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Gelfand Type Elliptic Problem
Involving Advection

Baishun Lai and Lulu Zhang

Abstract. We consider the following Gelfand type elliptic problem involving advec-
tion

−∆u + a(x) · ∇u = eu in RN ,

where a(x) is a smooth vector field. According to energy estimates, we obtain the
nonexistence results of stable solution for this equation under some restriction con-
ditions about a(x) for N ≤ 9. On the other hand, combining Liapunov–Schmidt
reduction method, we prove that it possesses a solution for N ≥ 4. Besides, if a is
divergence free and satisfies a smallness condition, then the equation above admits a
stable solution for N ≥ 11.
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1. Introduction

We consider the elliptic problem

−∆u+ a(x) · ∇u = eu in RN , (1)

where a(x) is a smooth vector field satisfying some decay condition. If a(x) ≡ 0,
this problem reduces to

−∆u = eu in RN , (2)

which called Gelfand problem or Liouville problem. In dimension N = 1, 2, 3,
Equation (2) can be derived from the thermal self-ignition model [11]. Besides,
it also describes the diffusion phenomena induced by nonlinear sources [13] or a
ball of isothermal gas in gravitational equilibrium as proposed by lord Kelvin [3].
Equation (2) has been considered by various authors, see [2,7,10,12,16]. One of
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the focus about Equation (2) is the classification of solution. Indeed, for every
N ≥ 10, Equation (2) admits a radial stable solution in the sense that∫

RN
euφ2dx ≤

∫
RN
|∇φ|2dx ∀ φ ∈ C∞0 (RN),

and for N ≤ 9, there is no stable C2 solution of Equation (2), for details see
[7, 10].

Recently, elliptic problems with advection have attracted the interesting of
many researchers. In particular the problem of the form{−∆u+ a(x) · ∇u = λf(u), in Ω,

u = 0, on ∂Ω,
(3)

has been studied for various nonlinearities f . Berestycki et al. [1] used this
equation to study the explosion phenomena in a flow, if div a(x) = 0, then
a(x) denotes a prescribed incompressible flow. In [6, 14] the authors used the
generalized Hardy inequality from [4] to consider the regularity of the extremal
solution of (3). The first purpose of the present paper is to consider nonexistence
of stable solution of (1). In order to state our results, we first define the notion
of stability as follows:

Definition 1.1. A smooth solution u of (1) is said to be stable if the principle
eigenvalue of the linearized operator −∆+a ·∇−eu is nonnegative in C∞0 (RN),
i.e.,

inf
ϕ∈C∞0 (RN )

∫
RN

(
|∇ϕ|2 − euϕ2

)
dx

‖ϕ‖L2(RN )

≥ 0.

Obviously, if u is a stable solution of Equation (1), then there is some
smooth positive function E such that

−∆E + a · ∇E − euE ≥ 0 in RN . (4)

Very recently, Cowan in [5] considered the existence of stable solution of
the following equation{−∆u+ a(x) · ∇u = up, in Ω,

u = 0, on ∂Ω,
(5)

and obtained

(i) Suppose 3 ≤ N ≤ 10 or N ≥ 11 and 1 < p < pc with some positive
critical pc, and suppose a(x) is a smooth divergence free vector field, then
Equation (5) admits no positive stable solution for some small a(x).

(ii) Suppose N ≥ 11, p > pc and a(x) is a smooth divergence free vector field,
then Equation(5) has a positive stable solution for some small a(x).
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(iii) Suppose N ≥ 4, p > N+1
N−3

and a(x) is a smooth divergence free vector field,
then there exists a positive solution of Equation (5) for some small a(x).

In the present paper, using the techniques from [5, 7, 10], we extend the
above results to Equation (5) and obtain

Theorem 1.2. Suppose that a(x) is a smooth divergence free vector (i.e.,
div a(x) = 0) and satisfies

|a(x)| ≤ θ

1 + |x|
with 0 < θ sufficiently small. (6)

Then there is no stable solution of Equation (1) for N ≤ 9.

The second purpose of this paper is to use the approach developed in [8,9] to
obtain the existence of the solution of Equation (1). Before stating our results,
we sketch the ideas of the arguments. Indeed, because of smallness condition on
advection a, we use the perturbation analysis (for details see [8,15]) to look for

a solution u close to a radial solution w of (2) with w(r) = − log 2(N−2)
r2 +o(1) as

r → +∞ and w(0) = 0. Precisely, we will look a solution of the form u = w+φ,
where φ is a lower order correction. This approach is valid, since the linearized
operator −∆+ew is inverse in a weighted L∞ space, for details see [9], and then
we can use a fixed point argument to solve φ, which yields the desired solution.

Theorem 1.3. (i) Suppose a(x) satisfies (6), then Equation (1), for N ≥ 4,
admits a solution u such that

u(x) = log
2(N − 2)

|x|2
+O(1) as |x| → ∞.

(ii) Suppose a(x) satisfies div a(x) = 0 and (6), then Equation (1) has a stable
solution u for N ≥ 11.

The rest of the paper is organized as follows. In the next section we give
the proof of Theorem 1.2. In the third section , we will consider the existence
of solution and devote to proving Theorem 1.3.

2. Proof of Theorem 1.2

We now give the following generalized Hardy inequality from [4] as follows.

Lemma 2.1. Suppose E is a smooth positive function on Ω and fix a constant β
with 1

2
≤ β ≤ 1. Then, for all φ ∈ C∞0 (Ω) we have

β

∫
Ω

−∆E

E
φ2dx+ (β − β2)

∫
Ω

|∇E|2

E2
φ2dx ≤

∫
Ω

|∇φ|2dx. (7)
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Combining the techniques developed in [5,7,10] with the above generalized
Hardy inequality, we obtain the following energy estimate, which is a key start-
ing point for our proof of Theorem 1.2. In the rest of this paper, by

∫
· · · we

always denote
∫
RN · · · dx.

Proposition 2.2. Suppose u is a smooth stable solution of Equation (1) and
let a(x) be smooth vector field such that div a(x) = 0. Then for any t ∈ (0, 2)
and 0 ≤ ψ ∈ C∞0 (RN) we have∫

e(2t+1)uψ2 ≤ C(t)

∫
e2tu(|∇ψ|2 + |∆ψ2|). (8)

Proof. Step 1. For any t, δ > 0 we claim:∫
e2tu|∇u|2ψ2

≤ δ

4t3

∫
a2ψ2e2tu +

1

δt

∫
|∇ψ|2e2tu +

1

2t

∫
e(2t+1)uψ2 +

1

4t2

∫
e2tu∆ψ2,

(9)

where 0 ≤ ψ ∈ C∞0 (RN). Indeed, multiplying Equation (1) by e2tuψ2 and
integrating by parts, we see

2t

∫
e2tu|∇u|2ψ2 = − 1

2t

∫
ψ2a(x)·∇e2tu +

∫
e(2t+1)uψ2 +

1

2t

∫
e2tu∆ψ2. (10)

Since div a(x) = 0, an integration by parts again and an application of Young’s
inequality with δ, we have∫

ψ2a(x) · ∇e2tu = 2

∫
ψe2tua(x) · ∇ψ ≤ δ

t

∫
a2ψ2e2tu +

4t

δ

∫
|∇ψ|2e2tu.

Putting this equality into (10), we obtain the desired results.

Step 2. End of the Proof. Using the generalized Hardy inequality (7) and
the fact E satisfies (4), we have, taking φ = etuψ,

β

∫
e(2t+1)uψ2 + (β − β2)

∫
|∇E|2

E2
e2tuψ2 + (T − 1)

∫
|∇(etuψ)|2

≤ Tt2
∫
e2tuψ2|∇u|2 +

T

2

∫
e2tu∆ψ2 + T

∫
e2tu|∇ψ|2 + β

∫
a · ∇E
E

e2tuψ2

for some T > 1. Since by the application of Young’s inequality with ε

β

∫
a · ∇E
E

e2tuψ2 ≤ βε

∫
|∇E|2

E2
e2tuψ2 +

β

4ε

∫
a2e2tuψ2,
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then by using (9), we see(
β−Tt

2

)∫
e(2t+1)uψ2 + β(1−β−ε)

∫
|∇E|2

E2
e2tuψ2 + (T−1)

∫
|∇(etuψ)|2

≤
(
Tδ

4t
+
β

4ε

)∫
a2e2tuψ2 + T

(
1+

t

4δ

)∫
e2tu|∇ψ|2 +

3T

4t

∫
e2tu∆ψ2.

(11)

We also note that, by Hardy’s inequality,∫
a2e2tuψ2 ≤ θ2

∫
e2tuψ2

|x|2
≤ 4θ2

(N − 2)2

∫
|∇(etuψ)|2.

Putting this into (11) gives(
β − Tt

2

)∫
e(2t+1)uψ2 + β(1− β − ε)

∫
|∇E|2

E2
e2tuψ2 + C1

∫
|∇(etuψ)|2

≤ C2

∫
e2tu(|∇ψ|2 + |∆ψ2|),

where

C1 = (T − 1)− 4θ2

(N − 2)2

(Tδ
4t

+
β

4ε

)
, C2 = max

{Tδ
4t

+
β

4ε
,
3T

4

}
.

Now for fixed t ∈ (0, 2), we first choose 0 < β < 1, T > 1 sufficiently close to 1
such that

β − Tt

2
> 0,

and then we pick ε > 0 small enough such that 1 − β − ε > 0, and finally we
choose θ > 0 sufficiently small such that C1 ≥ 0. Then we get the desired
estimate and complete our proof.

Proof of Theorem 1.2. Suppose to contrary that Equation (1) admits a stable
solution for N ≤ 9. Fix t ∈ (0, 2) such that N − 2(2t + 1) < 0, we will
obtain a contradiction by proving

∫
e(2t+1)u = 0. We now consider the function

φ ∈ C∞0 (RN) such that

φ(x) =

{
1 for |x| ≤ R
0 for |x| ≥ 2R,

and |∇φ| ≤ C
R
, |∆φ| ≤ C

R2 , where C is independent of R. Putting ψ = φm (m is
large integer) into (8) gives∫

e(2t+1)uφ2m ≤ Cm

∫
e2tuφ2m−2(|∇φ|2 + |∆φ|)

≤ C

(∫
e(2t+1)uφ

(m−1)(2t+1)
t

) 2t
2t+1

·
(∫

(|∇φ|2 + |∆φ|)2t+1

) 1
2t+1

.
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Since (m−1)(2t+1)
t

≥ 2m for sufficiently large m, we have∫
BR

e(2t+1)u ≤
∫
e(2t+1)uφ2m ≤ C

∫
(|∇φ|2 + |∆φ|)2t+1 ≤ CRN−2(2t+1) → 0,

as R→∞, which is a contradiction to fact that e(2t+1)u > 0. Then the proof of
Theorem 1.2 is complete.

3. Proof of Theorem 1.3

To fix ideas, we consider the radial solution of the problem

−∆u = eu, in RN . (12)

It is well known that Equation (12) possess a positive radially symmetric solu-
tion w(r) with w(0) = 0 for N ≥ 1 and the asymptotic of w as r →∞ is given
as follows (for details see [9]):

• if 3 ≤ N ≤ 9, w(r) = log 2(N−2)
r2 +O(r−

N−2
2 );

• if N = 10, there exist a ∈ R and b < 0 such that

w(r) = log
2(N − 2)

r2
+ ar−4 + br−4 log r + o(r−4 log r);

• If N > 10, there exist a ∈ R and b < 0 such that

w(r) = log
2(N − 2)

r2
+ arm1 + brm2 log r + o(rm2 log r),

where

m1 = −
N − 2 +

√
(N − 2)(N − 10)

2
< 0,

m2 =

√
(N − 2)(N − 10)− (N − 2)

2
< 0.

(13)

Besides, by simple calculation, log 2(N−2)
r2 is a singular solution of Equation(12).

Since we impose a smallness condition on a, then a(x) · ∇u in Equation(1)
be considered as a small perturbation of term. Following the idea of [8, 9], we
consider w(r) as a first approximation for a solution of Equation(1), i.e., we
look for a solution to Equation (1) of the form u = w + φ, where φ is “small ”
compared to w at infinity. We will use a fixed point argument to find φ in the
weighted L∞ space. In order to use the fixed point theory, we first consider the
linear equation in a suitable weighted L∞ space

−∆φ+ ewφ = f, in RN . (14)
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For given 1 < σ < 2 and

0 < β <

{
1, 4 ≤ N ≤ 9,
min{−m1, 1}, 10 ≤ N,

(15)

where m1 is defined as in (13), we define

‖φ‖X̃ := sup
|x|≤1

|φ|+ sup
|x|≥1

|x|β|φ| and ‖f‖Y := sup
|x|≤1

|x|σ|f |+ sup
|x|≥1

|x|2+β|f |.

Let X̃ and Y denote the completion of C∞0 (RN \ {0}) under the appropriate
norms. In the following, the authors (see [9]) give solvability of Equation (14)
and estimates for the solution in the weighted L∞ norm given as above.

Lemma 3.1. Suppose N ≥ 4, for any f ∈ Y , there exists a solution of Equa-
tion (14)

φ = T (f),

which defines a linear operator of f such that

‖φ‖X̃ ≤ C‖f‖Y , (16)

where C is a fixed constant independent of φ, f .

However, our problem involves advection term, we don’t work directly
with X̃, and need some revisions for norm ‖ · ‖X . And so we define the norm

‖φ‖X := sup
|x|≤1

(|φ|+ |x||∇φ|) + sup
|x|≥1

(|x|β|φ|+ |x|β+1|∇φ|),

and let X denote the completion of C∞0 (RN \ {0}) with respect to this norm.

Lemma 3.2. Suppose N ≥ 4, for any f ∈ Y , there exists a solution of Equa-
tion (14)

φ = T (f),

such that
‖φ‖X ≤ C‖f‖Y , (17)

where C is a fixed constant independent of φ, f .

Proof. Suppose f ∈ Y and let φ ∈ X be such that

−∆φ− ewφ = f.

Now define the re-scaled functions φm(x) = φ(xm + rmx), where |xm| > 0,

rm = |xm|
4
. Then φm(x) satisfies

−∆φm(x) = r2
me

wφm(x) + r2
mf(xm + rmx) =: gm(x),



290 B. Lai and L. Zhang

for |x| ≤ 1. According to Lemma 3.1, we have

‖φ‖L∞(B1(0)) + sup
|x|≥1

|x|β|φ| ≤ C‖f‖Y .

Then if |xm| ≥ 1, we see that

|xm|β|gm| = r2
me

w |xm|β

|xm + rmx|β
· |xm + rmx|β|φ(xm + rmx)|

+
|xm|β+2

|xm + rmx|β+2
· |xm + rmx|β+2|f(xm + rmx)|

≤ C‖f‖Y ,

for all |x| ≤ 1. Then by the elliptic estimates, for p > N there is some C such
that

|∇ϕ(xm) · rm| = |∇ϕm(0)|

≤ C

(∫
|x|≤1

|gm(x)|pdx
) 1

p

+

∫
|x|≤1

|ϕm(x)|dx

≤ C‖f‖Y · |xm|−β,

here we have used the fact that |ϕm(x)| ≤ C‖f‖Y · |xm|−β for |x| ≤ 1. And then
we have for |xm| > 1

|xm|β+1|∇ϕ(xm)| ≤ C‖f‖Y . (18)

By the same argument as above, we see that

|xm||∇ϕ(xm)| ≤ C‖f‖Y for |xm| ≤ 1 (19)

From (18) and (19), we immediately have

‖φ‖X ≤ C‖f‖Y ,

where C is independent of f and φ.

Combining Lemma 3.2, we are in a position to give the proof of
Theorem 1.3(i) as follows.

Proof of Theorem 1.3(i). We look for a solution to problem (1) of the form
u = w + φ, which yields the following equation for φ

−∆φ− ewφ = −a · ∇φ− a · ∇w + ew(eφ − 1− φ).

Letting T be defined as in Lemma 3.1, we are looking for a φ ∈ X such that

φ = −T (a · ∇w)− T (a · ∇φ) + T (ew(eφ − 1− φ)) =: J(φ).
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We will use fixed point argument to find such a φ. For small ρ > 0, we define

F := {φ : RN → R | ‖φ‖X ≤ ρ}.

We will prove that choosing ρ > 0 small enough, J has a fixed point in F.

Step 1. For any φ ∈ F and small ρ > 0, we have J(φ) ∈ F. Indeed, from
Lemma 3.2, there is some C > 0 such that

‖J(φ)‖X ≤ C‖a · ∇w‖Y + C‖a · ∇φ‖Y + C‖ew(eφ − 1− φ)‖Y ,

we now estimate each term on the right hand side of the above inequality as
follows

‖a · ∇w‖Y ≤ sup
x
|a| sup
|x|≤1

|∇w||x|σ + sup
x
|x||a| · sup

|x|≥1

|x|β+1|∇w(x)|

≤ sup
x

((1 + |x|)|a|) · ‖w‖X ,

where we have used the fact that 1 ≤ σ < 2. By the same argument, we
have ‖a · ∇φ‖Y ≤ supx((1 + |x|)|a|)‖φ‖X . On the other hand, by the identity
ex = 1 + x+

∫ x
0
et(x− t)dt,∀ t ∈ R, we have

|ew(eφ − 1− φ)| ≤ Cew · φ2 · e|φ|.

Additionally,

sup
|x|≤1

|x|σewφ2e|φ| + sup
|x|≥1

|x|2+βewφ2e|φ|

≤ C‖φ‖2
Xe
‖φ‖X + C sup

|x|≥1

|x|2ew · sup
|x|≥1

(|x|βφ)2 · e‖φ‖X

≤ C‖φ‖2
X · e‖φ‖X

≤ Cρ2eρ.

If a satisfies C supx(1 + |x|)|a| + supx((1 + |x|)|a|)ρ ≤ ρ
10

and ρ > 0 is fixed
suitable small, we arrive at

‖J(φ)‖X ≤ C sup
x

(1 + |x|)|a|+ sup
x

((1 + |x|)|a|)ρ+ Cρ2eρ ≤ ρ,

This proves J(F) ⊆ F.

Step 2. J is a contraction mapping on F for a suitable ρ. Now let us take
φ1, φ2 ∈ F, Then

‖J(φ1)− J(φ2)‖X ≤ C‖a · ∇(φ1 − φ2)‖Y + C‖ew(eφ1 − eφ1 − (φ1 − φ2)‖Y
≤ C‖a · ∇(φ1 − φ2)‖Y + C‖ew(eφ̄ − 1)(φ1 − φ2)‖Y
=: I1 + I2,
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where φ̄ ∈ (φ1, φ2) ∪ (φ2, φ1). One easily sees that

I1 ≤ C sup
x

(1 + |x|)|a| · ‖φ1 − φ2‖X . (20)

Since |ew(eφ̄ − 1)(φ1 − φ2)| ≤ Cew|φ̄|eφ̄|φ1 − φ2|, we have

I2 ≤ C sup
|x|≤1

|x|σew|φ̄|eφ̄|φ1−φ2|+ C sup
|x|≥1

|x|2+βew|φ̄|eφ̄|φ1−φ2|

≤ Cρeρ‖φ1−φ2‖X + Ce‖e
φ̄‖X · sup

|x|≥1

|x|2ew · sup
|x|≥1

|x|β|φ̄|· sup
|x|≥1

|x|β|φ1−φ2|

≤ Cρeρ‖φ1−φ2‖X .

(21)

Combining (20) with (21), we obtain

‖J(φ1)− J(φ2)‖X ≤ [C sup
x

(1 + |x|)|a|+ ρeρ] · ‖φ1 − φ2‖.

Now we let a be such that C supx(1 + |x|)|a| < 1
2

and fix ρ sufficiently small
such that Cρeρ < 1

2
, we have J is a contraction mapping on F in X, and hence

it has a unique fixed point in this set, i.e., there is φ ∈ F such that

−∆(w + φ) + a · ∇(w + φ) = ew+φ.

In order to complete the details for the proof of Theorem 1.3(ii), we need
to show the following

Lemma 3.3. Let N ≥ 10, then

w(r) ≤ log
2(N − 2)

r2
, ∀ r ∈ (0,+∞).

Proof. It is worth to mentioning that the semilinear equation with power-type
nonlinearity possess the similar result, see [16, Proposition 3.7]. Using their
arguments, we can prove this Lemma. Here, we provide a simple way to prove
this result.

Let s = log r, v(s) = w(r) + 2s− log 2(N − 2), then v(s) satisfies

−(v′′(s) + (N − 2)v′(s)) = 2(N − 2)(ev − 1) ≥ 2(N − 2)(v − 1),

then the above ODE can be factorized as follows

(∂s −m1)(∂s −m2)v(s) ≤ 0, (22)

where m1,m2 is defined as in (13). By the definition of v, we have

lim
s→−∞

e−m1sv(i)(s) = 0, lim
s→−∞

e−m2sv(i)(s) = 0, i = 0, 1. (23)

Multiplying (22) by e−m1s and integrating over (−∞, s), we get, by (23)

(∂s −m2)v(s) ≤ 0,

i.e., (e−m2sv(s))′ ≤ 0. Using (23) again, we obtain v(s) ≤ 0, which is the desired
result.
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Proof Theorem 1.3(ii). Let m ≥ 2 be an integer, Bm be a ball with radius m
and E = Em,ρ satisfies{−∆E + a · ∇E − euρE = µm,ρE in Bm

E = 0 on ∂Bm,
(24)

where Em,ρ, µm,ρ denote the first eigenfunction, first eigenvalue respectively and

uρ = w + φ such that ‖φ‖X ≤ ρ.

Multiply the above equation by E and integrate over Bm, we have

µm,ρ =

∫
Bm

(|∇E|2 − euρE2)dx∫
Bm

E2dx
.

Step 1. We claim that µm,ρ ≥ 0 for suitably small ρ and limm→∞ µm,ρ = 0.
Indeed, for r > 0, there is a fixed ε > 0 such that

(1 + ε)ew ≤ (N − 2)2

4r2
,

and from Hardy’s inequality and Lemma 3.3, we see that∫
Bm

|∇E|2dx ≥ (1 + ε)

∫
Bm

ewE2dx.

On the other hand, uρ = w + φ and ‖φ‖X ≤ ρ, we have∫
Bm

euρE2dx =

∫
ew · eφE2dx ≤ eρ

∫
Bm

ewE2dx.

From these facts, we see, by taking ρ small enough,

µm,ρ ≥
(1 + ε− eρ)

∫
Bm

ewE2dx∫
Bm

E2dx
≥ 0.

Now we remain to prove limm→∞ µm,ρ → 0. Now let ψ ∈ C∞0 (Bm) be such that

ψ = 1, |x| ≤ m

2
, |∇ψ| ≤ C

m
,

where C is independent of m. Putting E = Em,ρ into (7) with β = 1
2
, we have,

for all ψ ∈ C∞0 (Bm),∫
Bm

euρψ2dx+ µm

∫
Bm

ψ2dx+
1

2

∫
Bm

|∇E|2

E2
ψ2dx

≤ 2

∫
Bm

|∇ψ|2dx+

∫
Bm

a · ∇E
E

ψ2dx

≤ 2

∫
Bm

|∇ψ|2dx+ ε

∫
Bm

|∇E|2

E2
ψ2dx+

1

4ε

∫
Bm

|a|2ψ2dx

≤ C(ε)

∫
Bm

|∇ψ|2dx+ ε

∫
Bm

|∇E|2

E2
ψ2dx.
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For the last inequality, we have used Hardy’s inequality and the fact |a|2≤ θ2

(1+|x|)2

with θ small. Now taking 0 < ε < 1
2
, we see that

0 ≤ µm ≤ C(ε)

∫
Bm
|∇ψ|2dx∫

Bm
ψ2dx

→ 0, as m→∞.

Step 2. End of the proof. Fix ρ > 0, we, by suitably scaling Em, can assume
Em(0) = 1. Obviously, Em, µm,ρ satisfy{−∆Em + a · ∇Em − euρEm = µm,ρEm, in Bm

Em = 0 on ∂Bm,
(25)

Now fix k ≥ 0 and let m ≥ k + 2, by Harnack’s inequality there is a Ck > 0
such that

sup
Bk

Em ≤ Ck inf
Bk
Em ≤ Ck,

for all m ≥ k + 2. Using the elliptic regularity and a diagonal argument,

Em → E ≥ 0 in C1,β
loc (RN) as m→∞,

for some β > 0 and E(0) = 1. And E satisfies

−∆E + a(x) · ∇E = euρE in RN .

By the strong maximum principle, one see that E > 0. This, by (4), shows
that uρ is a stable solution of (1) which is the desired result.
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