
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal of Analysis and its Applications
Volume 36 (2017), 151–157
DOI: 10.4171/ZAA/1583

Coproximinality for Quotient Spaces

T. S. S. R. K. Rao

Abstract. In this paper we study the classical notion of coproximinality, for quotient
spaces of Banach spaces. We provide a partial solution to the three space problem,
analogous to a classical result of Cheney and Wulbert, by showing that for Z⊂Y ⊂X,
coproximinality of Z in X and that of Y/Z in X/Z implies the coproximinality of Y
in X, when Z is an M -ideal in X. For the space C(K) of continuous functions on
a compact extremally disconnected set K we derive the same conclusion under the
assumption that Z is an M -ideal in Y .
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1. Introduction

Let X be a real Banach space. We recall from [3, 11] that a closed subspace
Y ⊂ X is said to be coproximinal, if for any x ∈ X, there is a y0 ∈ Y such that
for all y ∈ Y , ‖y − y0‖ ≤ ‖y − x‖ . y0 is called a best coapproximation for x
in Y . It is easy to see that if P : X → Y is a linear projection of norm one,
onto Y , then Y is coproximinal in X. Such subspaces are called constrained
subspaces. Also for closed subspaces Z ⊂ Y ⊂ X, if Z is coproximinal in X,
then it is coproximinal in Y .

When a subspace is not the range of a projection of norm one, one studies
geometric properties that mimic the effect of being the range of a projection of
norm one. Among such interesting properties studied (also for any subset) in
the literature are those of the notion of a sun, co-sun and the notion of best
coapproximation. See [5, 11, 13]. Recently the latter condition also received
attention in the work of Lewicki and Trombetta [7]. Some of these geometric
conditions exhibit properties similar to the well known notion of proximinality,

T. S. S. R. K. Rao: Theoretical Statistics and Mathematics Unit, Indian Statistical
Institute, R. V. College P.O., Bangalore 560059, India;
srin@fulbrightmail.org; tss@isibang.ac.in



152 T. S. S. R. K. Rao

i.e., finding a best approximation in Y , for all x ∈ X (i.e., d(x, Y ) = ‖x − y0‖
for y0 ∈ Y ).

In this paper we first show that for closed subspaces Z ⊂ Y ⊂ X if Y is
coproximinal in X, then the quotient space Y/Z is a coproximinal subspace of
X/Z. We give an application of our result to get new examples of coproximinal
subspaces of spaces of X-valued Bochner integrable function L1(µ,X).

A classical result of Cheney and Wulbert, [1], says that Z is proximinal
in X and Y/Z is proximinal in X/Z implies that Y is proximinal in X. We
consider the analogous open question, when do the conditions, Z is coproximinal
in X and the quotient space Y/Z is coproximinal in X/Z, imply that Y is
coproximinal in X?

Let `1 denote the space of absolutely summable series. We consider it as
a dual of c0, the space of convergent sequences. We give an example of weak∗-
closed subspaces, Z ⊂ Z ′ ⊂ `1 such that Z is coproximinal in `1, Z ′ is a
hyperplane in `1 and Z ′ is not coproximinal in `1.

Positive solutions to the 3-space problem provide a suitable technique for
showing the coproximinality of a subspace Y ⊂ X, by exhibiting an appropriate
closed subspace Z ⊂ Y ⊂ X such that Z is coproximinal in X and Y/Z is
coproximinal in X/Z and lift the solution to Y .

To give a partial positive answer we next consider a notion stronger than
being a proximinal subspace. We recall from [4] that a closed subspace Y ⊂ X
is an M -ideal if there is a linear projection P : X∗ → X∗ such that ker(P ) = Y ⊥

and ‖x∗‖ = ‖P (x∗)‖ + ‖x∗ − P (x∗)‖ for all x∗ ∈ X∗. See Chapter I of [4] for
several examples from classical analysis, of subspaces that are M -ideals and
their geometric properties.

We show that for an M -ideal Z ⊂ X, for a closed subspace Y with Z ⊂
Y ⊂ X, the conditions Z is coproximinal in X and Y/Z is coproximinal in X/Z
imply that Y is coproximinal in X.

We improve this result in the case of C(K), the space of real-valued continu-
ous functions on a compact extremally disconnected space K (see [6, Section 11]
for properties of these spaces, and also [10]) by assuming Z to be an M -ideal
only in Y .

These questions are also closely related to finding best coapproximation in
sums of closed subspaces whose sum is closed, analogous to the corresponding
problem in best approximations solved in [8,9]. It is not known if or under what
conditions, for a finite dimensional subspace F ⊂ X that is coproximinal and for
a closed coproximinal subspace Y ⊂ X, the sum F + Y is again coproximinal
in X? Our investigation also has some bearing on this question. We give
a positive solution in the space C(K), where K is compact and extremally
disconnected and the sum is an `∞-direct sum.
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2. Main Results

We first show that coproximinality is preserved by quotients.

Proposition 2.1. Let X be a Banach space and let Z ⊂ Y ⊂ X be closed
subspaces. If Y is coproximinal in X, then Y/Z is coproximinal in X/Z.

Proof. Let π : X → X/Z be the quotient map. Let π(x0) ∈ X/Z. Since Y is
coproximinal in X, let y0 ∈ Y be such that ‖y − y0‖ ≤ ‖y − x0‖ for all y ∈ Y .
For y ∈ Y ,

‖π(y)− π(y0)‖ = inf{‖y − y0 − z‖ : z ∈ Z}
= inf{‖y − z − y0‖ : z ∈ Z}
≤ inf{‖y − z − x0‖ : z ∈ Z}
= ‖π(y)− π(x0)‖.

Thus Y/Z is coproximinal in X/Z.

Let (Ω,A, µ) be a measure space, where µ is a positive measure. Let
L1(µ,X) denote the space of X-valued Bochner integrable functions, equipped
with the norm, ‖f‖1 =

∫
Ω
‖f‖ dµ. Let Y ⊂ X be a closed coproximinal sub-

space, it is still an open problem if L1(µ, Y ) is always a coproximinal subspace
of L1(µ,X). As an application of the above proposition we have the following
result. When the measure space is complete, it was recently proved in [12, The-
orem 2] that if Y ⊂ X is a closed coproximinal subspace and Y is isometric
to a constrained subspace of a weakly compactly generated dual space, then
L1(µ, Y ) is a coproximinal subspace of L1(µ,X).

Corollary 2.2. Let (Ω,A, µ) be a measure space and let Y ⊂ X be a closed sub-
space such that L1(µ, Y ) is a coproximinal subspace of L1(µ, Y ). Then for any
closed subspace Z ⊂ Y , L1(µ, Y/Z) is a coproximinal subspace of L1(µ,X/Z).

Proof. Consider the inclusion L1(µ, Z) ⊂ L1(µ, Y ) ⊂ L1(µ,X). By the above
proposition, we have that L1(µ, Y )/L1(µ, Z) is a coproximinal subspace of
L1(µ,X)/L1(µ, Z). But we have from [2, Chapter VIII, Propositions 11, 12],
that L1(µ,X/Z) is isometric to L1(µ,X)/L1(µ, Z) and it is easy to see that
the isometry maps L1(µ, Y/Z) onto L1(µ, Y )/L1(µ, Z). Hence the conclusion
follows.

Corollary 2.3. Let Z ⊂ X be a closed subspace and let W ⊂ X/Z be a closed
subspace such that π−1(W ) is a coproximinal subspace of X. Then W is a
coproximinal subspace of X/Z.

Proof. Let Y = π−1(W ). Clearly Z ⊂ Y ⊂ X and Y is a coproximinal subspace
of X. Thus by Proposition 1, Y/Z = W is a coproximinal subspace of X/Z.
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Another interpretation of the result of Cheney and Wulbert is to find con-
ditions for a closed proximinal subspace Z ⊂ X, under which any closed sub-
space Y with Z ⊂ Y ⊂ X, is again proximinal. We first note that for a
coproximinal subspace Z ⊂ X with dim(X/Z) ≥ 3, if for all closed subspaces
Z ⊂ Y ⊂ X, Y/Z is coproximinal in X/Z, then X/Z is isometric to a Hilbert
space. In the following lemma we use the correspondence between closed sub-
spaces of X/Z and closed subspaces Y with Z ⊂ Y ⊂ X.

Lemma 2.4. Let Z ⊂ X be a closed coproximinal subspace such that

dim(X/Z) ≥ 3.

Suppose for all closed subspace Z⊂Y ⊂X, such that Y is a hyperplane in X, Y
is also coproximinal in X. Then X/Z is isometric to a Hilbert space.

Proof. Since dim(X/Z) ≥ 3, in view of the characterization in [3], we need to
show that for any x∗ ∈ (X/Z)∗ = Z⊥, ker(x∗) is coproximinal in X/Z. But now
since Z ⊂ ker(x∗) ⊂ X, by hypothesis, ker(x∗) is coproximinal in X and hence
by Proposition 1, ker(x∗)/Z is coproximinal in X/Z. We note that ker(x∗)/Z
is precisely ker(x∗) in X/Z.

Since any separable Banach space is isometric to a quotient of the sequence
space `1, it is an appropriate domain for obtaining counterexamples related to
quotient space questions. In what follows we use [7, Theorem 2.4] that shows
that any coproximinal subspace of `1 is the range of a linear projection of norm
one. We identify `1 as the dual of the space c0 of sequences converging to 0.

Example 2.5. Let Z ⊂ `1 be a closed coproximinal subspace of codimension
greater than 3. Suppose for all closed subspaces Z ⊂ Y ⊂ `1, such that Y is a
hyperplane in `1, Y is coproximinal in `1. Then by Lemma 3, `1/Z is isometric
to a Hilbert space of dimension greater than 3. By [7, Theorem 2.4], Z is the
range of a projection of norm one in `1. Since (`1)∗ = c∗∗0 = `∞, using the fact
that c0 is an M -ideal in its bidual `∞, it follows from Proposition IV.1.5 and
Proposition IV.1.10 from [4, Propositions IV.1.5, IV.1.10] that Z is a weak∗-
closed subspace of `1. Thus Z is a proximinal subspace. Also there is a closed
subspace M ⊂ c0 such that Z = M⊥. Now M∗ = `1/Z, so that M is also
isometric to a Hilbert space of dimension greater than 3. It is well known that
any extreme point of a dual unit ball of a subspace has an extension to an
extreme point of the dual unit ball of the space itself. Since M∗ is a Hilbert
space, any unit vector is an extreme point of the unit ball. Since c∗0 = `1 has
only countably many extreme points in its unit ball, we get a contradiction.
This contradiction shows that for a closed subspace Y with Z ⊂ Y ⊂ `1, Y fails
to be coproximinal in `1.

By choosing the above Z to be a subspace of finite codimension bigger
than 3, as Z is proximinal, we have by Cheney and Wulbert’s result that Y is
a proximinal subspace of `1.
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We next prove a version of Cheney and Wulbert’s theorem for coproxim-
inality. We note that for Z ⊂ Y ⊂ X, if Z is coproximinal in X then it is
also coproximinal in Y . Also being coproximinal is a transitive property. We
note that in the space of convergent sequences c, c0 ⊂ c is an M -ideal but the
constant sequence 1 ∈ c, does not have any best coapproximation in c0.

Theorem 2.6. Let Z⊂Y ⊂X. Suppose Z is an M-ideal in X. If Z is coprox-
iminal in X and Y/Z is coproximinal in X/Z, then Y is coproximinal in X.

Proof. Let x0 ∈ X and x0 /∈ Z. Since Z is coproximinal in X, let z0 ∈ Z
be such that ‖z − z0‖ ≤ ‖z − x0‖ for all z ∈ Z. In particular ‖z0‖ ≤ ‖x0‖.
Define P : span{x0, Z} → Z by P (αx0 + z) = αz0 + z for any z ∈ Z and
scalar α. It is easy to see that P is a linear projection onto Z. For α 6= 0,
‖αz0 + z‖ = |α|‖ z

α
+ z0‖ ≤ |α|‖ zα + x0‖ = ‖αx0 + z‖. Thus ‖P‖ = 1.

Now for Z ⊂ span{x0, Z} ⊂ X, as Z is an M -ideal in X, by [4, Proposition
I.1.17] we get that Z is an M -ideal in span{x0, Z}. Since P : span{x0, Z} → Z
is a projection of norm one, by [4, Corollary I.1.3] we get that Z is an
M -summand in span{x0, Z}, i.e., ‖αx0 +z‖ = max{|α|‖x0‖, ‖z‖} for any z ∈ Z
and scalar α.

Thus d(x0, Z) = ‖x0‖ = max{‖x0‖, ‖z0‖} and it is easy to see that the
closed ball B(z0, d(x0, Z)) in Z, is the set of best approximations in Z to x0. It
now follows from [4, Proposition II.3.2] that there is a closed subspace Z ′ ⊂ X
such that X = Z ⊕∞ Z ′ (`∞-direct sum).

Since Z ⊂ Y , we have that Y = Z ⊕∞ (Z ′ ∩ Y ). Therefore by hypothesis,
under canonical isometries, (Z ′ ∩ Y ) = Y/Z is a coproximinal subspace of
Z ′ = X/Z.

Now for any r0 = s0 + t0 for s0 ∈ Z and t0 ∈ Z ′, by the coproximinality
of (Z ′ ∩ Y ) in Z ′, there is a t′0 ∈ (Y ∩ Z ′) such that ‖t − t′0‖ ≤ ‖t − t0‖ for all
t ∈ (Z ′ ∩ Y ). Let s ∈ Z and t ∈ (Z ′ ∩ Y ).

‖(s+t)−(s0+t
′
0)‖=max{‖s−s0‖, ‖t−t′0‖}≤max{‖s−s0‖, ‖t−t0‖}=‖(s+t)−r0‖.

Thus Y is coproximinal in X.

Remark 2.7. We do not know if the above theorem is true if one only assumes
that Z is an M -ideal in Y . In this case, as Z is also coproximinal in Y (since
Z is coproximinal in X), one again has that Y = Z ⊕∞ Z ′ for some closed
subspace Z ′ ⊂ Y . Now consider the canonical isometry, z′ → π(z′) of Z ′ with
Y/Z. Let x0 ∈ X. Since Y/Z is coproximinal in X/Z, let y0 ∈ Y be such that
‖π(y−y0)‖ ≤ ‖π(y−x0)‖ for all y ∈ Y . Let y0 = z0 +z′0 for z0 ∈ Z and z′0 ∈ Z ′.
Now for any r ∈ Z ′, ‖r− z′0‖ = ‖π(r− z′0)‖ ≤ ‖π(r− x0)‖ ≤ ‖r− x0‖. Thus Z ′

is also coproximinal in X. We do not know how to show that Y is coproximinal
in X. We next solve this for a special class of spaces.



156 T. S. S. R. K. Rao

We recall from [6, Section 11] some special properties of the real-valued
continuous function space C(K) where K is an extremally disconnected com-
pact space. These spaces can be abstractly characterized as those real Banach
spaces X in which every family of pair-wise intersecting closed balls has non-
empty intersection (see also [10]). We note that two closed balls B(x, r), B(y, s)
intersect if and only if ‖x−y‖ ≤ r+s. For any compact extremally disconnected
space K, if C(K) is isometrically embedded in a Banach space B, then there is
a linear onto projection P : B → C(K) such that ‖P‖ = 1. Thus in particular
C(K) is coproximinal in B. It is easy to see that `∞ has this property and
also a closed subspace Y ⊂ `∞ is coproximinal if and only if it is isometric to a
C(K) space for a compact extremally disconnected set K.

Theorem 2.8. Let K be a compact extremally disconnected space. Let
Z ⊂ Y ⊂ C(K) be closed subspaces such that Z is coproximinal in C(K) and
an M-ideal in Y and Y/Z is coproximinal in C(K)/Z. Then Y is coproximinal
in C(K).

Proof. It follows from the proof of Theorem 3 and Remark 4 that Y =Z⊕∞Z ′
and Z ′ is coproximinal in C(K). If {B(zα, rα)} is any family of pair-wise inter-
secting closed balls in Z, then the family of larger balls {BC(K)(zα, rα)} also pair-
wise intersect, hence we have an f0 ∈ C(K) such that ‖f0 − zα‖ ≤ rα for all α.
By coproximinality of Z, we get a z0 ∈ Z ′ such that ‖z0−zα‖ ≤ ‖f0−zα‖ ≤ rα.
Thus every pairwise intersecting family of closed balls in Z has non-empty in-
tersection. As Z ′ is also coproximinal in C(K) we have that Z ′ also has the
same intersection of balls property. Now it is easy to see that any family of
pair-wise intersecting closed balls in Y = Z ⊕∞ Z ′, has non-empty intersection.
Thus by the characterization theorem quoted earlier, Y is isometric to C(K ′)
for some compact extremally disconnected space K ′. Therefore by the remarks
made before this theorem, we see that Y is coproximinal in C(K).
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Note added in proof. In his article “Weak coproximinality for Banach spaces”
[J. Nonlinear Funct. Anal. 2017 (2017), Article ID 13, 10 pp.], the author gave
an example of a Banach space X and closed subspaces Z ⊂ Y ⊂ X such that Z
is a coproximinal subspace of X, Y/Z is a coproximinal subspace of X/Z but Y
is not a coproximinal subspace of X.
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