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Abstract. In this paper we consider second order evolution equations with bounded
damping. We give a characterization of a non-uniform decay for the damped problem
using a kind of observability estimate for the associated undamped problem.
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1. Introduction and main results

Let X be a complex Hilbert space with norm and inner product denoted re-
spectively by ||.||X and 〈·, ·〉X . Let A be a linear unbounded self-adjoint and

strictly positive operator in X and V = D(A
1
2 ) be the domain of A

1
2 , with

‖x‖V = ‖A
1
2x‖X , ∀x ∈ V.

Denote by (D(A
1
2 ))′ the dual space of D(A

1
2 ) obtained by means of the inner

product in X. Further, let U be a complex Hilbert space (identified to its dual)
and B ∈ L(U,X). Most of the linear control problems coming from elasticity
can be written as {

w′′(t) + Aw(t) +Bu(t) = 0,

w(0) = w0, w
′(0) = w1,

(1.1)
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where w : [0, T ] → X is the state of the system, u ∈ L2(0, T ;U) is the input
function and denote the differentiation with respect to time by “ ′ ”.

We define the energy of w(t) at instant t by

E(w(t)) =
1

2

{
||w′(t)||2X + ||A

1
2w(t)||2X

}
.

Simple formal calculations give

E(w(0))− E(w(t)) =

∫ t

0

〈Bu(s), w′(s)〉X ds, ∀t ≥ 0. (1.2)

This is why, in many problems coming in particular from elasticity, the input u is
given in the feedback form u(t) = B∗w′(t), which obviously gives a nonincreasing
energy and which corresponds to collocated actuators and sensors.

The aim of this paper is to give sufficient and necessary conditions on the
conservative system (1.5) making the corresponding closed loop system{

w′′(t) + Aw(t) +BB∗w′(t) = 0,

w(0) = w0, w
′(0) = w1,

(1.3)

non-uniformly stable. The strategy to get such a decay rate will consist to
generalize a kind of observability estimate given in [7]. Any sufficiently smooth
solution of (1.3) satisfies the energy estimate

E(w(0))− E(w(t)) =

∫ t

0

||B∗w′(s)||2Uds, ∀t ≥ 0. (1.4)

In particular (1.4) implies that

E(w(t)) ≤ E(w(0)), ∀t ≥ 0.

In the natural well-posedness space V ×X, the existence and uniqueness of finite
energy solutions of (1.3) can be obtained by standard semi-group methods.

Denote by φ the solution of the associated undamped problem{
φ′′(t) + Aφ(t) = 0,

φ(0) = w0, φ
′(0) = w1.

(1.5)

It is well known that (1.5) is well-posed in D(A) × V and in V × X. Our
main result is stated as follows: Let G be a continuous positive increasing real
function on [0,+∞) and define the function F by F(x) = x (G(x))2.
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Theorem 1.1. (1) Assume that there exists C > 0 such that for all non-
identically zero initial data (w0, w1) ∈ V × X and for all t > 0, the
solution w of (1.3) satisfies:

E(w(t)) ≤ C||(w0, w1)||2V×XG−1

(
1

t

)
, (1.6)

then there exists C > 0 such that the solution φ of (1.5) satisfies:

||(w0, w1)||2V×X ≤ 16

∫ 1

G( 1
2CΛ)

0

‖B∗φ′(t)‖2
U dt, (1.7)

where

Λ =
||(w0, w1)||2D(A)×V

||(w0, w1)||2V×X
.

(2) Assume that x 7→ xF−1
(

1
x

)
is an increasing function and there exists C>0

such that for all non-identically zero initial data (w0, w1) ∈ D(A)×V , the
solution φ of (1.5) satisfies:

||(w0, w1)||2V×X ≤ C

∫ 1

G( 1
2CΛ)

0

‖B∗φ′(t)‖2
Udt. (1.8)

Then there exists C > 0 such that for all t > 0, the solution w of (1.3)
satisfies:

E(w(t)) ≤ C||(w0, w1)||2D(A)×VF−1

(
1√
t

)
. (1.9)

Corollary 1.2. The weak observability 1, i.e. there exist T,C > 0 such that for
all (w0, w1) ∈ V ×X the solution φ of (1.5) satisfies

∫ T

0

||B∗φ′(t)||2U dt ≥ C ||(w0, w1)||2V×X G

 ||(w0, w1)||2
X×(D(A

1
2 ))′

||(w0, w1)||2V×X

 , (1.10)

implies in particular (1.7).

The paper is organized as follows: In Section 2 we prove our main result
and in the last section we give some applications both in the linear and the
nonlinear case. Decay rates for nonlinear dissipations were obtained under our
generalized observability estimate. Here we mention that the literature is less
provide. We cite essentially [1, 8].

1See [2–4] for more details.
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2. Proof of Theorem 1.1

The following lemma will be very useful.

Lemma 2.1. Let H (resp. G) be a continuous positive decreasing (resp. in-
creasing) real function on [0,+∞). Suppose that H is bounded by one and there
exists a positive constant c such that

H(s) ≤ c(
G(H(s))

)2

(
H(s)−H

(
1

G(H(s))
+ s

))
, ∀s > 0. (2.1)

Suppose that x 7→ xF−1
(

1
x

)
is an increasing function, then there exists C > 0

such that for any t > 0,

H(t) ≤ CF−1

(
1√
t

)
. (2.2)

The proof is similar to that of [7, Lemma B]. Since our result is more
general, we give it for the reader’s convenience.

Proof of Lemma 2.1. Let t > 0. We distinguish two cases:

• If

G(H(s)) <
1

t
, then H(s) ≤ G−1

(
1

t

)
. (2.3)

• If

G(H(s)) ≥ 1

t
, then

1

G(H(s))
+ s ≤ t+ s,

therefore

H(t+ s) ≤ H
(

1

G(H(s))
+ s

)
(2.4)

and we get

F(H(s)) ≤ H(s)−H(t+ s). (2.5)

The inequalities (2.3) and (2.5) give

H(s) ≤ F−1(H(s)−H(t+ s)) + G−1

(
1

t

)
, ∀s, t > 0. (2.6)

We introduce the function Ψt defined on ]0,+∞[ by

Ψt(s) =
1

F−1
(
t
s

)
+ G−1

(
1
t

) . (2.7)

We distinguish two cases:
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• If H(s)−H(t+ s) < t
t+s

then H(s) ≤ Ψt(t+ s) and we deduce

Ψt(t+ s)H(t+ s) ≤ 1. (2.8)

• If H(s)−H(t+ s) > t
t+s
. Taking into account that H(s) ≤ 1 we obtain

t

t+ s
H(s) ≤ t

t+ s
,

so
t

t+ s
H(s) ≤ t

t+ s
< H(s)−H(t+ s), (2.9)

and we deduce
H(t+ s) < H(s)

s

t+ s
. (2.10)

Consequently,

Ψt(t+ s)H(t+ s) < Ψt(t+ s)H(s)
s

t+ s

=
Ψt(t+ s)

t+ s
H(s)Ψt(s)

s

Ψt(s)

= H(s)Ψt(s)

Ψt(t+s)
t+s

Ψt(s)
s

.

(2.11)

Using the increasing property of x 7→ xF−1
(

1
x

)
, we obtain

Ψt(t+ s)H(t+ s) < Ψt(s)H(s). (2.12)

We have proved that for all s, t > 0, we have either

Ψt(t+ s)H(t+ s) ≤ 1 or Ψt(t+ s)H(t+ s) < Ψt(s)H(s).

In particular, we deduce that for any t > 0 and n ∈ N∗, either

Ψt((n+ 1)t)H((n+ 1)t) ≤ 1 or Ψt((n+ 1)t)H((n+ 1)t) < Ψnt(t)H(nt).

Hence, we have

Ψt((n+ 1)t)H((n+ 1)t) ≤ max(1,Ψt(t)H(t)) = 1. (2.13)

Therefore, for all t > 0 and n ∈ N∗,

H((n+ 1)t) ≤ F−1

(
1

n+ 1

)
+ G−1

(
1

t

)
. (2.14)

Choose n such that n + 1 ≤ t < n + 2 and make use again of the increasing
property of x 7→ xF−1( 1

x
), we get for all t ≥ 2 :

H(t2) ≤ F−1

(
1

t

)
+ G−1

(
1

t

)
. (2.15)

Since |G−1(x)| ≤ |F−1(x)| close to zero, the desired result follows.
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After, we give the proof of the main result.

Proof of Theorem 1.1(1). We combine (1.6) and the following formula:

E(w(t)) = E(φ(0))− 2

∫ t

0

‖B∗φ′(t)‖2
Uds ∀t > 0, (2.16)

to get

E(φ(0))− 2

∫ t

0

‖B∗φ′(t)‖2
U ds ≤ CG−1

(
1

t

)
||(w0, w1)||2D(A)×V . (2.17)

Take t = 1

G( 1
2CΛ)

, we obtain E(φ(0))−2
∫ 1

G( 1
2CΛ)

0 ‖B∗φ′(t)‖2
Uds ≤ 1

2
||(w0, w1)||2V×X .

We deduce that

||(w0, w1)||2V×X ≤ 4

∫ 1

G( 1
2CΛ)

0

‖(B∗φ)′(t)‖2
Uds. (2.18)

Now, let us consider v = φ− w, then v satisfies the following system:{
v′′(t) + Av(t) +BB∗v′(t) = BB?φ′(t), t > 0,

(v(0), v′(0)) = (0, 0).
(2.19)

Multiply the first equation of (2.19) by v′, and integer by parts to get

E(v(t)) + 2

∫ t

0

‖B∗v′(s)‖2
U ds = 2

∫ t

0

〈B∗φ′(s), B∗v′(s)〉U ds. (2.20)

Make use of Young inequality,

E(v(t)) + 2

∫ t

0

‖B∗v′(s)‖2
U ds ≤

∫ t

0

(
‖B∗φ′(s)‖2

U + ‖B∗v′(t)‖2
U

)
ds. (2.21)

Hence,

E(v(t)) +

∫ t

0

‖B∗v′(s)‖2
U ds ≤

∫ t

0

‖B∗φ′(s)‖2
Uds. (2.22)

Since ‖B∗w′‖2
U = ‖B∗φ′ −B∗v′‖2

U ≤ 2 (‖B∗φ′‖2
U + ‖B∗v′‖2

U) , therefore∫ 1

G( 1
2CΛ)

0

‖B∗w′(t)‖2
Udt ≤ 2

∫ 1

G( 1
2CΛ)

0

(
‖B∗φ′‖2

U + ‖B∗v′‖2
U

)
dt. (2.23)

Thanks to (2.22) and (2.23), we obtain∫ 1

G( 1
2CΛ)

0

‖B∗w′(t)‖2
U dt ≤ 4

∫ 1

G( 1
2CΛ)

0

‖B∗φ′(t)‖2
U dt. (2.24)
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Finally, by virtue of (2.18), we conclude the following estimate

||(w0, w1)||2V×X ≤ 16

∫ 1

G( 1
2CΛ)

0

‖B∗φ′(t)‖2
Udt. (2.25)

This finishes the proof.

Proof of Theorem 1.1(2). Using similar arguments as previously, the inequality
(1.8) becomes

E(w(0)) ≤ 2C

∫ 1

G( 1
2CΛ)

0

(
‖B∗w′(t)‖2

U + ‖B∗v′(t)‖2
U

)
dt.

Multiply the first equation of (2.19) by v′ and integer by parts. It follows that

E(v(t)) ≤
∫ t

0

(
‖B∗w′(s)‖2

U

ε
+ ε‖B∗v′(s)‖2

U

)
ds, ∀ε > 0. (2.26)

Let T > 0 be fixed, for all 0 ≤ t ≤ T , we have

sup
0≤t≤T

E(v(t)) ≤
∫ T

0

(
‖B∗w′(t)‖2

U

ε
+ ε‖B∗v′(t)‖2

U

)
dt

≤
∫ T

0

‖B∗w′(t)‖2
U

ε
dt+ εC

∫ T

0

E(v(t)) dt

≤
∫ T

0

‖B∗w′(t)‖2
U

ε
dt+ εCT sup

0≤t≤T
E(v(t)).

Choose ε = 1
2CT

, so we have

sup
0≤t≤T

E(v(t)) ≤ 4CT

∫ T

0

‖B∗w′‖2
Udt. (2.27)

On the other hand, as ‖v′(t)‖2
X ≤ E(v(t)), we integer on [0, T ], to get∫ T

0

‖v′(t)‖2
Xdt ≤

∫ T

0

E(v(t)) dt ≤ T sup
0≤t≤T

E(v(t)) ≤ 4CT 2

∫ T

0

‖B∗w′‖2
Udt,

so ∫ T

0

‖B∗v′‖2
Udt ≤ 4C2T 2

∫ T

0

‖B∗w′‖2
Udt. (2.28)

Hence, for T = 1

G( 1
2CΛ)

we conclude that

E(w(0)) ≤ 2C

(
1 + 4C2

(
G
(

1

2CΛ

))−2
)∫ 1

G( 1
2CΛ)

0

‖B∗w′‖2
U dt. (2.29)
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One can easily verify that

Λ ≤ E(w(0)) + E(w′(0))

E(w(0))
:= Λ̃,

and consequently

E(w(0)) ≤ 2C

(
1 + 4C2

(
G
(

1

2CΛ

))−2
)∫ 1

G( 1
2CΛ̃

)

0

‖B∗w′(t)‖2
U dt. (2.30)

Since Λ̃ is minimized, we get

E(w(0)) ≤ C

(
G
(

1

2CΛ

))−2 ∫ 1

G( 1
2CΛ̃

)

0

‖B∗w′(t)‖2
U dt. (2.31)

By translating the time variable and using the formula

E(w(t1))− E(w(t2)) +

∫ t1

t2

‖B∗w′(t)‖2
U dt = 0,

we obtain

E(w(0))

E(w(0)) + E(w′(0))

≤ C

(
G
(

1

2CΛ

))−2 ∫ 1

G( 1
2CΛ̃

)
+s

s

‖B∗w′(t)‖2
U

E(w(0)) + E(w′(0))
dt

≤ C

(
G
(

1

2CΛ

))−2

 E(w(s))

E(w(0)) + E(w′(0))
−
E

(
w

(
1

G( 1
2CΛ̃

)
+ s

))
E(w(0)) + E(w′(0))

 .

Put H(s) = E(w(s))
2C(E(w(0))+E(w′(0)))

. Make use of the previous inequality and the
decay of H, it follows that

H(s) ≤ C
(
G(H(s))

)−2
(
H(s)−H

(
1

G(H(s))
+ s

))
, ∀s > 0.

Thanks to (2.1) and Lemma 2.1, there exists C such that

E(w(t))

E(w(0)) + E(∂tw(0))
≤ CF−1

(
1√
t

)
.

We conclude the desired result.
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3. Some applications

We give some applications of Theorem 1.1.

3.1. The linear case.

3.1.1. Example 1. Let G be given by G(x) = xp on (0, r0], r0 > 0 and
p ∈ R \ [−1

2
, 0]. Then the following two statements are equivalent:

i) There exists C > 0 such that for all non-identically zero initial data
(w0, w1) ∈ V ×X, the solution φ of (1.5) satisfies:

||(w0, w1)||2V×X ≤ 16

∫ CΛp

0

‖B∗φ′(t)‖2
U dt.

ii) There exists C > 0 such that for all non-identically zero initial data
(w0, w1) ∈ D(A)× V and for all t > 0, the solution w of (1.3) satisfies

E(w(t)) ≤ C

tp
||(w0, w1)||2D(A)×V .

Remark 3.1. In [7], the author construct a geometry with a trapped ray
for the linear dissipative wave equation (the geometric control condition is
then not fulfilled) and establish a polynomial decay rate when (w0, w1) ∈
[H2(Ω) ∩H1

0 (Ω)]×H1
0 (Ω), the estimate (1.7) is satisfied for G(x) = xδ, δ > 0.

3.1.2. Example 2. Let G be given by G(x) =
exp(− 1

xp )√
x

on (0, r0], p ∈ R+. The
following statements hold.

i) The existence of a constant C > 0 such that the solution φ of (1.5) satisfies

||(w0, w1)||2H1
0 (Ω)×L2(Ω) ≤ 16

∫ 1

G( 1
2CΛ)

0

‖B∗φ′(t)‖2
U dt,

implies the existence of a constant C1 > 0 such that for all non-identically
zero initial data (w0, w1) ∈ D(A)× V and for all t > 0, the solution w of
(1.3) satisfies

E(w(t)) ≤ C1

(ln t)
1
p

||(w0, w1)||2D(A)×V .

ii) The existence of a constant C1 > 0 such that for all non-identically
(w0, w1) ∈ D(A)× V and for all t > 0, the solution w of (1.3) satisfies

E(w(t)) ≤ C1

(ln t)
1
p

||(w0, w1)||2D(A)×V .

implies the existence of a constant C > 0 such that the solution φ of (1.5)
satisfies

||(w0, w1)||2V×X ≤ 16

∫ 1

F( 1
2CΛ)

0

‖B∗φ′(t)|2 dt.
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3.2. The nonlinear case. Let Ω be a bounded connected open set of Rn,
n > 1 with a C2 boundary ∂Ω. Let also M =

(
αij
)

1≤i,j≤n ∈ C
∞(Ω̄;Rn×n) be a

symmetric and uniformly positive definite matrix.

Denote by ∇=
(∑n

j=1 β
1j∂xj , . . . ,

∑n
j=1 β

nj∂xj

)
and ∆ =

∑n
i,j=1 ∂xi

(
αij∂xj

)
.

We deal with the following second order differential equation:
∂2
t u−∆u+ a(x)g(∂tu) = 0, in Ω× (0,+∞),

u = 0, on ∂Ω× (0,+∞),

(u, ∂tu)(., 0) = (u0, u1), in Ω,

(3.1)

where a = a(x) ∈ L∞(Ω) is a bounded function with a(x) ≥ 0 for all x ∈ Ω and
g : R→ R is a continuous strictly increasing function with g(0) = 0, sg(s) ≥ 0.
We assume the additional conditions:

(i) ∃r ∈ [1,∞), ∃c1, c2 > 0, |s| ≤ 1⇒ c1|s|r ≤ |g(s)| ≤ c2|s|1/r.
(ii) ∃k ∈ [0, 1], ∃p ∈ [1,∞), ∃c3, c4 > 0, |s| > 1 ⇒ c3|s|k ≤ |g(s)| ≤ c4|s|p.

(iii) (n− 2)(1− k) ≤ 4r and (n− 2)(p− 1) ≤ 1.

For (u0, u1) ∈ H1
0 (Ω)× L2(Ω), there exists a unique solution

u ∈ C
(
[0,+∞);H1

0 (Ω)
)
∩ C1

(
[0,+∞);L2(Ω)

)
.

For more regular initial data (u0, u1) ∈ [H2(Ω) ∩H1
0 (Ω)]×H1

0 (Ω), the solution u
has the following regularity

u∈L∞
(
[0,+∞);H2(Ω)∩H1

0 (Ω)
)
∩W 1,∞([0,+∞);H1

0 (Ω)
)
∩W 2,∞([0,+∞);L2(Ω)

)
.

The energy of a solution is defined at instant t ≥ 0 by

E(u(t)) =
1

2

∫
Ω

(
|∂tu(x, t)|2 + |∇u(x, t)|2

)
dx.

E(u(t)) is a non-increasing function of time and satisfies, for all t2 > t1 ≥ 0 the
identity

E(u(t2))− E(u(t1)) = −
∫ t2

t1

∫
Ω

a(x)g(∂tu(x, t))∂tu(x, t)dxdt ≤ 0.

Denote by

X(u0, u1) = E(u(0)) + E1(u(0)) + [E1(u(0))](2p−1) + [E1(u(0))](1+ r−k
r+1

),

where

E1(u(0)) = ‖(∆u0 − ag(u1), u1)‖2
L2(Ω)×H1

0 (Ω).



Non-Uniform Decay of the Energy 249

We introduce ul the solution of the linear locally damped problem:
∂2
t ul −∆ul + a(x)∂tul = 0, in Ω× (0,+∞),

ul = 0, on ∂Ω× (0,+∞),

(ul, ∂tul)(., 0) = (u0, u1) ∈
[
H2(Ω)×H1

0 (Ω)
]
∩H1

0 (Ω),

(3.2)

and make the following assumption:

(A) Assume that x 7→ xF−1
(

1
x

)
is an increasing function and there exists

C > 0 such that for all non-identically zero initial data

(u0, u1) ∈
[
H2(Ω)×H1

0 (Ω)
]
∩H1

0 (Ω),

the solution φ of {
∂2
t φ(t)−∆φ(t) = 0,

φ(0) = u0, ∂tφ(0) = u1,
(3.3)

satisfies

||(u0, u1)||2H1
0 (Ω)×L2(Ω) ≤ C

∫ 1

G( 1
2CΛr)

0

∫
Ω

a(x)|∂tφ(x, t)|2dxdt, (3.4)

where

Λr =
(r − 1) +X(u0, u1)

E(u(0))
.

The following result is deduced from Theorem 1.1 and [8, Proposition 3].

Proposition 3.2. Let (A) holds. There exists c > 0 such that for any (u0, u1) ∈
[H2(Ω)×H1

0 (Ω)] ∩H1
0 (Ω), the solution u of (3.1) satisfies

E(u(s))≤ch((r−1)+X(u0, u1))+ c

∫ s+ 1
G(h)

s

∫
Ω

a(x)g(∂tu(x, t))∂tu(x, t)dxdt,

for any h > 0 and any s ≥ 0 where

G(h) := Ch(2r+1)F(h)4(r+1).

We have the following stabilization result for the nonlinear damped wave
equation.

Theorem 3.3. Let (A) holds and suppose that there exists c0 such that the
function G satisfies G−1(x) ≥ c

c+1
G−1

(
x(c0 +1)

)
for all x ≥ 0. Then the energy

of the solution of (3.1) satisfies the estimate:

E(u(t)) ≤ CG−1

(
c′

t

)(
(r−1)+X(u0, u1)

)
, for t sufficiently large, (3.5)

and all non-identically zero initial data (u0, u1) ∈ [H2(Ω) ∩H1
0 (Ω)] × H1

0 (Ω),
the constant C depend on the initial data (u0, u1).
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Proof. Choosing

h =
1

2CΛr

,

this implies the existence of a constant c > 0 such that

E(u(s)) ≤ c

∫ s+ 1

G( 1
2CΛr)

s

∫
Ω

a(x)g(∂tu(x, t))∂tu(x, t)dxdt. (3.6)

Denoting by H(s) = E(u,s)
(r−1)+X(u0,u1)

, we deduce from (3.6) that

H
(
s+

1

G(H(s))

)
≤ H(s) ≤ c

(
H(s)−H

(
s+

1

G(H(s))

))
,

which gives

H
(
s+

1

G(H(s))

)
≤ c

c+ 1
H(s).

• If c0s ≤ c 1
G(H(s))

, then H(s) ≤ G−1
(
c
c0s

)
and

H((1 + c0)s) ≤ H(s) ≤ G−1
( c

c0s

)
. (3.7)

• If c0s > c 1
G(H(s))

, then

H((1 + c0)s) ≤ H
(
s+

1

G(H(s))

)
≤ c

c+ 1
H(s). (3.8)

By induction, we deduce from (3.7) and (3.8) that ∀s > 0 and ∀n ∈ N∗,

H((1+c0)s) ≤ max

[
G−1

(
c

c0s

)
,
c

c+1
G−1

(
c(c0+1)

c0s

)
, . . . ,(

c

c+1

)n
G−1

(
c(c0+1)n

c0s

)
,

(
c

c+1

)n+1

H
(

s

(c0+1)n+1

)]
.

Now, remark that with the above hypothesis on the function G,

c

c+ 1
G−1

(
c(c0 + 1)

c0s

)
≤ G−1

(
c

c0s

)
.

Consequently,

H((1 + c0)s) ≤ max

[
G−1

(
c

c0s

)
,

(
c

c+ 1

)n+1

H
(

s

(c0 + 1)n+1

)]
,

≤ max

[
G−1

(
c

c0s

)
,

(
c

c+ 1

)n+1
]
, ∀n ≥ 1,

(3.9)
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and we conclude that

H(s) ≤ G−1

(
c(1 + c0)

c0s

)
, ∀s > 0.

Remark 3.4. For G(x) = xp, we have F(x) = x2p+1 and G(x) = x(4p+3)(2r+1)−1.
The energy of the solution of (3.1) satisfies the estimate:

E(u(t)) ≤ c

t
1

(4p+3)(2r+1)−1

(
(r − 1) +X(u0, u1)

)
, for t sufficiently large.

Remark 3.5. For the wave equation with arbitrary localized nonlinear damp-
ing, we obtain in [4] a weak observability (for the optimal weak observability
estimate for the linear wave equation see [6]) which implies in particular the
estimate (3.4) and the logarithmic decay of the energy. At the same time, this
gives a geometry where the observability estimate (3.4) is satisfied and simplify
the proof of the decay result in [5].
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