

ρ(s)

s
ds× 1

µ(B(x, 2j+4r))

∫
B(x,2jr)

|f(y)| dµ(y).

If we use (20), then we have U2 ≤ Cρ
∑∞

j=1

∫ 2jk2r

2jk1r
ρ(s)
s
ds× φ(2jr). Since φ ∈ G1

and hence φ is doubling, we have

U2 ≤ C
∞∑
j=1

∫ 2jk2r

2jk1r

ρ(s)φ(s)

s
ds ≤ C

∫ ∞
2k1r

ρ(s)φ(s)

s
ds.

Consequently, we have by our assumption

|Iρ,µ,32f(x)| ≤ U1 + U2 ≤ Cρ̃(k2r)M16f(x) + C

∫ ∞
2k1r

ρ(s)φ(s)

s
ds.

Since we are assuming that φ is a doubling function as well as conditions (2)
and (4), we have

|Iρ,µ,32f(x)| ≤ Cφ(k2r)
p
q
−1M16f(x) + Cρ(2k1r)φ(2k1r)

≤ Cφ(r)
p
q
−1M16f(x) + Cρ̃(2k1k2r)φ(r).

Since φ ∈ G1 and we assume (6),

ρ̃(2k1k2r) ≤ Cφ(2k1k2r)
p
q
−1 ≤ Cφ(r)

p
q
−1,

so that
|Iρ,µ,32f(x)| ≤ Cφ(r)

p
q
−1M16f(x) + Cφ(r)

p
q

for all r > 0. By virtue of Lemma 2.6, we can find R > 0 such that C−1φ(R) ≤
M16f(x) ≤ C−1φ(R). By using this R, we can obtain (19).

Similarly we can prove the following:

Lemma 2.8. Let 1 < p < q <∞ and ρ ∈ G0. Assume that φ ∈ G1 satisfies (17)
and (18) and that there exists a constant C ′>0 such that (8) holds for any r>0.
Suppose, in addition, that a µ-measurable function f satisfies ‖f‖Lp,φ;2(X;µ) = 1.
Then (19) still holds.



Generalized Fractional Integral Operators 173

2.4. Morrey boundedness of the maximal operator. Now we obtain the
following estimate of the maximal operator itself:

Lemma 2.9. (cf. [19, Lemma 4.3] and [20, Lemma 2.2]) Let φ ∈ G. Assume (5)
holds for some constant C ′>0. Assume that f is a µ-measurable function on G
satisfying

1

µ(B(x, 2r))

∫
B(x,r)

|f(y)|p0 dµ(y) ≤ φ(r)p0 (21)

for all x ∈ X and r > 0. Then there exists a constant C > 0 such that

1

µ(B(z, 4r))

∫
B(z,r)

M16f(x)p0 dµ(x) ≤ Cφ(r)p0

for all z∈X and r>0, where the constant C is independent of f satisfying (21).

Lemma 2.9 can be regarded as the Morrey boundedness of the operator M16.

Proof. Let f satisfy (21), and fix z ∈ X and r > 0. Write A0 ≡ B(z, 2r)
and Aj ≡ B(z, 2j+1r) \ B(z, 2jr) for each positive integer j. Based upon this
partition {Aj}∞j=1, we set

fj ≡ fχAj for j = 0, 1, 2, . . . , g0 ≡
∞∑
j=1

|fj|.

Let us set

J1 ≡
∫
B(z,r)

M16f0(x)p0dµ(x), J2 ≡
∫
B(z,r)

M16g0(x)p0dµ(x).

Then we have ∫
B(z,r)

M16f(x)p0dµ(x) ≤ C(J1 + J2).

By virtue of (21) and the Lp0(X;µ)-boundedness of M16 (see [28, Lemma 3.1],
[31, Theorem 1.2] and [43, Theorem 2.4]), we have

J1 ≤ C

∫
X

|f0(x)|p0dµ(x) = C

∫
B(z,2r)

|f(x)|p0dµ(x) ≤ Cφ(r)p0µ(B(z, 4r)).

The estimate for J1 is now valid.
Let us turn to J2. In view of the definition of fj and Aj, we have

M16fj(x) ≤ sup
t∈((2j−1)r,(2j+1+1)r)

1

µ(B(x, 16t))

∫
B(x,t)

|fj(y)|dµ(y)
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for x ∈ B(z, r). For x ∈ B(z, r), we estimate the right-hand side crudely:

M16fj(x) ≤ 1

µ(B(x, 16(2j − 1)r)

∫
B(x,(2j+1+1)r)

|fj(y)|dµ(y)

≤ 1

µ(B(x, 16(2j − 1)r)

∫
B(z,(2j+1+2)r)

|fj(y)|dµ(y)

≤ 1

µ(B(z, (2j+4 − 17)r)

∫
B(z,(2j+1+2)r)

|fj(y)|dµ(y).

By the Hölder inequality, we have

M16fj(x) ≤
(

1

µ(B(z, (2j+4 − 17)r))

∫
B(z,(2j+1+2)r)

|f(y)|p0dµ(y)

) 1
p0

.

Since 2j+4 − 17 ≥ 2(2j+1 + 2) for any positive integer j and φ ∈ G, we see that
for x ∈ B(z, r)

M16fj(x) ≤ φ(2j+1r + 2r) ≤ Cφ(2jr),

so that, adding this estimate over j, we obtain a pointwise estimate: for all x ∈
B(z, r), M16g0(x) ≤

∑∞
j=1M16fj(x) ≤ C

∑∞
j=1 φ(2jr) ≤ C

∫∞
r

φ(t)
t
dt ≤ Cφ(r).

Here, for the last inequality, we used (5). Integrating the above estimate over
B(z, r), we obtain

J2 ≤ Cφ(r)p0
∫
B(z,r)

dµ(x) = Cφ(r)p0µ(B(z, r)).

Since µ(B(z, r)) ≤ µ(B(z, 4r)), we deduce

1

µ(B(z, 4r))

∫
B(z,r)

M16f(x)p0dµ ≤ Cφ(r)p0 ,

which proves Lemma 2.9.

2.5. Elementary results for predual spaces. To prove Theorem 1.8, we
need the following lemmas.

Lemma 2.10. If f is a non-zero Lp
′
(X;µ)-function which is supported on a

ball B(x0, r), then b is a (p′, φ)-block, where

b =
1

µ(B(x0, 2r))
1
pφ(r)‖f‖Lp′ (X;µ)

f.

Hence, in particular,

‖f‖Hp′,φ(X;µ) ≤ µ(B(x0, 2r))
1
pφ(r)‖f‖Lp′ (X;µ). (22)
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Proof. The fact that b is a (p′, φ)-block follows from a simple calculation and
the fact that b is supported on B(x0, r);

‖b‖Lp′ (X;µ) =
1

µ(B(x0, 2r))
1
pφ(r)‖f‖Lp′ (X;µ)

‖f‖Lp′ (X;µ) =
1

µ(B(x0, 2r))
1
pφ(r)

.

To prove (22), we set

b1 = b, λ1 = µ(B(x0, 2r))
1
pφ(r)‖f‖Lp′ (X;µ), bj = 0, λj = 0 for j ≥ 2.

Then each bj is a (p′, φ)-block and (11) holds. Thus, (22) follows from (12).

Lemma 2.11. Let 1 < p < ∞ and φ ∈ G1. The set of all L∞(X;µ)-functions
with compact support forms a dense subspace of Hp′,φ(X;µ). In particular, the
set of all Lp

′
(X;µ)-functions with compact support forms a dense subspace of

Hp′,φ(X;µ).

Proof. If we are given an expression (11) of f ∈ Hp′,φ(X;µ), then the sequence
{fN}∞N=1 approximates f in the topology ofHp′,φ(X;µ) thanks to (12), where fN
is given by

fN =
N∑
j=1

λjbj.

So, we can choose N � 1 so that ‖f − fN‖Hp′,φ(X;µ) < 4−1‖f‖Hp′,φ(X;µ). By the
Lebesgue convergence theorem, we can choose ϕj, j = 1, 2, . . . , N of the form
ϕj = bjχ{|bj |≤Rj} with Rj � 1 so that

N∑
j=1

|λj| · ‖bj − ϕj‖Lp′ (X;µ) < 4−1‖f‖Hp′,φ(X;µ)

and that each ϕj is bounded and has bounded support. Thus, by setting

f 1 =
∑N

j=1 λjϕj, we see that

‖f − f 1‖Hp′,φ(X;µ) < 2−1‖f‖Hp′,φ(X;µ).

Likewise, by applying what we have obtained to f − f 1, we can find
f 2 ∈ L∞(X;µ) with bounded support so that

‖f − f 1 − f 2‖Hp′,φ(X;µ) < 2−1‖f − f 1‖Hp′,φ(X;µ).

If we repeat this procedure, then we can find f 1, f 2, . . . , fM , . . ., so that

‖f − f 1 − f 2 − · · · − fM‖Hp′,φ(X;µ) < 2−1‖f − f 1 − f 2 − · · · − fM−1‖Hp′,φ(X;µ)

for all M . Thus,

‖f − f 1 − f 2 − · · · − fM‖Hp′,φ(X;µ) < 2−M‖f‖Hp′,φ(X;µ),

as was to be shown.
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Lemma 2.12. If {λj}∞j=1 ∈ `1(N), then, for each collection {Bj}∞j=1 of (p′, φ)-
blocks and {bj}∞j=1 ⊂ L∞(µ) such that |bj| ≤ Bj for µ-a.e., we have

∑∞
j=1 λjbj ∈

Hp′,φ(X;µ) and ∥∥∥∥∥
∞∑
j=1

λjbj

∥∥∥∥∥
Hp′,φ(X;µ)

≤
∞∑
j=1

|λj|.

Proof. Just observe that bj is a (p′, φ)-block as well.

3. Proofs

3.1. Proofs of Theorem 1.2 and Theorem 1.5.

Proof of Theorem 1.2. By Lemma 2.7, we have

1

µ(B(z, 4r))

∫
B(z,r)

|Iρ,µ,32f(x)|qdµ(x) ≤ C

µ(B(z, 4r))

∫
B(z,r)

M16f(x)pdµ(x)

for x ∈ X. If we devide both sides by φ(r)p, then we have by Lemma 2.9

1

φ(r)pµ(B(z, 4r))

∫
B(z,r)

|Iρ,µ,32f(x)|qdµ(x)

≤ C

(
1

φ(r)pµ(B(z, 4r))

∫
B(z,r)

M16f(x)pdµ(x)

)
≤ C,

as required.

Proof of Theorem 1.5. With the aid of Lemmas 2.8 and 2.9, we can go through
the same argument as Theorem 1.2.

3.2. Proofs of Theorem 1.3 and Theorem 1.6.

Proof of Theorem 1.3. Fix z ∈ X. Observe from Lemma 2.2 that

ρ̃

(
R

2

)
≤ C

(
1

µ(B(z, R
2

))

∫
B(z,R

2
)

Iρ,µ,32χB(z,R)(x)qdµ(x)

) 1
q

. (23)

Since Iρ,µ,32 is assumed bounded from Lp,φ;2(X;µ) to L
q,φ

p
q ;4

(X;µ), we note from

Lemma 2.1 that

‖Iρ,µ,32χB(z,R)‖L
q,φ

p
q ;4

(X;µ) ≤ C‖χB(z,R)‖Lp,φ;2(X;µ) ≤ Cφ(R)−1
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for all R > 0. Since φ ∈ G1 and µ is a doubling measure, we have

ρ̃

(
R

2

)
≤ Cφ

(
R

2

) p
q

φ(R)−
p
q

(
1

µ(B(z, R))

∫
B(z,R

2
)

Iρ,µ,32χB(z,R)(x)qdµ(x)

) 1
q

by virtue of (23). Since φ is doubling and Iρ,µ,32 : Lp,φ;2(X;µ) → L
q,φ

p
q ;4

(X;µ)

is bounded,

ρ̃

(
R

2

)
≤ Cφ

(
R

2

) p
q

‖Iρ,µ,32χB(z,R)‖L
q,φ

p
q ;4

(X;µ) ≤ C
φ(R

2
)
p
q

φ(R)
≤ Cφ

(
R

2

) p
q
−1

for all R > 0. Thus this theorem is proved.

Proof of Theorem 1.6. As in the proof of Theorem 1.3, we obtain∫ r

0

ρ(t)

t
dt ≤ Cφ(r)

p
q
−1.

We shall prove that ‖gR‖Lp,φ;2(X;µ) ≤ C. For the time being, let us estimate J
by setting

J ≡
(

1

µ(B(x, 2r))

∫
B(x,r)\B(z,R)

φ(d(z, y))p dµ(y)

) 1
p

.

Suppose that x ∈ B(z, R
2

) and r ≥ R
2

. Then

J ≤
(

1

µ(B(z, r))

∫
B(z,2r)\B(z,R)

φ(d(z, y))p dµ(y)

) 1
p

.

By the triangle inequality for Lp(µ) or the inequality (a + b)
1
p ≤ a

1
p + b

1
p , we

have

J ≤
∞∑
j=0

(
1

µ(B(z, r))

∫
B(z,2−j+1r)\B(z,2−jr)

φ(d(z, y))p dµ(y)

) 1
p

.

Since φ is almost decreasing, we have J ≤ C
∑∞

j=0
µ(B(z,2−jr))

1
p

µ(B(z,r))
1
p
φ(2−jr). Finally,

assuming (9), we conclude

J ≤ Cµ(B(z, r))−
1
p

∫ r

0

µ(B(z, t))
1
p
φ(t)

t
dt ≤ Cφ(r) (24)

as long as x ∈ B(z, R
2

) and r ≥ R
2

.
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Recall that gR is given by (15). We plan to estimate

‖gR‖Lp,φ;2(X;µ) = sup
x∈X, r>0

1

φ(r)

(
1

µ(B(x, 2r))

∫
B(x,r)\B(z,R)

φ(d(z, y))p dµ(y)

) 1
p

.

Although x and r runs over X × (0,∞) in the above formula, there is no need
to consider the case x ∈ B(z, R

2
) and r ≤ R

2
. Indeed, if x ∈ B(z, R

2
) and r ≤ R

2
,

then B(x, r) \B(z,R) is an empty set. So, we need to distinguish the following
four cases:

Case 1. x∈B(z, R
2

) and r≥ R
2

,

Case 2. x /∈B(z, R
2

)∪B(z, 2r+2R) and r≥4R, or equivalently, x /∈B(z, 2r+2R)
and r≥4R,

Case 3. x∈B(z, 2r+2R) \B(z, R
2

) and r≥4R,

Case 4. x /∈B(z, R
2

) and r<4R.

Note that Case 1 is covered by (24). Taking into account these four cases, we
obtain

‖gR‖Lp,φ;2(X;µ)

≤C sup
x∈B(z,R

2
)

r≥R
2

φ(r)

φ(r)
+ C sup

x/∈B(z,2r+2R)
r≥4R

1

φ(r)

(
1

µ(B(x, r))

∫
B(x,r)\B(z,R)

φ(d(z, y))p dµ(y)

)1
p

+ C sup
x∈B(z,2r+2R)\B(z,R

2
)

r≥4R

1

φ(r)

(
1

µ(B(x, r))

∫
B(x,r)\B(z,R)

φ(d(z, y))p dµ(y)

)1
p

+ C sup
x/∈B(z,R

2
), r∈(0,4R)

1

φ(R)

(
1

µ(B(x, r))

∫
B(x,r)\B(z,R)

φ(d(z, y))p dµ(y)

)1
p

.

Here we used our assumption that φ ∈ G1 to estimate the fourth term. Let
x /∈ B(z, 2r + 2R), y ∈ B(x, r) and r ≥ 4R. Then a geometric observation
shows that d(z, y) ≥ d(x, z) − d(x, y) ≥ 2r + 2R − r ≥ r. Recall again that
φ ∈ G1. So, after simplifying the first term and then estimating φ(d(z, y)) in
the second term and the fourth term, we obtain

‖gR‖Lp,φ;2(X;µ)

≤ C + C sup
x/∈B(z,2r+2R), r≥4R

1

φ(r)

(
1

µ(B(x, r))

∫
B(x,r)\B(z,R)

φ(r)p dµ(y)

) 1
p

+ C sup
x∈B(z,2r+2R)\B(z,R

2
)

r≥4R

1

φ(r)

(
1

µ(B(z, 2r))

∫
B(z,4r)\B(z,R)

φ(d(z, y))p dµ(y)

) 1
p

+ C sup
x/∈B(z,R

2
), r∈(0,4R)

1

φ(R)

(
1

µ(B(x, r))

∫
B(x,r)\B(z,R)

φ(R)p dµ(y)

) 1
p

.
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As in the estimate of (24), we can handle the third term to conclude

‖gR‖Lp,φ;2(X;µ)≤C+C sup
x∈B(z,2r+2R)\B(z,R

2
)

r≥4R

1

φ(r)µ(B(z, 2r))
1
p

∫ 2r

0

µ(B(z, t))
1
p
φ(t)

t
dt

+C sup
x/∈B(z,R

2
), r∈(0,4R)

φ(R)

φ(R)

≤C+C sup
x∈B(z,2r+2R)\B(z,R

2
)

r≥4R

φ(2r)

φ(r)

≤C.

If we integrate (16) over the ball B(z, R
3

), then we have

1

φ(R)
p
q

∫ ∞
R

ρ(t)φ(t)

t
dt ≤ C‖Iρ,µ,32gR‖L

q,φ
p
q (X;µ)

≤ C‖gR‖Lp,φ;2(X;µ) ≤ C.

Thus, Theorem 1.6 is proved.

3.3. Proof of Theorem 1.8. Theorem 1.8(2) is a direct consequence of (25)
and (28), which will be obtained in the proof of Theorem 1.8(1). So, we con-
centrate on Theorem 1.8(1).

Proof of Theorem 1.8(1). (a) Let f ∈ Hp′,φ(X;µ). Then, we have an expression
for all ε > 0:

f =
∞∑
j=1

λjbj,

where each bj is a (p′, φ)-block and {λj}∞j=1 ∈ `1(N) which satisfy

(1 + ε)‖f‖Hp′,φ(X;µ) ≥
∞∑
j=1

|λj|.

Then, by the triangle inequality and the Hölder inequality, we have∫
X

|f(x)g(x)| dµ(x)≤
∞∑
j=1

|λj|
∫
X

|bj(x)g(x)| dµ(x)≤
∞∑
j=1

|λj| ‖bj‖Lp′ (X;µ)‖g‖Lp(X;µ).

By (10), the definition of the blocks, we have∫
X

|f(x)g(x)| dµ(x)≤
∞∑
j=1

|λj|
‖g‖Lp(X;µ)

µ(B(xj, 2rj))
1
pφ(rj)

≤
∞∑
j=1

|λj| ‖g‖Lp,φ;2(X;µ).
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Hence, ∫
X

|f(x)g(x)| dµ(x) ≤ (1 + ε)‖f‖Hp′,φ(X;µ)‖g‖Lp,φ;2(X;µ).

Since ε > 0 is arbitrary, we obtain the desired result:∫
X

|f(x)g(x)| dµ(x) ≤ ‖f‖Hp′,φ(X;µ)‖g‖Lp,φ;2(X;µ). (25)

(b) Let x0 ∈ X and r > 0 be fixed. If f ∈ Lp
′
(X;µ) is supported on

B(x0, r), then

‖f‖Hp′,φ(X;µ) ≤ µ(B(x0, 2r))
1
pφ(r)‖f‖Lp′ (X;µ)

by virtue of Lemma 2.10, which implies that the mapping

f ∈ Lp′(X;µ) 7→ L(χB(x0,r)f) ∈ C

has the operator norm less than µ(B(x0, 2r))
1
pφ(r)× ‖L‖Hp′,φ(X;µ)→C.

Now we unfreeze r. Also, we pass to a discrete variable j ∈ N from a
continuous variable r > 0. Then, by the duality Lp

′
(X;µ)-Lp(X;µ), for each

non-negative integer j ∈ N ∪ {0}, we can find a function gB(x0,j) such that∫
X

gB(x0,j)(x)f(x) dµ(x) = L(χB(x0,j)(x)f) for all f ∈ Lp′(X;µ)

and that ‖gB(x0,j)‖Lp(X;µ)≤µ(B(x0, 2j))
1
pφ(r)‖L‖Hp′,φ(X;µ)→C. Since such gB(x0,j)

is unique modulo µ-null sets,

gB(x0,j)(x) = χB(x0,j)(x)gB(x0,j+1)(x) (26)

for µ-a.e. x ∈ X. Define

g(x) ≡ lim
j→∞

gB(x0,j)(x),

whose limit exists for µ-a.e. x ∈ X thanks to (26). Thus, we have a µ-measurable
function g such that gB(x0,j) = χB(x0,j)g for µ-a.e.

We aim to show that g ∈ Lp,φ;2(X,µ). To this end, for any ball B(x, r) and
any function f ∈ Lp′(X;µ) supported there, we observe∫

X

g(x)f(x) dµ(x) = lim
j→∞

∫
X

g(x)χB(x0,j)(x)2f(x) dµ(x)

= lim
j→∞

∫
X

gB(x0,j)(x)χB(x0,j)(x)f(x) dµ(x)

= lim
j→∞

L(χB(x0,j)f)

= L(f).
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Hence ∫
X

g(x)f(x) dµ(x) = L(f). (27)

Since L is bounded on Hp′,φ(X;µ), we have(
µ(B(x, 2r))

1
pφ(r)

)−1 ∣∣∣∣∫
B(x,r)

g(x)f(x) dµ(x)

∣∣∣∣ ≤ ‖L‖Hp′,φ(X;µ)→C‖f‖Lp′ (X;µ).

Since this formula is valid for any f with f ∈ Lp′(X;µ) supported on B(x, r),
it follows that(

µ(B(x, 2r))
1
pφ(r)

)−1
‖g‖Lp(B(x,r);µ) ≤ ‖L‖Hp′,φ(X;µ)→C, (28)

so that we obtain g ∈ Lp,φ;2(X;µ) with the estimate

‖g‖Lp,φ;2(X,µ) ≤ ‖L‖Hp′,φ(X;µ)→C.

Since (27) holds and g ∈ Lp,φ;2(X;µ) imply

Lg(f) = L(f)

for all f ∈ Lp′(X;µ) with compact support, we see that two continuous linear
functionals Lg and L are the same by virtue of Lemma 2.11.

3.4. Proofs of Theorems 1.9–1.11. To prove Theorems 1.9–1.11, we prepare
the following lemmas:

Lemma 3.1. Let ρ ∈ G0 and φ ∈ G. Assume (4) for some constant C > 0.
If f is a bounded µ-measurable function with bounded support, then Iρ,µ,33f ∈
Hp′,φ(X;µ).

Proof. We begin with a preliminary observation:

∞∑
k=2

(
sup

s∈[2kr,2k+3r]

ρ(s)

)
φ(2kr) <∞ for all r > 0. (29)

Since ρ ∈ G0 and φ ∈ G and we are assuming (2), we have

∞∑
k=2

(
sup

s∈[2kr,2k+3r]

ρ(s)

)
φ(2kr)

≤
∞∑
k=2

(
sup

s∈[2kr,2k+1r]

ρ(s) + sup
s∈[2k+1r,2k+2r]

ρ(s) + sup
s∈[2k+2r,2k+3r]

ρ(s)

)
φ(2kr)
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and
∑∞

k=2

(
sups∈[2kr,2k+3r] ρ(s)

)
φ(2kr) ≤ Cρ

∑∞
k=2

(∫ 2k+3k2r

2k+1k1r
ρ(t)
t
dt
)
φ(2kr) ≤

C
∑∞

k=2

∫ 2k+3k2r

2k+1k1r
ρ(t)φ(t)

t
dt ≤ C

∫∞
k1r

ρ(t)φ(t)
t

dt ≤ Cρ(k1r)φ(k1r) <∞ for all r > 0.

We suppose that f is suppored on a ball B(x0, r). We first claim that
Iρ,µ,33f is a bounded function on B(x0, 8r). In fact, for x ∈ B(x0, 8r), we have

|Iρ,µ,33f(x)| ≤
∫
B(x0,r)

ρ(d(x, y))

µ(B(x, 33d(x, y)))
|f(y)| dµ(y)

≤
∫
B(x,9r)

ρ(d(x, y))

µ(B(x, 33d(x, y)))
|f(y)| dµ(y)

in view of the size of the support. Since f is bounded, we have

|Iρ,µ,33f(x)| ≤ sup |f |
∫
B(x,9r)

ρ(d(x, y))

µ(B(x, 33d(x, y)))
dµ(y).

Decompose the integral dyadically and use the condition for G0 to obtain

|Iρ,µ,33f(x)| ≤ sup |f |
4∑

j=−∞

∫
B(x,2jr)\B(x,2j−1r)

ρ(d(x, y))

µ(B(x, 33d(x, y)))
dµ(y)

≤ sup |f |
4∑

j=−∞

sup
2j−1r≤s≤2jr

ρ(s)

≤ C sup |f |
4∑

j=−∞

∫ 2jk2r

2jk1r

ρ(t)

t
dt

≤ C sup |f |
∫ 16k2r

0

ρ(t)

t
dt

<∞.

Hence, Iρ,µ,33f is a bounded function on B(x0, 8r) and we conclude

χB(x0,8r)(x)|Iρ,µ,33f(x)| ≤ D1

χB(x0,8r)(x)

µ(B(x0, 8r))
1
p′ µ(B(x0, 16r))

1
pφ(8r)

for all x ∈ X and for some constant D1 depending on f .
Let k = 2, 3, . . .. If we go through a similar calculation, then we have

χB(x0,2k+2r)\B(x0,2k+1r)(x)|Iρ,µ,33f(x)|

≤ χB(x0,2k+2r)\B(x0,2k+1r)(x)

∫
B(x0,r)

ρ(d(x, y))|f(y)|
µ(B(x, 33d(x, y)))

dµ(y)

≤ χB(x0,2k+2r)\B(x0,2k+1r)(x) sup
s∈[2kr,2k+3r]

ρ(s)

∫
B(x0,r)

|f(y)|
µ(B(x, 33d(x, y)))

dµ(y).
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Observe that 33d(x, y) ≥ 33d(x0, x) − 33d(x0, y) ≥ 66 · 2kr − 33r ≥ 2k+4r
whenever y ∈ B(x0, r) and d(x0, x) ≥ 2k+1r. Thus, it follows that

χB(x0,2k+2r)\B(x0,2k+1r)(x)|Iρ,µ,33f(x)|

≤ sup |f | µ(B(x0, r))

µ(B(x0, 2k+3r))
sup

s∈[2kr,2k+3r]

ρ(s)χB(x0,2k+2r)(x)

. sup |f |µ(B(x0, r))

(
sup

s∈[2kr,2k+3r]

ρ(s)

)
φ(2kr)

× 1

µ(B(x0, 2k+2r))
1
p′

χB(x0,2k+2r)(x)

µ(B(x0, 2k+3r))
1
pφ(2k+2r)

.

Consequently,

χB(x0,2k+2r)\B(x0,2k+1r)(x)|Iρ,µ,33f(x)|

≤ D2

(
sup

s∈[2kr,2k+3r]

ρ(s)

)
φ(2kr)

1

µ(B(x0, 2k+2r))
1
p′

χB(x0,2k+2r)(x)

µ(B(x0, 2k+3r))
1
pφ(2k+2r)

for some constant depending on f .
Consequently, if we let

λ1 = D1,

b1(x) =
1

λ1
χB(x0,8r)(x)Iρ,µ,33f(x),

B1(x) =
1

µ(B(x0, 8r))
1
p′

1

µ(B(x0, 16r))
1
pφ(8r)

χB(x0,8r)(x)

and for k = 2, 3, . . .

λk = D2

(
sup

s∈[2kr,2k+3r]

ρ(s)

)
φ(2kr),

bk(x) =
1

λk
χB(x0,2k+2r)\B(x0,2k+1r)(x)Iρ,µ,33f(x),

Bk(x) =
1

µ(B(x0, 2k+2r))
1
p

χB(x0,2k+2r)(x)

µ(B(x0, 2k+3r))
1
pφ(2k+2r)

,

then we are in the position of using Lemma 2.12 thanks to by (29) and in
particular we conclude Iρ,µ,33f belongs to Hp′,φ(X;µ).

Lemma 3.2. Let τ > 1 and f, g be positive µ-measurable functions. Then∫
X

Iρ,µ,τf(x) · g(x) dµ(x) ≤
∫
X

f(x) · Iρ,µ,τ−1g(x) dµ(x).
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Proof. Just compare the integral kernels. We have

µ(B(x, τd(x, y))) ≥ µ(B(y, (τ − 1)d(x, y))).

Proof of Theorem 1.9. The proof parallels, so that we deal with (1) and (2)
simultaneously. Let f ∈ H

q′,φ
p
q
(X;µ).

Let us suppose for a while that f has bounded support and that f ∈
L∞(X;µ). By Lemma 3.1 at least, we can say that Iρ,µ,33f is in Hp′,φ(X,µ).
The Hahn-Banach theorem gives us a functional L ∈ B(Hp′,φ(X;µ),C) with
norm 1 such that

‖Iρ,µ,33f‖Hp′,φ(X;µ) = L(Iρ,µ,33f).

By Theorem 1.8, we can find g ∈ Lp,φ;2(X;µ) with norm 1 such that L = Lg.
Thus,

‖Iρ,µ,33f‖Hp′,φ(X;µ) = Lg(Iρ,µ,33f) =

∫
X

Iρ,µ,33f(x)g(x) dµ(x).

Keeping in mind that the integral kernel of Iρ,µ,33 is positive, we deduce

‖Iρ,µ,33f‖Hp′,φ(X;µ) ≤
∫
X

Iρ,µ,33[|f |](x)|g(x)| dµ(x).

If we use Lemma 3.2, then ‖Iρ,µ,33f‖Hp′,φ(X;µ) ≤
∫
X
|f(x)|Iρ,µ,32[|g|](x) dµ(x).

Recall that ‖Iρ,µ,32[|g|]‖L
q,φ

p
q ;4

(X;µ) . 1 by virtue of Theorem 1.2 and Theo-

rem 1.5. Finally, if we use Theorem 1.8 again, we conclude

‖Iρ,µ,33f‖Hp′,φ(X;µ)≤‖f‖H
q′,φ

p
q
(X;µ)‖Iρ,µ,32[|g|]‖L

q,φ
p
q ;4

(X;µ).‖f‖H
q′,φ

p
q
(X;µ) (30)

for all f ∈ L∞(X;µ) with bounded support.
Let us consider the general case; just assume that f ∈ H

q′,φ
p
q
(X;µ). Then

we have an expression:

f =
∞∑
j=1

λjbj,
∞∑
j=1

|λj| ≤ 2‖f‖H
q′,φ

p
q
(X;µ)

where {λj}∞j=1 ∈ `1(N) and each bj is a (q′, φ
p
q )-block. As we did in Lemma 2.11,

by changing bj slightly, we can assume that bj ∈ L∞(X;µ). If necessary, by

removing j such that λj = 0 and then replacing λj with |λj| and bj with
λj
|λj |bj,

we can assume that each λj is positive. Thus, if we set

fN =
N∑
j=1

λjbj,
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then, we conclude that {fN}∞N=1 is convergent in f inH
q′,φ

p
q
(X;µ) and from (30)

{Iρ,µ,33fN}∞N=1 is convergent to a function g in Hp′,φ(X;µ). In fact, from (30),
we see that {Iρ,µ,33fN}∞N=1 is a Cauchy sequence.

If we set

f+ =
∞∑
j=1

λj max(bj, 0), f− =
∞∑
j=1

λj min(bj, 0)

and argue as above. But we need to be careful because we need to justify the
definition of Iρ,µ,33f ; there is no guarantee of the absolute convergence of the
integral defining Iρ,µ,33f . Observe first that

‖max(bj, 0)‖Hq′,φ(X;µ) + ‖min(bj, 0)‖Hq′,φ(X;µ) ≤ 2‖bj‖Hq′,φ(X;µ) ≤ 2 <∞

thanks to Lemma 2.12. Since bj is bounded, as we have seen above,

‖Iρ,µ,33[max(bj, 0)]‖Hp′,φ(X;µ) + ‖Iρ,µ,33[min(bj, 0)]‖Hp′,φ(X;µ) ≤ C <∞,

where the constant C is depends on ρ. Hence,
∞∑
j=1

λj

(
‖Iρ,µ,33[max(bj, 0)]‖Hp′,φ(X;µ) + ‖Iρ,µ,33[min(bj, 0)]‖Hp′,φ(X;µ)

)
.

∞∑
j=1

λj

. ‖f‖H
q′,φ

p
q
(X;µ).

(31)

Since the integral kernel is positive, we have

Iρ,µ,33f+ =
∞∑
j=1

λjIρ,µ,33[max(bj, 0)], Iρ,µ,33f− =
∞∑
j=1

λjIρ,µ,33[min(bj, 0)]

and (31) shows that the convergence takes place in the topology of Hp′,φ(X;µ)
as well as in the sense of the pointwise convergence. Thus, we have

Iρ,µ,33f = Iρ,µ,33f+ + Iρ,µ,33f− = g ∈ Hp′,φ(X;µ),

as was to be shown.

Proofs of Theorems 1.10 and 1.11. Under the assumptions of these theorems
we see that Iρ,µ,32 is bounded from Lp,φ;2(X;µ) to L

q,φ
p
q ;4

(X;µ). Indeed, for

g ∈ Lp,φ;2(X;µ), by virtue of the duality H
q′,φ

p
q
(X;µ)-L

q,φ
p
q ;4

(X;µ), we have

‖Iρ,µ,32g‖L
q,φ

p
q ;4

(X;µ) = ‖LIρ,µ,32g‖B(H
q′,φ

p
q
(X;µ),C)

= sup{|LIρ,µ,32g(f)| : f ∈ H
q′,φ

p
q
(X;µ), ‖f‖H

q′,φ
p
q
(X,µ) = 1}.
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Thus, we can find f ∈ H
q′,φ

p
q
(X;µ) with norm 2 such that

‖Iρ,µ,32g‖L
q,φ

p
q ;4

(X;µ) ≤ |Lf (Iρ,µ,32g)| =
∣∣∣∣∫
X

f(x)Iρ,µ,32g(x) dµ(x)

∣∣∣∣ .
If we invoke Lemma 3.2, then we have

‖Iρ,µ,32g‖L
q,φ

p
q ;4

(X;µ) ≤
∫
X

Iρ,µ,31[|f |](x)|g(x)| dµ(x).

Since Iρ,µ,31 is bounded from H
q′,φ

p
q
(X;µ) to Hp′,φ(X;µ), we see from Theo-

rem 1.8 that

‖Iρ,µ,32g‖L
q,φ

q
p ;4

(X;µ)

≤ ‖Iρ,µ,31[|f |]‖Hp′,φ(X;µ)‖g‖Lp,φ;2(X;µ) ≤ C‖g‖Lp,φ;2(X;µ).

This implies that Iρ,µ,32 is bounded from Lp,φ;2(X;µ) to L
q,φ

p
q ;4

(X;µ). So, we

can use Theorems 1.3 and 1.6 to conclude that (6) holds in Theorem 1.10 and

that (8) holds in Theorem 1.11.

3.5. Proof of Theorem 1.13. As in Lemmas 2.2, 2.4 and 2.5, we can prove
the following lemmas:

Lemma 3.3. Let µ be a doubling measure and let ρ ∈ G. Fix z ∈ X. Then
there exists a constant C > 0 such that ρ̃(R

2
) ≤ CIρ,µ,4χB(z,R)(x) holds whenever

x ∈ B(z, R
2

) and R > 0.

Lemma 3.4. Let µ be a doubling measure and φ ∈ G. Fix z ∈ X. Define gR(y)
by (15) for y ∈ X and R > 0. Let k1 be a constant appearing in (2). Then there
exists a constant C > 0 such that, for every R > 0 and ρ ∈ G0,

Iρ,µ,4gR(x) ≤ C

∫ ∞
k1R

ρ(t)φ(t)

t
dt

holds, whenever x ∈ B(z, R
3

).

Lemma 3.5. Let µ be a doubling measure and, let ρ ∈ G and φ ∈ G. Fix z ∈ X.
Define gR(y) by (15) for y ∈ X and R > 0. Then, there exists a constant C > 0
such that, for every R > 0,

Iρ,µ,4gR(x) ≥ C

∫ ∞
R

ρ(t)φ(t)

t
dt (32)

holds, whenever x ∈ B(z, R
3

).



Generalized Fractional Integral Operators 187

Proof of Theorem 1.13. Fix z ∈ X. Observe from Lemma 3.3 that

ρ̃

(
R

2

)
≤ C

1

µ(B(z, R
2

))

∫
B(z,R

2
)

Iρ,µ,4χB(z,R)(x)dµ(x). (33)

Since Iρ,µ,4 is assumed to be a bounded from L1,φ;2(X;µ) to L1,ψ;4(X;µ), we note
from Lemma 2.1 that ‖Iρ,µ,4χB(z,R)‖L1,ψ;4(X;µ) ≤ C‖χB(z,R)‖L1,φ;2(X;µ) ≤ Cφ(R)−1

for all R > 0. Since φ ∈ G1 and µ is a doubling measure, we have by (33)

ρ̃

(
R

2

)
≤ C

1

µ(B(z, R))

∫
B(z,R

2
)

Iρ,µ,4χB(z,R)(x)dµ(x)

≤ Cψ

(
R

2

)
‖Iρ,µ,4χB(z,R)‖L1,ψ;4(X;µ)

≤ C
ψ(R

2
)

φ(R)

≤ C
ψ(R

2
)

φ(R
2

)

for all R > 0. Hence, we obtain φ(r)
∫ r
0
ρ(t)
t
dt ≤ Cψ(r).

As in the proof of Theorem 1.6, we can prove that ‖gR‖L1,φ;2(X;µ) ≤ C. If

we integrate (32) over the ball B(z, R
3

), then we have

1

ψ(R)

∫ ∞
R

ρ(t)φ(t)

t
dt ≤ C‖Iρ,µ,4gR‖L1,ψ;4(X;µ) ≤ C‖gR‖L1,φ;2(X;µ) ≤ C.

Thus, Theorem 1.13 is proved.
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