
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal of Analysis and its Applications
Volume 36 (2017), 129–149
DOI: 10.4171/ZAA/1582

Generalized Hardy–Morrey Spaces
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Abstract. This paper is an off-spring of the contribution [Z. Anal. Anwend. 36
(2017)(1), 17–35]. We propose a way to consider the decomposition method of gener-
alized Hardy–Morrey spaces. Generalized Hardy–Morrey spaces emerged from gen-
eralized Morrey spaces. By means of the grand maximal operator and the norm of
generalized Morrey spaces, we can define generalized Hardy–Morrey spaces. With
what we have culminated for the Hardy–Littlewood maximal operator, we can easily
refine the existing results. As an application, we consider bilinear estimates, which is
the “so-called” Olsen inequality. In particular, our results complement the one in the
2014 paper by Iida, the fourth author and Tanaka [Z. Anal. Anwend. 33 (2014)(2),
149–170]; there were two mistakes. One lies in the decomposition result and another
lies in the proof of the Olsen inequality.

Keywords. Generalized Hardy–Morrey spaces, decomposition, maximal operators,
Olsen inequality
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1. Introduction

We are concerned with generalized Hardy–Morrey spaces, which originate from
generalized Morrey spaces, in the present paper. The generalized Morrey space
Mp,φ(Rn) is equipped with a function φ and a positive parameter 0 < p < ∞.
The generalized Morrey spaceMp,φ(Rn) was defined independetly by Mizuhara
in 1991 [20] and Nakai in 1994 [21]. Although we can disprove that the set of all

A. Akbulut: Department of Mathematics, Ahi Evran University, Kirsehir, Turkey;
aakbulut@ahievran.edu.tr
V. S. Guliyev: Department of Mathematics, Ahi Evran University, Kirsehir, Turkey;
Institute of Mathematics and Mechanics, Baku, Azerbaijan; vagif@guliyev.com
T. Noi, Y. Sawano: Department of Mathematics and Information Science, Tokyo
Metropolitan University, 1-1, Minami-Ohsawa, Hachioji, 192-0397, Tokyo, Japan;
taka.noi.hiro@gmail.com; yoshihiro-sawano@celery.ocn.ne.jp



130 A. Akbulut et al.

compactly supported smooth functions is dense in Mp,φ(Rn), we are still able
to develop a theory of the generalized Hardy–Morrey space HMp,φ(Rn).

Let 0 < p <∞. Denote by Gp the set of all the functions φ : Rn× (0,∞)→
(0,∞) decreasing in the second variable such that t ∈ (0,∞) 7→ t

n
pφ(x, t) ∈

(0,∞) is almost increasing uniformly over the first variable x, so that there
exists a constant C > 0 such that

φ(x, r) ≤ φ(x, s), Cφ(x, r)r
n
p ≥ φ(x, s)s

n
p

for all x ∈ Rn and 0 < s ≤ r <∞. In this paper we often assume 0 < p ≤ 1.
All “cubes” in Rn are assumed to have their sides parallel to the coordinate

axes. Denote by Q = Q(Rn) the set of all cubes. For a cube Q ∈ Q, the symbol

`(Q) stands for the side-length of the cube Q; `(Q) ≡ |Q| 1n , where |E| denotes
the Lebesgue measure of a measurable set E. When we are given a cube Q, we
use the following abuse of notation: φ(Q) ≡ φ(c(Q), `(Q)), where c(Q) denotes
the center of Q.

Let 0 < p < ∞ and φ : Rn × (0,∞) → (0,∞) be a function which is not
necessarily in Gp. The generalized Morrey spaceMp,φ(Rn) is defined as the set
of all measurable functions f for which the quasi-norm

‖f‖Mp,φ
≡ sup

Q∈Q

1

φ(Q)

(
1

|Q|

∫
Q

|f(y)|p dy
) 1

p

is finite. Seemingly the requirement φ ∈ Gp is superfluous but it turns out that
this condition is natural; see [1, Theorem 2.5]. Note that many function spaces
can be realized as the special case of Mp,φ(Rn); see [1].

One of the primary aims of this paper is to prove the following decom-
position result on the functions in the generalized Morrey space M1,φ(Rn) for
φ ∈ G1:

Theorem 1.1. Assume that φ, η ∈ G1 satisfy∫ ∞
r

φ(x, s)

η(x, s)s
ds ≤ C

φ(x, r)

η(x, r)
(x ∈ Rn, r > 0). (1)

Assume that {Qj}∞j=1 ⊂ Q(Rn), {aj}∞j=1 ⊂ M1,η(Rn) and {λj}∞j=1 ⊂ [0,∞)
fulfill

‖aj‖M1,η ≤
1

η(`(Qj))
, supp(aj) ⊂ Qj,

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
M1,φ

<∞, (2)

where χE denotes the indicator function of the set E. Then

f ≡
∞∑
j=1

λjaj
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converges absolutely in L1,loc(Rn) and satisfies

‖f‖M1,φ
≤ C

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
M1,φ

. (3)

We shall show that (1) can not be replaced by another condition: φ = η in
general; see Remark 3.2.

The proof of this theorem is not so difficult and it is given in an early
stage of the present paper; see Section 3.1. Unlike the case when p > 1, when
0 < p ≤ 1, Mp,φ(Rn) is a nasty space as the following example shows:

Example 1.2. Suppose that ξ ∈ G1. Denote by M the Hardy–Littlewood
maximal operator.

1. Let η : Rn × (0,∞) → (0,∞) be a function which is independent of the
position x. Define ML logL,η by the following norm (see [33])

‖f‖ML logL,η
≡ sup

Q∈Q

1

η(`(Q))
inf

{
λ>0:

∫
Q

|f(x)|
λ

log

(
e+
|f(x)|
λ

)
dx ≤ |Q|

}
.

Define ξ(x, t) = η(t) for x ∈ Rn and t > 0. In [33, Lemma 3.5], we proved

C−1‖f‖ML logL,η
≤ ‖Mf‖M1,ξ

≤ C‖f‖ML logL,η
(4)

for all f ∈ML logL,η(Rn).

2. Let 0 < p < 1. Let ξ : Rn × (0,∞) → (0,∞) be a function which is
independent of the position x. Assume ξ ∈ G1 = G1 ∩ Gp. The space
Mp,η(Rn) is a little easier to handle thanM1,η(Rn) in view of (4) and (5)
below. In [33, Lemma 3.4], we proved

C−1‖f‖M1,ξ
≤ ‖Mf‖Mp,ξ

≤ C‖f‖M1,ξ
(5)

for all f ∈M1,η(Rn).

From these examples we see that Mp,φ(Rn) with p ∈ (0, 1] is difficult to
handle. Probably, Theorem 1.1 paves the way to deal with such a nasty space.

Another method to handle these nasty spaces to use the grand maximal
operator and define generalized Hardy–Morrey spaces; see (19) for the definition
of the grand maximal operator. Let t > 0 and f ∈ L1(Rn). Then define the
heat semigroup by

et∆f(x) ≡
∫
Rn

1√
(4πt)n

exp

(
−|x− y|

2

4t

)
f(y)dy (x ∈ Rn).

Note that et∆ maps S(Rn) to itself continuously. Using the duality, we naturally
extend et∆f to the case when f ∈ S ′(Rn). Let 0 < p < ∞ and φ ∈ Gp.



132 A. Akbulut et al.

The generalized Hardy–Morrey space HMp,φ(Rn) is the set of all f ∈ S ′(Rn)
satisfying supt>0 |et∆f(·)| ∈ Mp,φ(Rn). We equip HMp,φ(Rn) with the following
norm

‖f‖HMp,φ
≡
∥∥∥∥sup
t>0
|et∆f |

∥∥∥∥
Mp,φ

(f ∈ HMp,φ(Rn)). (6)

It turns out that Mp,φ(Rn) and HMp,φ(Rn) are isomorphic when 1 < p < ∞
and φ ∈ Gp; see Theorem 2.4.

We define dp ≡ n
p
− n for 0 < p ≤ 1. In addition to Theorem 1.1, we shall

prove the following two theorems in the present paper:

Theorem 1.3. Let 0 < p ≤ 1 and d ≥ dp. Let q satisfy

q ∈ [1,∞] ∩ (p,∞]. (7)

Assume that φ ∈ Gp and η ∈ Gq satisfy∫ ∞
r

φ(x, s)

η(x, s)s
ds ≤ C

φ(x, r)

η(x, r)
(8)

for x ∈ Rn and r > 0. Assume in addition that {Qj}∞j=1 ⊂ Q(Rn), {aj}∞j=1 ⊂
Mq,η(Rn) and {λj}∞j=1 ⊂ [0,∞) fulfill∥∥∥∥∥∥

(
∞∑
j=1

(λjχQj)
p

) 1
p

∥∥∥∥∥∥
Mp,φ

<∞

and

‖aj‖Mq,η ≤
1

η(Qj)
, supp(aj) ⊂ Qj,

∫
Qj

xαaj(x) dx = 0 (9)

for all |α| ≤ d. Then f ≡
∑∞

j=1 λjaj converges in S ′(Rn), belongs to HMp,φ(Rn)
and satisfies

‖f‖HMp,φ
≤ C

∥∥∥∥∥∥
(
∞∑
j=1

(λjχQj)
p

) 1
p

∥∥∥∥∥∥
Mp,φ

. (10)

Since η(x, r) ≥ η(x, s) for r > s > 0 and x ∈ Rn, (1), (8) and [24, Proposi-
tion 2.7] imply ∫ ∞

r

φ(x, s)p

η(x, s)ps
ds ≤ C

φ(x, r)p

η(x, r)p
(x ∈ Rn, r > 0) (11)

and ∫ ∞
r

φ(x, s)
ds

s
≤ Cφ(x, r) (x ∈ Rn, r > 0). (12)

We now present an example of the couple of functions φ and η satisfy-
ing (11).
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Example 1.4. If there exist u and v with v > u such that η(x, s) = s−
n
v and

that φ(x, s)s
n
u ≤ φ(x, r)r

n
u for all x ∈ Rn, s > 0 and r > 0 with s ≥ r, then (11)

is satisfied. This fact generalizes the main results in [14].

Theorem 1.3 will refine [19, p. 100 Theorem] in that we can postulate a
weaker integrability condition on aj in Theorem 1.3. We shall take its advantage
in Section 4.

Theorem 1.5. Let L ∈ N∪{0}, 0 < p ≤ 1 and φ ∈ G1. Assume (12). Then for
any f ∈ HMp,φ(Rn), there exists a triplet {λj}∞j=1 ⊂ [0,∞), {Qj}∞j=1 ⊂ Q(Rn)
and {aj}∞j=1 ⊂ L∞(Rn) such that

f =
∞∑
j=1

λjaj (13)

in S ′(Rn), that |aj| ≤ χQj , that
∫
Rn x

αaj(x) dx = 0 for all multi-indices α with
|α| ≤ L and that ∥∥∥∥∥∥

(
∞∑
j=1

(λjχQj)
v

) 1
v

∥∥∥∥∥∥
Mp,φ

≤ Cv‖f‖HMp,φ
(14)

for all v > 0. Here the constant Cv > 0 is independent of f .

Unlike Orlicz spaces and variable exponent Lebesgue spaces, in general we
can take a sequence {fj}∞j=1 of functions such that

f1 ≥ f2 ≥ · · · ≥ fj ≥ fj+1 ≥ · · · → 0, inf
j∈N
‖fj‖Mp,φ

> 0. (15)

For example, when 0 < p < a, the functions fj(x) ≡ χ(j,∞)(|x|)|x|−
n
a , j =

1, 2, . . . belong to Mp,n−np
a

(Rn) and the sequence {fj}∞j=1 satisfies (15). This
makes it more difficult to look for a good dense space of Mp,n−np

a
(Rn). This

difficulty prevents us from mimicking the proof of the decomposition of Hardy
spaces described in [38]. It is not known that HMp,φ(Rn)∩L1,loc(Rn) is dense in
HMp,φ(Rn). It seems that HMp,φ(Rn)∩L1,loc(Rn) is not dense in HMp,φ(Rn)
as the fact that Mp,φ(Rn) ∩ L∞,c(Rn) is not dense in Mp,φ(Rn) implies. Re-
call that in [38], we resorted to density of Hp(Rn) ∩ L1,loc(Rn) to obtain the
atomic decomposition of Hp(Rn). The difficulty will cause a disability; we can
prove Theorem 1.5 only when f ∈ HMp,φ(Rn) ∩ L1,loc(Rn). Using a diagonal
argument, we shall circumvent this problem; see (37) and (38).

Before we go further, let us recall some special cases related to generalized
Morrey spaces.
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Example 1.6. 1. Generalized Morrey spaces can cover L∞(Rn) spaces by
letting φ ≡ 1.

2. [35, Theorem 5.1] Generalized Morrey spaces arise naturally when we
consider the endpoint case of the Sobolev embedding. Let 1 < p <∞ and
0 < λ < n. Consider the norm

‖f‖Mp,λ
= sup

x∈Rn,r>0

(
1

rλ

∫
Q(x,r)

|f(y)|p dy
) 1

p

.

Let α ≡ n−λ
p
∈ (0,∞). Then in [35] we showed that there exists a positive

constant Cp,λ such that∫
B

|f(x)|dx ≤ Cp,λ|B|(1 + |B|)−
1
p log

(
e+

1

|B|

)
‖(1−∆)α/2f‖Mp,λ

(16)

holds for all f ∈ Mp,λ(Rn) with (1 − ∆)
α
2 f ∈ Mp,λ(Rn) and for all

balls B and that log in (16) can not be deleted. See [4, Section 5] and
[24, Proposition 7.3] for more related estimates. Meanwhile in view of the
integral kernel of (1−∆)−

α
2 (see [37]) and the Adams theorem, we have

(1−∆)−
α
2 :Mp,λ(Rn)→Mq,λ(Rn) (17)

is bounded as long as the parameters p, q, λ and α satisfy

1 < p < q <∞, 0 < λ ≤ n,
n− λ
q

=
n− λ
p
− α.

However, if α = n−λ
p

, the number q not being finite, the boundedness as-

sertion (17) is no longer true. Hence (16) can be considered as a substitute
of (17).

A passage to the Hardy type space HX from a given function space X is not
a mere quest to generality. Many people have shown that Hardy spaces Hp(Rn)
(0 < p ≤ ∞) can be more informative than Lebesgue spaces Lp(Rn) when we
discuss the boundedness of some operators. For example, the Riesz transform
is bounded from H1(Rn) to L1(Rn), although they are not bounded on L1(Rn).
One of the earliest real variable definitions of Hardy spaces was based on the
grand maximal operator, which is discussed in [38] and references therein. One
can also give an equivalent definition for Hardy spaces by using the atomic
decomposition. This definition states that any element of Hardy spaces can be
represented as an infinite linear combination of atoms. An atom is a compactly
supported function which enjoys the size condition and the cancellation moment
condition. One of the advantages of the atomic decompositions in Hardy spaces
is that we can prove the boundedness of some operators by verifying some
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estimates only for atoms. So we expect that HX is easier to handle than X
itself. We seek to apply this idea when X =Mp,φ(Rn).

The concept of the atomic decomposition in Hardy spaces can be devel-
oped to other function spaces. Some of these works are on the decomposition
of Hardy–Morrey spaces [12, 19], on the decomposition of Hardy spaces with
variable exponent [28], and on the atomic decomposition of Morrey spaces [14].
See [10] for the martingale Hardy spaces. Motivated by these advantages that
Hardy spaces enjoy, in our current research, we investigate the atomic decompo-
sition for generalized Hardy–Morrey spaces, where we are based on the definition
by means of the grand maximal operator.

There are many attempts of obtaining non-smooth atomic decompositions
by using the grand maximal operator [2,9,11,14,22,23] and reducing the matters
to the Hardy type spaces, where the authors handled Morrey spaces, Orlicz
spaces and variable exponent Lebesgue spaces.

In addition to the notation used in [1], we adopt the following notation:

1. Let 0 < α < n. We define the fractional integral operator Iα by

Iαf(x) ≡
∫
Rn

f(y)

|x− y|n−α
dy

for all suitable functions f on Rn.

2. By C∞c (Rn) we denote the set of all compactly supported functions in
C∞(Rn).

3. Let d ∈ N0. Denote by Pd(Rn) the linear space of polynomials of degree
less than or equal to d.

4. The space L∞,c(Rn) denotes the set of all compactly supported essentially
bounded functions.

5. For an integrable function f , define the Fourier transform and the inverse
Fourier transform by:

Ff(ξ) ≡ (2π)−
n
2

∫
Rn
f(x)e−ix·ξ dx,

F−1f(x) ≡ (2π)−
n
2

∫
Rn
f(ξ)eix·ξ dξ.

Finally, to conclude this section, we briefly describe how we organize the
remaining part of this paper. Sections 2 collects preliminary facts. We prove
the main theorems in Section 3 and apply these main theorems to obtain some
bilinear estimates in Section 4.
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2. Fundamental structure of function spaces

2.1. Structure of generalized Morrey spaces. We start with a quantitative
observation for the norm of Mp,φ(Rn).

Proposition 2.1. 1. Let 0 < p ≤ 1 and φ ∈ Gp. Then there exists a large
integer N such that

(1 + | · |)−N ∈Mp,φ(Rn). (18)

2. Let φ ∈ G1. Then M1,φ(Rn) is continously embedded into S ′(Rn).

Proof. This is a consequence of [1, Proposition 2.6].

2.2. Structure of generalized Hardy–Morrey spaces. The grand maxi-
mal operator characterizes Hardy–Morrey spaces defined by the norm (6). To
formulate the result, we recall the following two fundamental notions.

1. Topologize S(Rn) by norms {pN}N∈N given by

pN(ϕ) ≡
∑
|α|≤N

sup
x∈Rn

(1 + |x|)N |∂αϕ(x)|

for each N ∈ N. Define FN ≡ {ϕ ∈ S(Rn) : pN(ϕ) ≤ 1}.
2. Let f ∈ S ′(Rn). The grand maximal operator Mf is given by

Mf(x) ≡ sup{|t−nψ(t−1·) ∗ f(x)| : t > 0, ψ ∈ FN} (x ∈ Rn), (19)

where we choose and fix a large integer N .

In analogy to [22, Section 3], we can prove the following proposition:

Proposition 2.2. Let 0 < p ≤ 1 and φ ∈ Gp. Suppose that N in (19) is
sufficiently large. Then ‖f‖HMp,φ

∼ ‖Mf‖Mp,φ
for all f ∈ S ′(Rn).

From this proposition, we can use the norm ‖Mf‖Mp,φ
to define the space

Mp,φ(Rn).

Lemma 2.3. Let 0 < p ≤ 1 and φ ∈ Gp. Suppose that N in (19) is sufficiently
large. Then HMp,φ(Rn) is continuously embedded into S ′(Rn).

Proof. Let N be a fixed large integer. Then there exists a constant C > 0
such that if |y| ≤ 1 and ϕ ∈ FN , then C−1ϕ(· − y) ∈ FN . Thus, |〈f, ϕ〉| .
inf |y|≤1Mf(y) for all ϕ ∈ FN . This implies |〈f, ϕ〉| . ‖f‖HMp,φ

, as was to be
shown.

Going through the same argument as [22, Lemma 3.1], we obtain the fol-
lowing theorem, whose proof will be omitted.



Generalized Hardy–Morrey Spaces 137

Theorem 2.4. Let 1 < p < ∞ and φ ∈ Gp. Suppose that N in (19) is suffi-
ciently large. Then HMp,φ(Rn) and Mp,φ(Rn) are isomorphic and the norms
are equivalent.

Remark 2.5. When 1 < p < ∞ and φ ∈ Gp, M is bounded on Mp,φ(Rn)
thanks to [1, Proposition 3.5]. Also, similar to [9], one can show thatMp,φ(Rn)
is realized as a dual space of a Banach space. By combining these facts, one
can show the following fact for f ∈ S ′(Rn). The distribution f is represented
by a function in Mp,φ(Rn) if and only if Mf ∈Mp,φ(Rn).

3. Atomic decomposition

We return to the case where ϕ is independent of x and we prove the remaining
theorems. Write

τ ≡ n+ d+ 1

n
(20)

here and below, so that τp > 1 as long as d ≥ dp.

3.1. Proof of Theorem 1.1. We use the following geometric observation:
When we are given a dyadic cube R = 2−νm+ [0, 2−ν)n for m ∈ Zn and ν ∈ Z,
we let 5R ≡ 2−νm+ [−21−ν , 3× 2−ν)n.

Lemma 3.1. Let Q be a cube. Then there exists a dyadic cube R such that
Q ⊂ 5R and that `(Q) ≥ `(R). In particular, there exist 5n dyadic cubes
R1, R2, . . . , R5n such that

`(Q) ≥ `(R1) = `(R2) = · · · = `(R5n), χQ ≤
5n∑
j=1

χRj ≤ χ5R.

Proof. The proof is a simple observation and we omit the details.

The first step is a setup: Invoking [24, Proposition 2.7], we have∫ ∞
r

√
φ(x, s)

s
ds .

√
φ(x, r).

Thus, according to [1, Corollary 4.5],

‖MF‖M2,
√
φ(l2) . ‖F‖M2,

√
φ(l2). (21)

Next, we do some reductions. Observe that the norm will be equivalent if we
take the supremum over all dyadic cubes. Thus, we need to show

1

φ(Q)|Q|

∫
Q

|f(y)| dy .

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
M1,φ

(22)
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for any dyadic cube Q. For each j, we consider dyadic cubes Rj
1, R

j
2, . . . , R

j
5n

appearing in Lemma 3.1 with Q = Qj. Write

bjk ≡ χRjk
aj

for k = 1, 2, . . . , 5n and j = 1, 2, . . .. Observe that χRjk
. (MχQj)

2 and also

that ‖|f |u‖M p
u ,φ

u
= (‖f‖Mp,φ

)u for u > 0. Thus

‖bjk‖M1,η≤
1

η(`(Rj
k))
, supp(bjk)⊂R

j
k,

∥∥∥∥∥
∞∑
j=1

λjχRjk

∥∥∥∥∥
M1,φ

.

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
M1,φ

<∞

according to (2) and (21). This justifies that we may assume Qj dyadic. We do
another reduction: by replacing aj with |aj| if necessary, we may assume that
each aj is non-negative.

Let us set J1 ≡ {j ∈ N : Qj ⊂ Q} and J2 ≡ {j ∈ N : Qj ⊃ Q}. Using the
sets J1 and J2, we shall show

1

φ(Q)|Q|

∫
Q

∑
j∈J1

λjaj(y) dy .

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
M1,φ

(23)

and
1

φ(Q)|Q|

∫
Q

∑
j∈J2

λjaj(y) dy .

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
M1,φ

. (24)

Once we prove (23) and (24), then we will have proved (22).
To prove (23), we observe 1

|Qj |

∫
Qj
aj(x) dx ≤ η(Qj)‖aj‖M1,η ≤ 1 from the

definition of the norm. Hence

1

φ(Q)|Q|

∫
Q

∑
j∈J1

λjaj(y) dy =
1

φ(Q)|Q|

∫
Q

∑
j∈J1

λj

(
1

|Qj|

∫
Qj

aj(y) dy

)
χQj(z) dz

.
1

φ(Q)|Q|

∫
Q

∑
j∈J1

λjχQj(z) dz

≤

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
M1,φ

.

To prove (24), we note that there exists an increasing (possibly finite) se-
quence of dyadic cubes R1, R2, . . . such that {Qj : j ∈ J2} = {R1, R2, . . .}. By
using this sequence and (1), we have∫

Q

∑
j∈J2

λjaj(y)

φ(Q)|Q|
dy ≤

∞∑
m=1

λm
η(Q)φ(Rm)

φ(Q)η(Rm)
‖χRm‖M1,φ

.

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
M1,φ

,
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as was to be shown.
We remark that the conditions on the parameters and the functions φ and η

are essential as the following facts show.

Remark 3.2. 1. It may be interesting to compare Theorem 1.1 in the pre-
sent paper with [14, Theorem 1.1]. One can state [14, Theorem 1.1] in
words ofMp,λ(Rn) as follows: Suppose that the parameters q, t, λ, ρ satisfy

1 < q <∞, 1 < t <∞, q < t,
q

n− λ
<

t

n− ρ
.

Assume that {Qj}∞j=1 ⊂ Q(Rn), {aj}∞j=1 ⊂Mt,ρ(Rn) and {λj}∞j=1 ⊂ [0,∞)
fulfill

‖aj‖Mt,ρ ≤ |Qj|
n−ρ
nt , supp(aj) ⊂ Qj,

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
Mq,λ

<∞. (25)

Then f ≡
∑∞

j=1 λjaj converges in S ′(Rn) ∩ Lq,loc(Rn) and satisfies

‖f‖Mq,λ
.

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
Mq,λ

. (26)

An example in [31, Section 4] shows that we can not let q = t. Meanwhile,
when q = 1, Theorem 1.1 shows that we can take t = 1.

2. Let n = 1 and consider X = M1, 1
2
(R) by observing that ϕ(t) = |t|− 1

2

belongs to X. Define
fj(t) = t+ 3 · 4j

for t ∈ R. Let E0 = [0, 1] and define inductively Ej by

Ej+1 ≡ Ej ∪ fj(Ej), j = 0, 1, 2, . . . . (27)

Observe that
1 ≤ ‖χEj‖X ≤ C0 (28)

for some constant C0 > 1. Thus, aj = 2j

C0
χEj satisfies the requirement of

Theorem 1.1. Note that∥∥∥∥∥
j∑

k=1

2−kχ[0,4k]

∥∥∥∥∥
X

. ‖ϕ‖X ∼ 1 (29)

according to [31, (4.8)] but that
∥∥∥∑j

k=12−kak

∥∥∥
X
≥
∫ 1

0

∑j
k=12−kak(t) dt=

j
C0
.

This implies that we can not assume φ = η in Theorem 1.1.
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3.2. Proof of Theorem 1.3. We start with collecting an auxiliary estimate.

Lemma 3.3. Let p, q, η, aj, Qj (j = 1, 2, . . .) be the same as Theorem 1.3. Then

‖Maj‖Mp,η .
1

η(Qj)
. (30)

Proof. In view of (7) we have to consider two cases: p < 1 and p = 1. When
p < 1, we use the boundedness of the Hardy–Littlewood maximal operator
M :M1,η(Rn) →Mp,η(Rn); see (5). When p = 1, this can be replaced by the
Mq,η(Rn)-boundedness of M , namely, by using the monotonicity of the Morrey
norm,

‖Maj‖Mp,η ≤ ‖Maj‖Mq,η . ‖aj‖Mq,η (31)

for all f ∈Mq,η(Rn). Using (5), (9) and (31), we obtain (30).

Once we obtain (30), we can go through a similar argument as we did for
the proof of [28, Theorem 1.1] using [28, Lemma 4.1].

3.3. Proof of Theorem 1.5.

Proof of Theorem 1.5 when f ∈ L1,loc(Rn). We go through a similar argument
as we did in [22, Theorem 4.5]. In particular, [22, (4.19)] corresponds to [29,
Lemma 4.4]. In [29, Lemma 4.4], we did not assume that φ does not depend on
x ∈ Rn but the same argument works.

To overcome the shortcoming in the paper [14, Theorem 1.7], we use the
following observation:

Remark 3.4. Let u > 1. Let f ∈ HMp,φ(Rn)∩Lu(Rn). If one reexamines the
above proof, then one learns that the convergence of (13) takes place in Lu(Rn).
See [22, Remark 4.12] for a similar assertion.

Proof of Theorem 1.5 for general cases. Let j ∈ N and gj be the good part
obtained from the “Calderón–Zygmund” decomposition as we did in the proof
of [22, Theorem 4.5]. Note that gj is a locally integrable function and it satisfies
‖gj‖HMp,φ

. ‖f‖HMp,φ
; see [38, pp. 102–105, pp. 110–111]. Therefore, applying

the above paragraph, we see that each gj has a decomposition; there exist a
collection {Ql,j}∞l=1 of cubes, {al,j}∞l=1 ⊂ L∞(Rn), and {λl,j}∞l=1 ⊂ [0,∞) such
that

gj =
∞∑
l=1

λl,jal,j (32)

unconditionally in S ′(Rn), that |al,j| ≤ χQl,j , that
∫
Rn al,j(x)xα dx = 0 for all

|α| ≤ L and that∥∥∥∥∥∥
(
∞∑
l=1

(λl,jχQl,j)
v

)1
v

∥∥∥∥∥∥
Mp,φ

≤ Cv‖gj‖HMp,φ
≤ Cv‖f‖HMp,φ

(j = 1, 2, . . .). (33)
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We may assume that each Ql,j is realized as 5Q for some dyadic cube Q ac-
cording to Lemma 3.1. Since v ≤ 1, by using av + bv ≥ (a + b)v for a, b ≥ 0
and taking into account the case when Ql,j = Ql′,j′ for some (l, j) 6= (l′, j′), we
have a decomposition there exist a family {aQ,j}Q∈D ⊂ L∞(Rn), and a sequence
{λQ,j}Q∈D ⊂ [0,∞) such that

gj =
∑
Q∈D

λQ,jaQ,j (34)

in S ′(Rn), that
|aQ,j| ≤ χ5Q, (35)

that
∫
Rn aQ,j(x)xα dx = 0 for all |α| ≤ L and that∥∥∥∥∥∥

(∑
Q∈D

(λQ,jχQ)v

)1
v

∥∥∥∥∥∥
Mp,φ

≤ Cv‖f‖HMp,φ
(j = 1, 2, . . .). (36)

Fix Q ∈ D. Since {aQ,j}∞j=1 is a bounded sequence in L∞(Rn) from (35), and
{λQ,j}∞j=1 ⊂ [0,∞) is a bounded sequence in R from (36), we can choose subse-
quences {aQ,jk}∞k=1 and {λQ,jk}∞k=1 ⊂ [0,∞) so that {aQ,jk}∞k=1 and {λQ,jk}∞k=1 ⊂
[0,∞) are convergent to aQ and λQ respectively, where the convergence of
{aQ,jk}∞k=1 takes place in the weak-* topology of L∞(Rn).

Let us set
g ≡

∑
Q∈D

λQaQ. (37)

Then according to Theorem 1.3, we have g ∈ HMp,φ(Rn). By the Fatou lemma,
we can conclude the proof once we show that

f = g. (38)

To this end, we take a test function ϕ ∈ S(Rn). Observe that gJ tends to f
in S ′(Rn) as J → ∞; see [29, Lemma 5.7] for the case where φ is independent
of x. The same proof again works in our current setting. If we insert (32) to gJ ,
we obtain

〈f, ϕ〉 = lim
J→∞
〈gJ , ϕ〉 = lim

J→∞

∑
Q∈D

λQ,J〈aQ,J , ϕ〉.

If we can change the order of limJ→∞ and
∑

Q∈D in the most right-hand side of
the above formula, we have

〈f, ϕ〉= lim
J→∞

∑
Q∈D

λQ,J〈aQ,J , ϕ〉=
∑
Q∈D

lim
J→∞

λQ,J〈aQ,J , ϕ〉=
∑
Q∈D

λQ〈aQ, ϕ〉=〈g, ϕ〉,

showing f = g. Thus, we are left with the task of justifying the change of the
order of limJ→∞ and

∑
Q∈D . Let ϕ† ∈ C∞c (Rn) satisfy χB(1) ≤ ϕ† ≤ χB(2). Since
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ϕ ∈ S(Rn), by decomposing ϕ = ϕϕ†(R−1·) + ϕ(1 − ϕ†(R−1·)), and using the
fact that HMp,φ(Rn) (defined via the grand maximal operator) is continuously
embedded in S ′(Rn) as well as Theorem 1.3, we see that the contribution of the
function ϕ(1− ϕ†(R−1·)) can be made as small as we wish. In fact,∑

Q∈D

|λQ,J〈aQ,J , ϕ(1− ϕ†(R−1·))〉| = O(R−1),

where the implicit constants do not depend on J . This implies that we may
assume that ϕ is supported in a compact set K.

Let A ∈ N be fixed. Suppose that K is contained in Q(2N) for some N > 0.
Let us set

I ≡ sup
J

∑
Q∈D,Q∩K 6=∅,`(Q)≤2−A

|λQ,J〈aQ,J , ϕ〉|,

II ≡ sup
J

∑
Q∈D,Q∩K 6=∅,2−A<`(Q)≤2A

|λQ,J〈aQ,J − aQ, ϕ〉|,

III ≡ sup
J

∑
Q∈D,Q∩K 6=∅,2A<`(Q)

|λQ,J〈aQ,J , ϕ〉|,

where A > N . Then

sup
J

∑
Q∈D

|λQ,J〈aQ,J , ϕ〉| ≤ 2I + II + 2III. (39)

For l ∈ Z, denote by Dl the set of all dyadic cubes Q such that |Q| = 2−ln. As
for I, we use

|〈aQ,J , ϕ〉| . `(Q)n+L+1 (Q ∈ D), (40)

which is a consequence of [8, Appendix]. If l ≥ A, we deduce from (14)

|λQ,J |
φ(0, 2−l)

≤ 2
ln
p

φ(0, 2−l)

∥∥∥∥∥∥
∑
Q∈Dl

λQ,JχQ

∥∥∥∥∥∥
Lp(Q)

. 2
ln
p ‖f‖HMp,φ

. (41)

Hence assuming L large enough and inserting (41) into the definition of I, we
have

I .
∑

Q∈D,Q∩K 6=∅,`(Q)≤2−A

φ(0, `(Q)))`(Q)n+L+1 = O
(

2−A(n+L+1−n
p

)
)

(42)

as A→∞.
Next we estimate III. In view of (12), we have

φ(0, 2A)→ 0 (A→∞) (43)
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Assuming A > N , we learn that [0, 2A]n is the only cube in D−A that inter-
sects K. Since 0 < p ≤ 1, we can refine (41) to obtain

∑
Q∈D,Q∩K 6=∅,`(Q)>2A

|λQ,J | ≤

(
1

2An

∫
[0,2A]n

∣∣∣∣∣∑
Q∈D

|λQ,J |χQ(x)

∣∣∣∣∣
p

dx

) 1
p

≤ φ([0, 2A]n)

∥∥∥∥∥∑
Q∈D

|λQ,J |χQ

∥∥∥∥∥
Mp,φ

.

Recall also that HMp,φ(Rn) is continuously embedded into S ′(Rn), so that
|〈aQ,J , ϕ〉| . 1 (Q ∈ D). As a consequence,

III .
∑

Q∈D,Q∩K 6=∅,`(Q)>2A

|λQ,J | . φ(0, 2A)

∥∥∥∥∥∑
Q∈D

|λQ,J |χQ

∥∥∥∥∥
Mp,φ

,

which implies
III . φ(0, 2A)‖f‖HMp,φ

. (44)

In view of (42)–(44), we see that I and III contribute little to the sum (39).
With this in mind we use the weak-* convergence to conclude that the finite
sum II converges to 0, which yields (38).

Finally, we state a corollary to conclude this section.

Corollary 3.5. If φ ∈ G1 satisfies (12), then HM1,φ(Rn) is embedded into
M1,φ(Rn).

Proof. Let f ∈ HM1,φ(Rn). We apply HM1,φ(Rn) to decompose f . Under the
notation of Theorem 1.5, we have

∞∑
j=1

λj|aj| ≤
∞∑
j=1

λjχQj .

Inequality (14) with v = 1 guarantees that the right-hand side belongs to
M1,φ(Rn). Hence F (x) =

∑∞
j=1 λjaj(x) converges for almost all x ∈ Rn. Ob-

serve also∫
Rn
|κ(x)|

(
∞∑
j=1

λj|aj(x)|

)
dx .

∫
Rn

(1 + |x|)−2n−1

(
∞∑
j=1

λj|aj(x)|

)
dx

.
∞∑
l=1

(1 + l)−2n−1

∫
|x|≤l

∞∑
j=1

λj|aj(x)| dx,
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where the implicit constant depend on κ. By the definition of the norm, we
have∫
Rn
|κ(x)|

(
∞∑
j=1

λj|aj(x)|

)
dx.

∞∑
l=1

φ(l)(1+l)−
2n
p
−1

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
M1,φ

.

∥∥∥∥∥
∞∑
j=1

λjχQj

∥∥∥∥∥
M1,φ

.

Thus, f is represented by an L1,loc(Rn)-function F and belongs toM1,φ(Rn).

With the proof above in mind, we point out a mistake in our earlier result
[14, Theorem 1.3].

Remark 3.6. The function Aj,k in [14, p. 162] is not in L∞(Rn) unless f ∈
L1,loc(Rn). Thus, the proof of [14, Theorem 1.3] is valid when f ∈ HMp

q(Rn)∩
L1(Rn) for example, where HMp

q(Rn) = HMq,φ(Rn) with φ(t) = t−
n
p . The gap

was closed by the technique described above.

3.4. Applications to the boundedness of the singular integral opera-
tors. Going through the same argument as [22, Theorem 5.5] and [23, Theo-
rem 5.5], we can prove the following theorem:

Theorem 3.7. Let 0 < p ≤ 1. Let φ ∈ Gp satisfy (12). Let k ∈ S(Rn). Write

Am ≡ sup
x∈Rn
|x|n+m|∇mk(x)| (m ∈ N ∪ {0}).

Define a convolution operator T by

Tf(x) ≡ k ∗ f(x) (f ∈ S ′(Rn)).

Then, T , restricted to HMp,φ(Rn), is an HMp,φ(Rn)-bounded operator and the
norm depends only on ‖Fk‖L∞ and a finite number of collections A1, A2, . . . , AN
with N depending only on φ.

Once Theorem 3.7 is proved, we can obtain the Littlewood-Paley decompo-
sition in the same way as [22, Theorem 5.7] and [23, Theorem 5.10].

Theorem 3.8. Let 0 < p ≤ 1. Let φ ∈ Gp satisfy (12). Let ϕ ∈ S(Rn) be a
function which is supported on B(0, 4) \B(0, 1

4
) and satisfies

∞∑
j=−∞

|ϕj(ξ)|2 > 0

for ξ ∈ Rn\{0}. Then the following norm is an equivalent norm of HMp,φ(Rn):

‖f‖Ė0p,φ,2 ≡

∥∥∥∥∥∥
(

∞∑
j=−∞

|ϕj(D)f |2
) 1

2

∥∥∥∥∥∥
Mp,φ

, f ∈ S ′(Rn). (45)

Once we obtain Theorem 3.8, we can prove the wavelet decomposition and
the atomic decomposition as in [27, 34] or develop a theory of wavelets as we
did in [15–18,27].



Generalized Hardy–Morrey Spaces 145

4. Applications to the Olsen inequality

This is a bilinear estimate of Iα, which is nowadays called the Olsen inequal-
ity [25]. It is the inequality of the form

‖g · Iαf‖Z . ‖f‖X‖g‖Y ,

where X, Y, Z are suitable quasi-Banach spaces. There is a vast amount of lit-
eratures on Olsen inequalities; see [3,13,31–33,36,39–42] for theoretical aspects
and [5–7,26] for applications to PDEs.

Here we will prove the following theorem:

Theorem 4.1. Let 0 < p ≤ 1 and 0 < α < n and define q by

1

p
− 1

q
=

α

n− λ
.

Then

‖Iαf‖HMq,λ
. ‖f‖HMp,λ

for all f ∈ HMp,λ(Rn). In particular, if q > 1, then

‖Iαf‖Mq,λ
. ‖f‖HMp,λ

for all f ∈ HMp,λ(Rn).

Proof. Argue as we did in [30] using Theorems 2.4 and 3.8.

Theorem 4.2. Let 0 < p ≤ 1, 0 < λ < n and 0 < α < n and define q by

1

p
− 1

q
=

α

n− λ
.

Assume that q ≥ 1. Assume in addition that

1 < u <
n

α
.

Let g ∈ M1,n−α(Rn). Then Iαf ∈ HMq,λ(Rn) and then there exists a constant
C > 0 such that

‖g · Iαf‖HMp,λ
. ‖g‖M1,n−α · ‖f‖HMp,λ

for all f ∈HMp,λ(Rn)∩Lu(Rn), where the implicit constant is independent of u.
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Proof. Expand f according to Theorem 1.5. As we have noticed in Remark 3.4,
the convergence of (13) takes place in Lu(Rn). Thus,

Iαf =
∞∑
j=1

λjIαaj, (46)

since Iα is bounded from Lu(Rn) to Lv(Rn) according to the Hardy–Littlewood–
Sobolev theorem, where

1

v
=

1

u
− α

n
.

Once we obtain (46), we can go through a similar argument as we did in
[14, Theorem 1.7].

We conclude this section by giving a remedy of the mistake in the proof of
[14, Theorem 1.7].

Remark 4.3. The shortcoming in the proof of [14, Theorem 1.7] is that there
is no guarantee that (46) is true under the condition f ∈ Mp0

p (Rn), where
Mp0

p (Rn) is the Morrey space in [14], Despite the mistake made in the proof
of [14, Theorem 1.7], its conclusion is correct. In fact, one can assume that
f ∈ L∞,c(Rn) due to the Fatou property of Morrey spaces, since the integral
kernel of Iα is positive and Mp0

p (Rn) is solid in the sense that |f | ∈ Mp0
p (Rn)

whenever f ∈ Mp0
p (Rn). Therefore, thanks to Remark 3.4 and the Hardy–

Littlewood–Sobolev theorem, one still has (46).
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