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Abstract. In this paper, we consider the following nonhomogenous fourth order
Kirchhoff equation

∆2u−
(
a + b

∫
RN
|∇u|2dx

)
∆u + V (x)u = f(x, u) + g(x), x ∈ RN ,

where ∆2 := ∆(∆), constants a > 0, b ≥ 0, V ∈ C(RN ,R), f ∈ C(RN × R,R)
and g ∈ L2(RN ). Under more relaxed assumptions on the nonlinear term f that are
much weaker than those in L. Xu and H. Chen, using some new proof techniques
especially the verification of the boundedness of Palais–Smale sequence, a new result
is obtained.
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1. Introduction and main results

In this paper, we consider the following nonhomogenous Kirchhoff type problem

∆2u−
(
a+ b

∫
RN
|∇u|2dx

)
∆u+ V (x)u = f(x, u) + g(x), x ∈ RN , (P)

where ∆2 := ∆(∆), constants a > 0, b ≥ 0, 1 < N < 8, V ∈ C(RN ,R),
f ∈ C(RN × R,R) and g ∈ L2(RN) satisfy some further conditions.
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Recently, the following Schrödinger–Kirchhoff type problem with noncon-
stant potential

−
(
a+ b

∫
RN
|∇u|2dx

)
∆u+ V (x)u = f(x, u), x ∈ RN , (1)

is studied by many mathematicians. As we know, Wu [24] is the first one
consider this type of equation. In that paper, four new existence results for
nontrivial solutions and a sequence of high energy solutions for problem (1) are
obtained by using a symmetric mountain pass theorem. Later, many researchers
generalize his results, see the references [5, 6, 9, 10, 13, 15–17, 28]. The system
case also had been consider by Wu [25] and Zhou et al. [31], respectively.

Very recently, a fourth-order elliptic equation with Kirchhoff type on bound-
ed domain is also been studied by Wang and An [21], firstly. This problem is
related to the stationary analog of the evolution equation of Kirchhoff type

utt + ∆2u−
(
a+ b

∫
Ω

|∇u|2dx
)

∆u = f(x, u).

Dimensions one and two are relevant from the point of view of physics and en-
gineering because in those situations model is considered a good approximation
for describing nonlinear vibrations of beams or plates ,see the references [2,4,23].
Later, Wang et al. [22] using the mountain pass techniques and the truncation
method to show the existence of nontrivial solutions for a class of fourth order
elliptic equations of Kirchhoff type. Fourth order equations and fourth order
Kirchhoff type equation on RN had been also studied in [1, 18, 26, 27, 29, 30].
Last, using Ricceri’s variational principle, the fourth order elliptic equations of
Kirchhoff type had been studied in [8, 11,12].

For the nonhomogenous Kirchhoff type problem (P), there is little known
result of the existence and multiplicity of solutions except for [27]. In [27], by
applying Ekeland’s variational principle and Mountain Pass Theorem, Xu and
Chen studied the problem (P) with the nonlinearity f satisfying the Ambrosetti-
Rabinowitz type condition, and the existence of two solutions was obtained.

Motivated by the works of [6, 15], in the present paper, we shall consider
the nonhomogeneous Kirchhoff type problem, and we are interested in looking
for multiple solutions of the problem (P). Under more relaxed assumptions on
the nonlinear term f that are much weaker than those in [27], using some new
proof techniques especially the verification of the boundedness of Palais–Smale
sequence, a new result on multiplicity of nontrivial solutions for the problem (P)
is obtained, which sharply improves the result of [27].

To obtain the multiplicity of solutions for the nonhomogeneous Kirchhoff
type problem (P) in RN , we make the following assumptions:
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(f1) f ∈ C(RN × R,R) and

|f(x, t)| ≤ C(1 + |t|p−1) for some 4 < p < 2∗ =

{
2N
N−4

, 8 > N > 4

+∞, 1 < N ≤ 4,

where C is a positive constant.

(f3) F (x,t)
t4
→ +∞ as |t| → +∞ uniformly in x ∈ RN .

(f4) There exists L > 0 and d ∈
[
0, V0

2

]
such that

4F (x, t)− f(x, t)t ≤ d|t|2, for a.e. x ∈ RN and ∀t ≥ L.

Now, we can state our result as follows.

Theorem 1.1. Assume that g ∈ L2(RN), g 6≡ 0, (V1) and (f1)–(f4) hold.
Then, there exists a constant g0 > 0 such that the problem (P) has at least two
different solutions whenever ‖g‖L2 < g0, one is negative energy solution, and
the other is positive energy solution.

Xu and Chen [27] assumed the following assumptions:

(V1) V ∈ C(RN ,R) satisfies inf V (x) ≥ V0 > 0 and for each M > 0,
meas{x ∈ RN : V (x) ≤ M} < +∞, where V0 is a constant and meas
denotes the Lebesgue measure in RN .

(f1’) f ∈ C(RN × R,R) and

|f(x, t)| ≤ C(1 + |t|p−1) for some 2 < p < 2∗ =
2N

N − 2
,

where C is a positive constant.

(f2) f(x, t) = o(|t|) as |t| → 0 uniformly in x ∈ RN .

(f3’)

inf
x∈RN ,|t|=1

F (x, t) > 0, where F (x, t) =

∫ t

0

f(x, s)ds.

(f4’) There exists µ > 4 and r > 0 such that

µF (x, t)− f(x, t)t ≤ 0, ∀x ∈ RN , |t| ≥ r.

We restate the corresponding result in [27] as in the following.

Theorem 1.2 (see [27, Theorem 1.1]). Assume that g ∈ L2(RN), g 6≡ 0, (V1),
(f1’), (f2) and (f3’), (f4’) hold. Then there exists a constant m0 > 0 such that
the equation (P) has at least two different solutions whenever ‖g‖L2 < m0.
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Remark 1.3. Theorem 1.1 sharply improves Theorem 1.2. In fact, (f3), (f4)
are much weaker than (f3’), (f4’). To be precise, by (f3’), (f4’), the inequality (2)
in Remark 1.4 holds. Hence,

F (x, t)

t4
≥ c|t|µ−4, ∀x ∈ RN and |t| ≥ 1,

which implies (f3). Moreover, note that µ > 4, then (f4’) and (2) imply
4F (x, t) − f(x, t)t = µF (x, t) − f(x, t)t + (4 − µ)F (x, t) ≤ (4 − µ)F (x, t) ≤
(4 − µ)c|t|µ < 0 ≤ d|t|2 for all x ∈ RN and |t| ≥ 1. This shows (f4) holds by
taking L = 1. Consequently, (f3’), (f4’) imply (f3), (f4). Thus, Theorem 1.1
sharply improves Theorem 1.2.

Remark 1.4. (i) Since the problem (P) is defined in RN which is unboun-
ded, the lack of compactness of the Sobolev embedding becomes more
delicate using variational techniques. To overcome the lack of compact-
ness, the condition (V1), which was firstly introduced by Bartsch and
Wang in [3], is always assumed to preserve the compactness of embedding
of the working space.

(ii) It is worth pointing out that the combination of (f3’), (f4’) implies the
range of p in condition (f1’) should be 4 < p < 2∗. Precisely, for any
x ∈ RN , z ∈ R, define

h(t) := F (x, t−1z)tµ, ∀t ∈ [1,+∞).

Then, for |z| ≥ 1 and t ∈ [1, |z|], (f4’) implies that

h′(t) = tµ−1
[
µF (x, t−1z)− t−1zf(x, t−1z)

]
≤ 0.

Hence, h(1) ≥ h(|z|). Therefore, (f3’) implies that

F (x, z) ≥ F

(
x,

z

|z|

)
|z|µ ≥ c|z|µ, ∀x ∈ RN and |z| ≥ 1, (2)

where c = infx∈RN ,|t|=1 F (x, t) > 0. If p ≤ 4, by (f1’), we have

|F (x, t)| ≤
∫ 1

0

|f(x, st)t|ds ≤ C

∫ 1

0

(1 + |st|p−1)|t|ds ≤ C(|t|+ |t|p)

for all (x, t) ∈ RN × R, which implies that

lim sup
|t|→+∞

F (x, t)

t4
≤ C uniformaly in x ∈ RN .

This contradicts (2). Hence 4 < p < 2∗.
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(iii) We also point out that (f1’) in [27], the critical exponent 2∗ should be 2N
N−4

.

In Theorem 1.1, we consider the case µ = 4. For the case µ > 4, we also
have the following result about the existence of one negative energy solution, one
positive energy solution for the nonhomogeneous Kirchhoff type problem (P)
in RN , which is a corollary of Theorem 1.1 and more general than Theorem A.
To begin with, we need the following assumptions:

(f3”) There exists L′ > 0 such that

c′ = inf
x∈RN ,|t|=L′

F (x, t) > 0.

(f4”) There exist µ > 4 and d′ ∈
[
0, c

′(µ−2)
L′2

)
such that

µF (x, t)− f(x, t)t ≤ d′|t|2, for a.e. x ∈ RN and ∀|t| ≥ L′.

Now, we can state the Corollary as follows.

Corollary 1.5. If we replace (f3), (f4) with (f3”), (f4”) in Theorem 1.1, then
the conclusion of Theorem 1.1 remains hold.

2. Preliminaries

Now, we give some notations. Define the function space

H2(RN) = {u ∈ L2(RN) : ∇u ∈ L2(RN), ∆u ∈ L2(RN)}

with the norm

‖u‖H2 =

(∫
RN

(||∆u|2 + |∇u|2 + u2)dx

) 1
2

.

Denote

E =

{
u ∈ H2(RN) :

∫
RN

(|∆u|2 + a|∇u|2 + V (x)u2)dx < +∞
}

with the inner product and the norm

〈u, v〉E =

∫
RN

(∆u∆v + a∇u · ∇v + V (x)uv)dx, ‖u‖E = 〈u, u〉E.

Obviously, the following embedding E ↪→ Ls(RN), 2 ≤ s ≤ 2∗ is continuous.
Hence, for any s ∈ [2, 2∗], there is a constant as > 0 such that

‖u‖Ls ≤ as‖u‖E. (3)
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It is well known that a weak solution for the problem (P) is a critical point of
the following functional I defined on E by

I(u) =
1

2

∫
RN

(|∆u|2 + a|∇u|2)dx+
b

4

(∫
RN
|∇u|2dx

)2

+
1

2

∫
RN
V (x)u2dx−

∫
RN
F (x, u)dx−

∫
RN
g(x)udx

(4)

for all u ∈ E. We say that a weak solution u ∈ E for the problem (P) is a
negative energy solution if the energy I(u) < 0, and a weak solution v ∈ E for
the problem (P) is a positive energy solution if the energy I(v) > 0.

To apply variational techniques, we first state the key compactness result.

Lemma 2.1 ([14, Lemma 1.1]). Under the assumption (V1), the embedding

E ↪→ Ls(RN), 2 ≤ s < 2∗

is compact.

The following lemma can be obtained by a similar argument as [24,
Lemma 1].

Lemma 2.2. Assume that g ∈ L2(RN), (V1) and (f1), (f2) hold. Then I is
well defined on E, I ∈ C1(E,R) and for any u, v ∈ E,

〈I ′(u), v〉 =

∫
RN

∆u∆vdx+

(
a+ b

∫
RN
|∇u|2dx

)∫
RN
∇u · ∇vdxdx

+

∫
RN
V (x)uv −

∫
RN
f(x, u)vdx−

∫
RN
g(x)vdx

(5)

Moreover, Ψ′ : E → E∗ is compact, where Ψ(u) =
∫
RN F (x, u)dx−

∫
RN g(x)udx.

Ekeland’s variational principle is the tool to obtain a negative energy solu-
tion, we give it here for readers’ convenience.

Theorem 2.3 ([19, Theorem 4.1]). Let M be a complete metric space with
metric d and let I : M → (−∞,+∞] be a lower semicontinuous function,
bounded from below and not identical to +∞. Let ε > 0 be given and u ∈M be
such that

I(u) ≤ inf
M
I + ε.

Then there exists v ∈M such that

I(v) ≤ I(u), d(u, v) ≤ 1,

and for each w ∈M , one has

I(v) ≤ I(w) + εd(v, w).
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Recall that, we say I satisfies the (PS) condition at the level c ∈ R ((PS)c
condition for short) if any sequence {un} ⊂ E along with I(un) → c and
I(un) → 0 as n → ∞ possesses a convergent subsequence. If I satisfies (PS)c
condition for each c ∈ R, then we say that I satisfies the (PS) condition.

Here, we recall the classical Mountain Pass Theorem.

Theorem 2.4 ([20, Theorem 2.2]). Let X be a real Banach space and I ∈
C1(X,R) satisfying (PS) condition. Suppose I(0) = 0 and

(I1) there are constants ρ, α > 0 such that I|∂Bρ ≥ α,

(I2) there is u1 ∈ X \Bρ such that I(u1) ≤ 0.

Then I possesses a critical value c ≥ α. Moreover, c can be characterized as

c = inf
γ∈Γ

max
u∈γ([0,1])

I(u),

where Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = u1}.

3. Proof of the main results

Lemma 3.1. Assume that g ∈ L2(RN) and (f1), (f2) hold. Then there exist
some constants ρ, α and β > 0 such that I(u) ≥ α whenever ‖u‖E = ρ and
‖g‖L2 < β.

Proof. For any ε > 0, by (f1), (f2), there exists C(ε) > 0 such that

|f(x, t)| ≤ ε|t|+ C(ε)|t|p−1, ∀(x, t) ∈ RN × R, (6)

|F (x, t)| ≤
∫ 1

0

|f(x, st)t|ds ≤ ε|t|2 + C(ε)|t|p, ∀(x, t) ∈ RN × R. (7)

By (3), (4), (7) and the Hölder inequality,

I(u) =
1

2

∫
RN

(|∆u|2 + a|∇u|2)dx+
b

4

(∫
RN
|∇u|2dx

)2

+
1

2

∫
RN
V (x)u2dx

−
∫
RN
F (x, u)dx−

∫
RN
g(x)udx

≥ 1

2
‖u‖2

E −
∫
RN
F (x, u)dx−

∫
RN
g(x)udx

≥ 1

2
‖u‖2

E − (ε‖u‖2
L2 + C(ε)‖u‖pLp)− ‖g‖L2‖u‖L2

≥ 1

2
‖u‖2

E − a2
2ε‖u‖2

E − appC(ε)‖u‖pE − a2‖g‖L2‖u‖E

= ‖u‖E
[(

1

2
− a2

2ε

)
‖u‖E − appC(ε)‖u‖p−1

E − a2‖g‖L2

]
.
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Choose ε = 1
4a22

> 0, and take

h(t) =
1

4
t− appC(ε)tp−1, ∀t ≥ 0.

Note that 4 < p < 2∗, we can conclude that there exists a constant ρ > 0 such
that h(ρ) = maxt≥0 h(t) > 0. Therefore, take β = 1

2a2
h(ρ) > 0, it follows that

I(u) ≥ 1

2
ρh(ρ) =: α > 0

whenever ‖u‖E = ρ and ‖g‖L2 < β. This completes the proof.

Lemma 3.2. Let assumptions (f1)–(f3) hold. Then there exists a function e ∈ E
with ‖e‖E > ρ such that I(e) < 0.

Proof. For every M > 0, by (f1)–(f3), there exists C(M) > 0 such that

F (x, t) ≥M |t|4 − C(M)|t|2, ∀(x, t) ∈ RN × R. (8)

Choose φ ∈ E with ‖φ‖L4 = 1, then (4), (8) and the Hölder inequality imply
that

I(tφ) =
t2

2

∫
RN

(|∆φ|2 + a|∇φ|2 + V (x)φ2)dx+
bt4

4

(∫
RN
|∇φ|2dx

)2

−
∫
RN
F (x, tφ)dx− t

∫
RN
g(x)φdx

≤ t2

2
‖φ‖2

E +
b

4
‖φ‖4

Et
4 −M‖φ‖4

L4t4 + C(M)‖φ‖2
L2t2 − t

∫
RN
g(x)φdx

≤
(
M − b

4
‖φ‖4

E

)
t4 +

[
1

2
‖φ‖2

E + C(M)‖φ‖2
L2

]2

+ ‖g‖L2‖φ‖L2t,

which implies I(tφ) → −∞ as t → +∞ by taking M > b
4
‖φ‖4

E. Hence, there
exists e = t0φ with t0 large enough such that ‖e‖E > ρ and I(e) < 0. The proof
is completed.

Lemma 3.3. Let assumptions (V1), (f1), (f2) hold. Then any bounded Palais–
Smale sequence of I has a strongly convergent subsequence in E.

Proof. Let {un} ⊂ E be any bounded Palais–Smale sequence of I. Then, up to
a subsequence, there exists c1 ∈ R such that

I(un)→ c1, I ′(un)→ 0 and sup
n
‖un‖E < +∞. (9)

Since the embedding E ↪→ Ls(RN), 2 ≤ s < 2∗ is compact, going if necessary
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to a subsequence, we can assume that there is a u ∈ E such that

un ⇀ u, weakly in E; (10)

un → u, strongly in Ls(RN); (11)

un(x)→ u(x), a.e. in RN . (12)

In view of (5), it has

〈I ′(un)− I ′(u), un − u〉

=

∫
RN

[(∆un −∆u)2 + V (x)|un − u|2]dx

+

(
a+ b

∫
RN
|∇un|2dx

)∫
RN
∇un · ∇(un − u)dx

−
(
a+ b

∫
RN
|∇u|2dx

)∫
RN
∇u · ∇(un − u)dx

−
∫
RN

[f(x, un)− f(x, u)](un − u)dx

=

∫
RN

[(∆un −∆u)2 + V (x)|un − u|2]dx

+

(
a+ b

∫
RN
|∇un|2dx

)∫
RN
|∇(un − u)|2dx

−
(∫

RN
|∇u|2dx−

∫
RN
|∇un|2dx

)∫
RN
∇u · ∇(un − u)dx

−
∫
RN

[f(x, un)− f(x, u)](un − u)dx

≥ ‖un − u‖2
E − b

(∫
RN
|∇u|2dx−

∫
RN
|∇un|2dx

)
−
∫
RN
∇u · ∇(un − u)dx−

∫
RN

[f(x, un)− f(x, u)](un − u)dx.

(13)

Then, (13) implies that

‖un − u‖2
E ≤ 〈I ′(un)− I ′(u), un − u〉

+ b

(∫
RN
|∇u|2dx−

∫
RN
|∇un|2dx

)∫
RN
∇u · ∇(un − u)dx

+

∫
RN

[f(x, un)− f(x, u)](un − u)dx.

(14)

Define the functional hu : E → R by

hu(v) =

∫
RN
∇u · ∇vdx, ∀v ∈ E.



200 L. Ding and L. Li

Obviously, hu is a linear functional on E. Furthermore,

|hu(v)| ≤
∫
RN
|∇u · ∇v|dx ≤ ‖u‖E‖v‖E,

which implies hu is bounded on E. Hence hu ∈ E∗. Since un ⇀ u in E, it
has limn→∞ hu(un) = hu(u), that is,

∫
RN ∇u · ∇(un − u)dx → 0 as n → ∞.

Consequently, by (10) and the boundedness of {un}, it has

b

(∫
RN
|∇u|2dx−

∫
RN
|∇un|2dx

)∫
RN
∇u ·∇(un−u)dx→ 0, n→ +∞. (15)

By (6), using the Hölder inequality, we can conclude∣∣∣∣∣
∫
RN

[f(x, un)−f(x, u)](un−u)dx

∣∣∣∣∣
≤ [ε+C(ε)]

∫
RN

[|un|+|u|+|un|p−1+|u|p−1]|un−u|dx

≤ [ε+C(ε)](‖un‖L2 +‖u‖L2)‖un−u‖L2 +[ε+C(ε)](‖un‖p−1
Lp +‖u‖p−1

Lp )‖un−u‖Lp .

Therefore, it follows from (10) that∫
RN

[f(x, un)− f(x, u)](un − u)dx→ 0, as n→∞. (16)

Moreover, combining (9) with (10), then

〈I ′(un)− I ′(u), un − u〉 → 0, as n→∞. (17)

Consequently, (14)–(17) imply that

un → u, strongly in E as n→∞.

This completes the proof.

Firstly, we will get a negative energy solution for the problem (P) using the
Ekeland’s variational principle. We consider a minimization of I constrained in
a neighborhood of zero and find a critical point of I which achieves the local
minimum of I. Furthermore, the level of this local minimum is negative.

Lemma 3.4. Assume that g ∈ L2(RN), g 6≡ 0 and (f1)–(f3) hold. Then

−∞ < inf{I(u) : u ∈ Bρ} < 0,

where Br := {u ∈ E : ‖u‖E ≤ r}.
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Proof. By (f1)–(f3), it follows from the proof of Lemma 3.2 that

F (x, t) ≥ C1|t|4 − C2|t|2 ∀(x, t) ∈ RN × R,

where C1 and C2 are positive constants. Since g(x) ∈ L2(RN) and g 6≡ 0, we
can choose a function v ∈ E such that∫

RN
g(x)v(x)dx > 0.

Thus,

I(tv) =
t2

2

∫
RN

(|∆v|2 + a|∇v|2)dx+
bt4

4

(∫
RN
|∇v|2dx

)2

+
t2

2

∫
RN
V (x)v2dx

−
∫
RN
F (x, tv)dx− t

∫
RN
g(x)vdx

≤ t2

2
‖v‖2

E +
b

4
‖v‖4

Et
4 − C1‖v‖4

L4t4 + C2‖v‖2
L2t2 − t

∫
RN
g(x)vdx

< 0

for t > 0 small enough, which implies inf{I(u) : u ∈ Bρ} < 0. In addition, by
(3), (4), (7) and the Hölder inequality,

I(u) =
1

2

∫
RN

(|∆u|2 + a|∇u|2)dx+
b

4

(∫
RN
|∇u|2dx

)2

+
1

2

∫
RN
V (x)u2dx

−
∫
RN
F (x, u)dx−

∫
RN
g(x)udx

≥ −
∫
RN
F (x, u)dx−

∫
RN
g(x)udx

≥ (ε‖u‖2
L2 + C(ε)‖u‖pLp)− ‖g‖L2‖u‖L2

≥ −a2
2ε‖u‖2

E − appC(ε)‖u‖pE − a2‖g‖L2‖u‖E,

which implies I is bounded below in Bρ. Therefore, we obtain

−∞ < inf{I(u) : u ∈ Bρ} < 0.

This completes the proof.

Now, we could give the result of negative energy solution for the prob-
lem (P).

Theorem 3.5. Assume that g ∈ L2(RN), g 6≡ 0, (V1) and (f1)–(f3) hold. Then
there exists a constant g0 > 0 such that the problem (P) has a negative energy
solution whenever ‖g‖L2 < g0, that is, there exists a function u0 ∈ E such that
I ′(u0) = 0 and I(u0) < 0.
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Proof. The proof is almost the same as [7], we give it here for the completeness.
By Lemmas 3.1 and 3.4, taking g0 = β > 0, we know that

−∞ < inf
Bρ

I < 0 < α ≤ inf
∂Bρ

I

whenever ‖g‖L2 < g0. Set 1
n
∈
(

0, inf∂Bρ I − infBρ I
)
, n ∈ N. Then, there is

un ∈ Bρ such that

I(un) ≤ inf
Bρ

I +
1

n
. (18)

By Ekelands’s variational principle, it follows that

I(un) ≤ I(u) +
1

n
‖u− un‖E, ∀u ∈ Bρ. (19)

Note that I(un) ≤ infBρ I + 1
n
< inf∂Bρ I. Thus un∈Bρ. Define Mn : E → R by

Mn(u) = I(u) +
1

n
‖u− un‖E.

By (19), we have un ∈ Bρ minimizes Mn on Bρ. Therefore, for all φ ∈ E
with ‖φ‖E = 1, taking t > 0 small enough such that un + tφ ∈ Bρ, then
Mn(un+tφ)−Mn(un)

t
≥ 0, which implies that

I(un + tφ)− I(un)

t
+

1

n
≥ 0.

Thus, 〈I ′(un), φ〉 ≥ − 1
n
. Hence,

‖I ′(un)‖E ≤
1

n
. (20)

Passing to the limit in (18) and (20), we conclude that

I(un)→ inf
Bρ

I and ‖I ′(un)‖E → 0, as n→∞. (21)

Note that ‖un‖E≤ρ, hence {un}⊂E is a bounded Palais–Smale sequence of I.
By Lemma 3.3, {un} has a strongly convergent subsequence, still denoted by
{un} and un → u0 ∈ Bρ, as n→∞. Consequently, it follows from (21) that

I(u0) = inf
Bρ

I < 0 and I ′(u0) = 0.

This completes the proof.

Secondly, we get a positive energy solution for the problem (P) with the
aid of Mountain Pass Theorem.
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Lemma 3.6. Let assumptions (V1) and (f1)–(f4) hold. Then any Palais–Smale
sequence of I is bounded.

Proof. Let {un} ⊂ E be any Palais–Smale sequence of I. Then, up to a subse-
quence, there exists c1 ∈ R such that

I(un)→ c1, and I ′(un)→ 0. (22)

The combination of (3), (4), (5), (22), (V1) with (f4) implies

c1+1+‖u‖E ≥ I(un)− 1

4
〈I ′(un), un〉

=
1

4

∫
RN

(|∆un|2 + a|∇un|2)dx+
1

4

∫
RN
V (x)u2

ndx+

∫
RN
F̃ (x, un)dx

− 3

4

∫
RN
g(x)undx

≥ 1

4

∫
RN

(|∆un|2 + a|∇un|2)dx+
1

4

∫
RN
V (x)u2

ndx−
d

4

∫
RN
u2
ndx

+

∫
An

F̃ (x, un)dx− 3

4
‖g‖L2‖un‖L2

≥ 1

4

∫
RN

(|∆un|2 + a|∇un|2)dx+
1

4

∫
RN
V (x)u2

ndx−
1

8

∫
RN
V0u

2
ndx

+

∫
An

F̃ (x, un)dx− 3

4
a2‖g‖L2‖un‖E

≥ 1

4

∫
RN

(|∆un|2 + a|∇un|2)dx+
1

4

∫
RN
V (x)u2

ndx−
1

8

∫
RN
V0u

2
ndx

+

∫
An

F̃ (x, un)dx− 3

4
a2‖g‖L2‖un‖E

≥ 1

16
‖un‖2

E +
1

16

∫
RN
V (x)u2

ndx+

∫
RN
F̃ (x, un)dx− 3

4
a2‖g‖L2‖un‖E,

where F̃ (x, un) = 1
4
f(x, un)un−F (x, un) and An = {x ∈ RN : |un| ≤ L}. Hence

c1+1+

(
1+

3

4
a2‖g‖L2

)
‖un‖E≥

1

16
‖un‖2

E +
1

16

∫
RN
V (x)u2

ndx+

∫
RN
F̃ (x, un)dx. (23)

For x ∈ RN and |un| ≤ L, by (6) and (7), it has |F̃ (x, un)| ≤ 1
4
|f(x, un)||un| +

|F (x, un)|≤ 5
4
ε|un|2+ 5

4
C(ε)|un|p= 5

4
[ε+C(ε)|un|p−2] |un|2≤ 5

4
[ε+C(ε)Lp−2] |un|2.

Take A > max{20[ε+ C(ε)Lp−2], V0}, then

F̃ (x, un) ≥ − A
16
|un|2, ∀x ∈ RN , |un| ≤ L. (24)
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Let Ã = {x ∈ RN : V (x) ≤ A}. By (V1) and (24), we can conclude

1

16

∫
RN
V (x)u2

ndx+

∫
An

F̃ (x, un)dx ≥ 1

16

∫
|un|≤L

(V (x)− A)|un|2dx

≥ 1

16

∫
Ã∩An

(V (x)− A)L2dx

≥ 1

16
(V0 − A)L2meas(Ã ∩ An)

≥ 1

16
(V0 − A)L2meas(Ã).

(25)

Note that meas(A) < +∞ due to (V1), it follows from (23) and (25) that

c1 + 1 +

(
1 +

3

4
a2‖g‖L2

)
‖un‖E ≥

1

16
‖un‖2

E +
1

16
(V0 − A)L2meas(Ã),

which implies {un} ⊂ E is bounded in E. Hence, the proof is completed.

Theorem 3.7. Assume that g(x) ∈ L2(RN), g 6≡ 0, (V1) and (f1)–(f4) hold.
Then the problem (P) has a positive energy solution whenever ‖g‖L2 < g0, that
is, there exists a function u1 ∈ E such that I(u1) = 0 and I(u1) > 0.

Proof. We will apply Theorem 2.4 to prove Theorem 3.7. Next, we shall ver-
ify that I satisfies all the conditions of Theorem 2.4. By Theorem 3.5, we
know g0 = β > 0. Then I satisfies (I1) whenever ‖g‖L2 < g0 by Lemma 3.1.
Lemma 3.2 implies that I satisfies (I2), and I satisfies (PS) condition by virtue
of Lemmas 3.3 and 3.6. Evidently, I ∈ C1(E,R) and I(0) = 0. Hence, ap-
plying Theorem 2.4, there exists a function u1 ∈ E such that I(u1) = 0 and
I(u1) ≥ α > 0. The proof is completed.

Proof of Theorem 1.1. The desired conclusion directly follows from Theo-
rems 3.5 and 3.7.

Proof of Corollary 1.5. It is sufficient to prove that (f3”), (f4”) imply (f3), (f4)
by applying Theorem 1.1. In fact, For any (x, z) ∈ RN × R, define

k(t) := F
(
x,
z

t

)
tµ, ∀t ∈ [1,+∞).

Then for |z| ≥ L′ and t ∈
[
1, |z|

L′

]
, (f4”) implies that

k′(t) = f(x,
z

t
)
(
− z
t2

)
tµ + µF

(
x,
z

t

)
tµ−1,

tµ−1
[
µF
(
x,
z

t

)
− f

(
x,
z

t

) z
t

]
≤ d′tµ−1

∣∣∣z
t

∣∣∣2 = d′tµ−3|z|2.
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Thus,

k

(
|z|
L′

)
− k(1) =

∫ |z|
L′

1

k′(t)dt ≤
∫ |z|

L′

1

d′tµ−3|z|2dt =
d′|z|µ

(µ− 2)L′µ−2
− d′|z|2

µ− 2
.

Hence, for any x ∈ RN and |z| ≥ L, by (f3), one has

F (x, z) = k(1) ≥ k

(
|z|
L′

)
+
d′|z|2

µ−2
− d′|z|µ

(µ−2)L′µ−2
,[

inf
x∈RN ,|t|=L′

F (x, t)

](
|z|
L′

)µ
+
d′|z|2

µ−2
− d′|z|µ

(µ−2)L′µ−2
≥
(
c′

L′µ
− d′

(µ−2)L′µ−2

)
|z|µ.

By d′ ∈
[
0, c

′(µ−2)
L′2

)
, set C4 = c′

L′µ
− d′

(µ−2)L′µ−2 > 0, it has F (x, z) ≥ C4|z|µ, for

all x ∈ RN and |z| ≥ L′. Hence,

F (x, z)

z4
≥ C4|z|µ−4, ∀x ∈ RN and |z| ≥ L′. (26)

Note that µ > 4, then (26) implies (f3). Furthermore, it follows from (26)
and (f4”) that

4F (x, z)−f(x, z)z = µF (x, z)−f(x, z)z+(4−z)F (x, z) ≤ d′|z|2−(µ−4)C4|z|µ

for all x ∈ RN and |z| ≥ L′. This, together with µ > 4, shows there exists
L > 0 such that

4F (x, z)− f(x, z)z < 0 ∀x ∈ RN and |z| ≥ L,

which implies (f4). Hence, the proof is completed.
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