
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal of Analysis and its Applications
Volume 36 (2017), 209–238
DOI: 10.4171/ZAA/1586

Nonlinear Dirichlet Problems with no
Growth Restriction on the Reaction
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Abstract. We consider nonlinear Dirichlet problems driven by the sum of a p-
Laplacian and a Laplacian and with a Carathéodory reaction which does not satisfy
any global growth condition. Instead we assume that it has constant sign z-dependent
zeros. Using variational methods, truncation techniques and Morse theory, we prove
multiplicity theorems providing sign information for all the solutions.

Keywords. Nonlinear regularity, nonlinear maximum principle, constant sign and
nodal solutions, (p, 2)-equation, critical groups

Mathematics Subject Classification (2010). Primary 35J20, secondary 35J60,
58E05

1. Introduction

In this paper we study the following nonlinear Dirichlet problem:{−∆pu(z)−∆u(z) = f(z, u(z)) in Ω,

u|∂Ω = 0,
(1)

where 2 < p < +∞. In this problem Ω ⊆ RN is a bounded domain with a
C2-boundary ∂Ω. Also ∆p denotes the p-Laplace differential operator defined
by

∆pu = div
(
|∇u|p−2∇u

)
∀u ∈ W 1,p

0 (Ω).

When p = 2, we have the usual Laplacian denoted by ∆. The reaction f
is a Carathéodory function (i.e., for all ζ ∈ R, the function z 7−→ f(z, ζ) is
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measurable and for almost all z ∈ Ω, the function ζ 7−→ f(z, ζ) is continuous).
The interesting feature of our work here, is that we do not impose any global
growth condition on f(z, ·). Instead, we assume that f(z, ·) admits z-dependent
constant sign zeros. Hence the reaction f(z, ·) exhibits near zero a kind of
oscillatory behaviour. No condition is imposed on f(·, ζ) for large values of |ζ|.

Elliptic problems with a reaction having zeros, were investigated by Itur-
riaga–Massa–Sánchez–Ubilla [28], who considered parametric Dirichlet prob-
lems driven by the p-Laplacian and looked for positive solutions. They inves-
tigated how the positive solution depends on the parameter. There is also the
recent work of Gasiński–Papageorgiou [24], who considered periodic problems
driven by a nonhomogeneous differential operator and with a reaction that has
zeros. They prove multiplicity results producing three solutions. We mention
that equations driven by the sum of a p-Laplacian and a Laplacian arise in
problems of mathematical physics. We infer the works of Benci–D’Avenia–
Fortunato–Pisani [3] and Cherfils–Il′yasov [7]. Recently existence and multi-
plicity results for such equations were obtained by Cingolani–Degiovanni [8],
Gasiński–Papageorgiou [18, 26], Mugnai–Papageorgiou [32], Papageorgiou–
Rădulescu [35], Papageorgiou–Smyrlis [36] and Sun [39]. We also mention
papers with a more general notion of the so-called (p, q)-Laplacian, namely
Gasiński–Papageorgiou [21, 22] or its generalizations in Gasiński–Klimczak–
Papageorgiou [12], Gasiński–O’Regan–Papageorgiou [13, 14] and Gasiński–
Papageorgiou [19,25].

In this paper, using variational methods based on the critical point theory
together with truncation techniques and Morse theory, we prove multiplicity
results providing sign information for all the solutions.

In the next section, for the convenience of the reader, we recall the main
mathematical tools, which will be used in the sequel.

2. Mathematical background

Let X be a Banach space and let X∗ be its topological dual. By 〈·, ·〉 we denote
the duality brackets for the pair (X∗, X). Given ϕ ∈ C1(X), we say that ϕ
satisfies the Palais–Smale condition, if the following property holds:

“Every sequence {un}n>1 ⊆ X, such that
{
ϕ(un)

}
n>1
⊆ R is boun-

ded and
ϕ′(un) −→ 0 in X∗,

admits a strongly convergent subsequence.”

This is a compactness type condition on the functional ϕ, which compen-
sates for the fact that the ambient space X need not be locally compact (the
space X is in general infinite dimensional). This condition on ϕ, leads to a
deformation theorem from which one can derive the minimax theory for the
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critical values of ϕ. Prominent in that theory is the so-called “mountain pass
theorem” due to Ambrosetti–Rabinowitz [1].

Theorem 2.1. If X is a Banach space, ϕ ∈ C1(X) satisfies the Palais–Smale
condition, u0, u1 ∈ X, ‖u1 − u0‖ > % > 0,

max
{
ϕ(u0), ϕ(u1)

}
< inf

{
ϕ(u) : ‖u− u0‖ = %

}
= m%,

and
c = inf

γ∈Γ
max
t∈[0,1]

ϕ
(
γ(t)

)
,

where
Γ =

{
γ ∈ C

(
[0, 1];X

)
: γ(0) = u0, γ(1) = u1

}
,

then c > m% and c is a critical value of ϕ.

In the analysis of problem (1), we will use the Sobolev spaces W 1,p
0 (Ω),

H1
0 (Ω) and the Banach space

C1
0(Ω) =

{
u ∈ C1(Ω) : u|∂Ω = 0

}
.

The latter is an ordered Banach space with positive cone

C+ =
{
u ∈ C1

0(Ω) : u(z) > 0 for all z ∈ Ω
}
.

This cone has a nonempty interior given by

intC+ =
{
u ∈ C+ : u(z) > 0 for all z ∈ Ω,

∂u

∂n

∣∣
∂Ω
< 0
}
.

Here by n(·) we denote the outward unit normal on ∂Ω.
Let f0 : Ω× R −→ R be a Carathéodory function satisfying

|f0(z, ζ)| 6 a0(z)(1 + |ζ|r−1) for a.a. z ∈ Ω, all ζ ∈ R,

with a0 ∈ L∞(Ω)+ and 1 < r < p∗, where

p∗ =

{ Np
N−p if p < N,

+∞ if N 6 p.

We set

F0(z, ζ) =

∫ ζ

0

f0(z, s) ds

and consider the C1-functional ϕ0 : W 1,p
0 (Ω) −→ R defined by

ϕ0(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

F0(z, u(z)) ∀u ∈ W 1,p
0 (Ω)

(2 < p < +∞).
The next result is a special case of a more general result of Gasiński–Papa-

georgiou [17, Proposition 2.6, p. 423]. The first result of this nature was proved
by Brézis–Nirenberg [5].
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Proposition 2.2. If ϕ0 ∈ C1(W 1,p
0 (Ω)) is as above and u ∈ W 1,p

0 (Ω) is a local
C1

0(Ω)-minimizer of ϕ0, that is, there exists %0 > 0 such that

ϕ0(u) 6 ϕ0(u+ h) ∀h ∈ C1
0(Ω), ‖h‖C1

0 (Ω) 6 %0,

then u ∈ C1,α
0 (Ω) for some α ∈ (0, 1) and u is also a local W 1,p

0 (Ω)-minimizer
of ϕ0, that is, there exists %1 > 0 such that

ϕ0(u) 6 ϕ0(u+ h) ∀h ∈ W 1,p
0 (Ω), ‖h‖ 6 %1.

Hereafter, by ‖ · ‖ we denote the norm of the Sobolev space W 1,p
0 (Ω). By

virtue of the Poincaré inequality, we have

‖u‖ = ‖∇u‖p ∀u ∈ W 1,p
0 (Ω).

Let h, ĥ ∈ L∞(Ω). We say that h ≺ ĥ if and only if for every compact K ⊆ Ω,
we can find ε = εK > 0 such that

h(z) + ε 6 ĥ(z) for a.a. z ∈ K.

It is clear that, if h, ĥ ∈ C(Ω) and h(z) < ĥ(z) for all z ∈ Ω, then h ≺ ĥ.
From Gasiński–Papageorgiou [20] (see also Arcoya–Ruiz [2, Proposition

2.6]), we have the following strong comparison principle.

Proposition 2.3. If ξ > 0, h, ĥ ∈ L∞(Ω) with h ≺ ĥ and u ∈ C1
0(Ω), v ∈ intC+

satisfy{
−∆pu(z)−∆u(z) + ξ|u(z)|p−2u(z) = h(z) for a.a. Ω, u|∂Ω = 0,

−∆pv(z)−∆v(z) + ξv(z)p−1 = ĥ(z) for a.a. Ω, v|∂Ω = 0,

then v − u ∈ intC+.

In what follows by {λ̂k(2)}k>1 we denote the sequence of distinct eigenvalues

of (−∆, H1
0 (Ω)). We know that λ̂1(2) > 0, it is simple and it has eigenfunctions

of constant sign. By û1(2) we denote the L2-normalized (that is, ‖û1(2)‖2 = 1),

positive eigenfunction corresponding to λ̂1(2) > 0. Standard regularity theory

and the maximum principle imply that û1(2) ∈ intC+. Let E(λ̂k(2)) denote

the eigenspace corresponding to the eigenvalue λ̂k(2), k > 1. We know that for

every k > 1, E(λ̂k(2)) is finite dimensional, E(λ̂k(2)) ⊆ C1
0(Ω) and it has that

“unique continuation property”, that is, if u ∈ E(λ̂k(2)) and vanishes on a set
of positive measure, then u ≡ 0. We know that

H1
0 (Ω) =

⊕
k>1

E(λ̂k(2)).
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We have the following variational characterizations for the eigenvalues λ̂k(2),
k > 1:

λ̂1(2) = inf

{
‖∇u‖2

2

‖u‖2
2

: u ∈ H1
0 (Ω), u 6≡ 0

}
(2)

and for k > 2, we have

λ̂k(2) = inf

{
‖∇u‖2

2

‖u‖2
2

: u ∈
⊕
m>k

E(λ̂m(2)), u 6≡ 0

}

= sup

{
‖∇u‖2

2

‖u‖2
2

: u ∈
k⊕

m=1

E(λ̂m(2)), u 6≡ 0

}
.

(3)

In (2) the infimum is realized on the one dimensional eigenspace E(λ̂1(2)).

In (3) both the infimum and the supremum are realized on E(λ̂k(2)). For

λ̂2(2), in addition to the variational characterization provided by (3), we have
an alternative minimax characterization which we will use in the sequel.

So, let

∂BL2

1 = {u ∈ L2(Ω) : ‖u‖2 = 1} and M = H1
0 (Ω) ∩ ∂BL2

1 .

Then we have the following minimax characterization of λ̂2(2) (see Motreanu–
Motreanu–Papageorgiou [31, p. 246]).

Proposition 2.4. λ̂2(2) = inf γ̂∈Γ̂ max−16t61 ‖∇γ̂(t)‖2
2, where

Γ̂ = {γ̂ ∈ C([−1, 1];M) : γ̂(−1) = −û1(2), γ̂(1) = û1(2)}.

In addition to the classical eigenvalue problem for (−∆, H1
0 (Ω)), we can also

consider the following weighted version of it:{−∆u(z) = λξ(z)u(z) in Ω,

u|∂Ω = 0,

with ξ ∈ L∞(Ω), ξ > 0, ξ 6≡ 0. Again we have a sequence of distinct eigenval-

ues {λ̂k(2, ξ)}k>1 increasing to +∞, with λ̂1(2, ξ) > 0 and simple. The varia-
tional characterizations provided by (2) and (3) remain valid, with denominator
in the Rayleigh quotient now being

∫
Ω
ξ(z)u2 dz. As before, the eigenspaces

E(λ̂k(2, ξ)) ⊆ C1
0(Ω) exhibit the unique continuation property. Combining the

variational characterizations with the unique continuation property, we can es-
tablish the following monotonicity properties of ξ 7−→ λ̂k(2, ξ) (see [31]).

Proposition 2.5. If ξ, ξ0 ∈ L∞(Ω)+ and ξ(z) 6 ξ0(z) for almost all z ∈ Ω with

strict inequality on a set of positive measure, then λ̂k(2, ξ0) < λ̂k(2, ξ) for all
k > 1.



214 L. Gasiński et al.

If ξ ≡ 1, then λ̂2(2, ξ) = λ̂k(2) for all k > 0. Finally we mention that

λ̂1(2, ξ) > 0 is the only eigenvalue with eigenfunctions of constant sign. All the
other eigenvalues have sign changing (nodal) eigenfunctions.

Let X be a Banach space and let (Y1, Y2) be a topological pair such that
Y2 ⊆ Y1 ⊆ X. For every integer k > 0 by Hk(Y1, Y2) we denote the k-th singular
homology group with integer coefficients for the pair (Y1, Y2). Given ϕ ∈ C1(X)
and c ∈ R, we introduce the following sets:

ϕc =
{
x ∈ X : ϕ(x) 6 c

}
,

Kϕ =
{
x ∈ X : ϕ′(x) = 0

}
,

Kc
ϕ =

{
x ∈ Kϕ : ϕ(x) = c

}
.

The critical groups of ϕ at an isolated element u ∈ Kc
ϕ are defined by

Ck(ϕ, u) = Hk

(
ϕc ∩ U, ϕc ∩ U \ {u}

)
∀k > 0,

with U being a neighbourhood of u ∈ X, such that Kϕ ∩ ϕc ∩ U = {u}. The
excision property of singular homology, implies that the above definition of
critical groups is independent of the particular choice of the neighbourhood U .

Suppose that ϕ ∈ C1(X) is a functional satisfying the Palais–Smale condi-
tion and inf ϕ(Kϕ) > −∞. Let c < inf ϕ(Kϕ). Then the critical groups of ϕ at
infinity are defined by

Ck(ϕ,∞) = Hk(X,ϕ
c) ∀k > 0.

The second deformation theorem (see e.g., Gasiński–Papageorgiou [15, Theo-
rem 5.1.33, p. 628]), implies that the above definition is independent of the
particular choice of the level c < inf ϕ(Kϕ).

Suppose that Kϕ is finite. We define:

M(t, u) =
∑
k>0

rankCk(ϕ, u)tk ∀t ∈ R, u ∈ Kϕ

and
P (t,∞) =

∑
k>0

dimCk(ϕ,∞)tk ∀t ∈ R.

The Morse relation says that∑
u∈Kϕ

M(t, u) = P (t,∞) + (1 + t)Q(t) ∀t ∈ R, (4)

where Q(t) =
∑

k>0 βkt
k is a formal series in t ∈ R with nonnegative integer

coefficients.
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For 1 < p < +∞, let Ap : W 1,p
0 (Ω) −→ W−1,p′(Ω) = W 1,p

0 (Ω)∗ (where
1
p

+ 1
p′

= 1) be the nonlinear map defined by

〈Ap(u), h〉 =

∫
Ω

|∇u|p−2(∇u,∇h)RN dz ∀u, h ∈ W 1,p
0 (Ω).

For this map we have (see Papageorgiou–Kyritsi [34, p. 314]) the following
result.

Proposition 2.6. The map Ap : W 1,p
0 (Ω) −→ W−1,p′(Ω) is continuous, mono-

tone (hence maximal monotone too) and of type (S)+, that is, if un −→ u weakly
in W 1,p

0 (Ω) and
lim sup
n→+∞

〈Ap(un), un − u〉 6 0,

then un −→ u in W 1,p
0 (Ω). If p = 2, then A2 = A ∈ L(H1

0 (Ω);H−1(Ω)).

Closing this section, let us fix our notation. For ζ ∈ R, we set
ζ± = max{±ζ, 0} and for u ∈ W 1,p

0 (Ω), we define u±(·) = u(·)±. We have

u± ∈ W 1,p
0 (Ω), |u| = u+ + u−, u = u+ − u−.

By | · |N we denote the Lebesgue measure on RN . Also, if h : Ω× R −→ R is a
measurable function (for example a Carathéodory function), then we set

Nh(u)(·) = h
(
·, u(·)

)
∀u ∈ W 1,p

0 (Ω).

This is the Nemytskii (superposition) operator corresponding to the function
h(z, ζ). Evidently, z 7−→ Nh(u)(z) = h(z, u(z)) is measurable.

3. Constant sign solutions

In this section we produce constant sign solutions for problem (1). We impose
the following conditions on the reaction f :

H1 : f : Ω × R −→ R is a Carathéodory function, such that f(z, 0) = 0 for
almost all z ∈ Ω and

(i) for every % > 0, there exists a function a% ∈ L∞(Ω)+, such that

|f(z, ζ)| 6 a%(z) for almost all z ∈ Ω, for all |ζ| 6 %;

(ii) there exist functions w± ∈ W 1,p(Ω) ∩ C(Ω), such that

w−(z) 6 c− < 0 < c+ 6 w+(z) ∀z ∈ Ω,

Ap(w−) + A(w−) 6 0 6 Ap(w+) + A(w+) in W−1,p′(Ω),

f(z, w+(z)) 6 0 6 f(z, w−(z)) for a.a. z ∈ Ω;
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(iii) there exists a function η0 ∈ L∞(Ω)+, such that

η0(z) > λ̂1(2) for a.a. z ∈ Ω,

strictly on a set of positive measure, and

λ̂1(2) 6 η0(z) 6 lim inf
ζ→0

f(z, ζ)

ζ
uniformly for a.a. z ∈ Ω.

Remark 3.1. The above hypotheses do not impose any global growth condi-
tion on f(z, ·). Only we require that f(z, ·) has z-dependent, constant sign zeros
(see H1(ii); compare also hypotheses in Gasiński–Papageorgiou [23]). Hypoth-
esis H1(iii) concerns the behaviour of f(z, ·) near zero and incorporates in our
framework also reactions which are superlinear near zero (concave terms). Note
that hypothesis H1(ii) is satisfied if there exist c− < 0 < c+ such that

f(z, c+) 6 0 6 f(z, c−) for a.a. z ∈ Ω.

Example 3.2. The following functional satisfies hypotheses H1. For the sake
of simplicity, we drop the z-dependence:

f(ζ) =

{
η0(|ζ|q−2ζ − |ζ|r−2ζ) if |ζ| 6 1,
ξ(ζ) if |ζ| > 1,

with 1 < q 6 2 < r, η0 > 0 and η0 > λ̂1(2) when q = 2 and ξ : R −→ R is a
continuous function satisfying ξ(±1) = 0.

Under these conditions on the reaction, we can produce two constant sign
solutions (one positive and the other negative). In what follows we will use the
order intervals.

[0, w+] = {u ∈ W 1,p
0 (Ω) : 0 6 u(z) 6 w+(z) for a.a. z ∈ Ω},

[w−, 0] = {u ∈ W 1,p
0 (Ω) : w−(z) 6 u(z) 6 0 for a.a. z ∈ Ω}.

Proposition 3.3. If hypotheses H1 hold, then problem (1) admits at least two
constant sign solutions

u0 ∈ [0, w+] ∩ intC+, v0 ∈ [w−, 0] ∩ (−intC+).

Proof. First we produce the positive solution. To this end, we introduce the
following truncation of the reaction f(z, ·):

f̂+(z, ζ) =


0 if ζ < 0,
f(z, ζ) if 0 6 ζ 6 w+(z),
f(z, w+(z)) if w+(z) < ζ.

(5)
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This is a Carathéodory function. We set

F̂+(z, ζ) =

∫ ζ

0

f̂+(z, s) ds

and consider the C1-functional ϕ̂+ : W 1,p
0 (Ω) −→ R defined by

ϕ̂+(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

F̂+(z, u(z)) dz ∀u ∈ W 1,p
0 (Ω).

From (5) it is clear that ϕ̂+ is coercive. Also, using the Sobolev embedding
theorem, we can easily see that ϕ̂+ is sequentially weakly lower semicontinuous.
Thus, by the Weierstrass theorem, we can find u0 ∈ W 1,p

0 (Ω) such that

ϕ̂+(u0) = inf{ϕ̂+(u) : u ∈ W 1,p
0 (Ω)}. (6)

Because of hypothesis H1(iii), given ε > 0, we can find δ = δ(ε) ∈ (0, c+) such
that

F (z, ζ) >
1

2
(η0(z)− ε)ζ2 for a.a. z ∈ Ω, all |ζ| 6 δ. (7)

Here

F (z, ζ) =

∫ ζ

0

f(z, s) ds.

Since û1(2) ∈ intC+, we can find t ∈ (0, 1) small such that

0 6 tû1(2)(z) 6 δ ∀z ∈ Ω. (8)

So, we have

ϕ̂+(tû1(2)) =
tp

p
‖∇û1(2)‖pp +

t2

2
λ̂1(2)−

∫
Ω

F̂+(z, tû1(2)) dz

6
tp

p
‖∇û1(2)‖pp +

t2

2

(∫
Ω

(
λ̂1(2)− η0(z) + ε

)
û1(2)2 dz

) (9)

(see (5), recall that û1(2) ∈ intC+, ‖û1(2)‖2 = 1 and see (7) and (8)).
Because û1(2) ∈ intC+, using hypothesis H1(iii), we have

ξ∗ =

∫
Ω

(
η0(z)− λ̂1(2)

)
û1(2)2 dz > 0.

Returning to (9) and choosing ε ∈ (0, ξ∗), we have

ϕ̂+(tû1(2)) 6
tp

p
‖∇û1(2)‖pp −

t2

2
ξ∗ε ,
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with ξ∗ε = ξ∗ − ε > 0. Since 2 < p and t ∈ (0, 1), by taking t even smaller if
necessary, we can have ϕ̂+(tû1(2)) < 0 and so

ϕ̂+(u0) < 0 = ϕ̂+(0)

(see (6)), hence u0 6= 0.
From (6), we have ϕ̂′+(u0) = 0, so

Ap(u0) + A(u0) = Nf̂+
(u0). (10)

On (10), first we act with −u−0 ∈ W 1,p
0 (Ω). Then ‖∇u−0 ‖pp + ‖∇u−0 ‖2

2 = 0
(see (5)), so

u0 > 0, u0 6≡ 0.

Next on (10) we act with (u0 − w+)+ ∈ W 1,p
0 (Ω) (see hypothesis H1(ii)). Then

〈Ap(u0), (u0 − w+)+〉+ 〈A(u0), (u0 − w+)+〉

=

∫
Ω

f(z, w+)(u0 − w+)+ dz

6 〈Ap(w+), (u0 − w+)+〉+ 〈A(w+), (u0 − w+)+〉

(see (5) and hypothesis H1(ii)), so∫
{u0>w+}

(
|∇u0|p−2∇u0−|∇w+|p−2∇w+,∇u0−∇w+

)
RN dz+‖∇(u0−w+)+‖2

260,

thus
u0 6 w+.

So, we have proved that u0 ∈ [0, w+] and thus u0 is a nonnegative solution of
problem (1) (see (5)).

Using Lieberman [30, Theorem 1], we see that u0 ∈ C+ \ {0}. Hypotheses
H1(i),(iii) imply that given % > 0, we can find ξ% > 0 such that

f(z, ζ)ζ + ξ%|ζ|p > 0 for a.a. z ∈ Ω, all |ζ| 6 %. (11)

Let % = ‖u0‖∞ and let ξ% > 0 be as in (11). For almost all z ∈ Ω, we have

−∆pu0(z)−∆u0(z) + ξ%u0(z)p−1 = f(z, u0(z)) + ξ%u0(z)p−1 > 0

so
∆pu0(z) + ∆u0(z) 6 ξ%u0(z)p−1 for a.a. z ∈ Ω. (12)

Let

H(t) =
1

p
tp +

1

2
t2 and H0(t) =

1

p
tp ∀t > 0.
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These are strictly increasing functions and H(t) > H0(t) for all t > 0 (recall
p > 2). From Leoni [29, p. 6], we have

H−1(t) 6 H−1
0 (t) ∀t > 0.

Then for δ ∈ (0, 1), we have∫ δ

0

1

H−1( ξ%
p
tp)
dt >

∫ δ

0

1

H−1
0 ( ξ%

p
tp)
dt = c1

∫ δ

0

1

t
dt = +∞, (13)

for some c1 > 0. From (12), (13) and the nonlinear strong maximum principle
of Pucci–Serrin [38, p. 111], we have

u0(z) > 0 ∀z ∈ Ω.

Then we can apply the boundary point theorem of Pucci–Serrin [38, p. 120] and
infer that u0 ∈ intC+. So, finally we have u0 ∈ [0, w+] ∩ intC+.

For the negative solution, we consider the following truncation of f(z, ·):

f̂−(z, ζ) =


f(z, w−(z)) if ζ < w−(z),
f(z, ζ) if w−(z) 6 ζ 6 0,
0 if 0 < ζ.

(14)

This is a Carathéodory function. We set

F̂−(z, ζ) =

∫ ζ

0

f̂−(z, s) ds

and consider the C1-functional ϕ̂− : W 1,p
0 (Ω) −→ R defined by

ϕ̂−(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

F̂−(z, u(z)) dz ∀u ∈ W 1,p
0 (Ω).

Reasoning as above and using (14), via the direct method, we produce a negative
solution v0 ∈ [w−, 0] ∩ (−intC+).

If we strengthen a little the conditions on f(z, ·) (but without altering the
overall geometry of the problem), we can improve the conclusion of Proposi-
tion 3.3. The new conditions on the reaction f are the following:

H2 : f : Ω × R −→ R is a Carathéodory function, such that f(z, 0) = 0 for
almost all z ∈ Ω, hypotheses H2(i)–(iii) are the same as the corresponding
hypotheses H1(i)–(iii) with the addition that w± ∈ C1(Ω) and

(iv) for every % ∈ (0, %0) (where %0 = max{‖w−‖∞, ‖w+‖∞}), there exists
ξ% > 0 such that for almost all z ∈ Ω, the function ζ 7−→ f(z, ζ)+ξ%|ζ|p−2ζ
is nondecreasing on [−%, %].
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Remark 3.4. Hypothesis H2(iv) is satisfied, if for almost all z ∈ Ω, f(z, ·) ∈
C1(R) and f ′ζ(z, ·) is locally L∞(Ω)-bounded.

Proposition 3.5. If hypotheses H2 hold, then problem (1) admits at least two
constant sign solutions

u0 ∈ intC+ with u0(z) < w+(z) ∀z ∈ Ω,

v0 ∈ −intC+ with w−(z) < v0(z) ∀z ∈ Ω.

Proof. From Proposition 3.3, we already have two constant sign solutions

u0 ∈ [0, w+] ∩ intC+, v0 ∈ [w−, 0] ∩ (−intC+).

Let a(y) = |y|p−2y + y for all y ∈ RN . We have a ∈ C1(RN ;RN) (recall that
p > 2) and

div a(∇u) = ∆pu+ ∆u ∀u ∈ W 1,p
0 (Ω).

We have ∇a(y) = |y|p−2
(
I + (p− 2)y⊗y|y|2

)
+ I, so(

∇a(y)ξ, ξ
)
RN > |ξ|2 ∀y, ξ ∈ RN . (15)

Hypothesis H2(iv) implies that f(z, ·) is Lipschitz on [−%0, %0]. Indeed, if
ζ, y ∈ [−%0, %0] with y < ζ, then

f(z, ζ)− f(z, y) > −ξ%0

(
|ζ|p−2ζ − |y|p−2y

)
> −ξ∗%0

(ζ − y) (16)

for some ξ∗% > 0 (see hypothesis H2(iv) and recall that p > 2).
Now let % = ‖u0‖∞ and let ξ% > 0 be as postulated by hypothesis H2(iv).

Then we have

Ap(u0) + A(u0) + ξ%u
p−1
0 = Nf (u0) + ξ%u

p−1
0

6 Nf (w+) + ξ%w
p−1
+

6 Ap(w+) + A(w+) + ξ%w
p−1
+ in W−1,p′(Ω)

(17)

(see hypotheses H2(iv),(ii)).
Since w+ ∈ C1(Ω) from (16) and (17) we see that we can apply the tangency

principle of Pucci–Serrin [38, p. 35] and we have

u0(z) < w+(z) ∀z ∈ Ω.

Similarly we show that w−(z) < v0(z) for all z ∈ Ω.

Next we establish the existence of extremal constant sign solutions. That is,
we show that there exists a smallest positive solution u∗ and a biggest negative
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solution v∗. Using these extremal constant sign solutions, we will produce a
nodal (sign changing) solution (see Section 4).

Let S+ (respectively S−) be the set of nontrivial positive (respectively nega-
tive) solutions of problem (1) in the order interval [0, w+] (respectively [w−, 0]).
Clearly, if we find a minimal (respectively maximal) element of S+ (respec-
tively S−), then we will have the extremal constant sign solutions of problem (1).
From Proposition 3.3 we know that

S+ 6= ∅, S+ ⊆ intC+ and S− 6= ∅, S− ⊆ −intC+.

Proposition 3.6. If hypotheses H1 hold, then problem (1) admits a smallest
positive solution u∗ ∈ intC+ and a biggest negative solution v∗ ∈ −intC+.

Proof. From Dunford–Schwartz [10, p. 336] (see also Hu–Papageorgiou [27,
p. 178]), we can find a sequence {un}n>1 ⊆ S+ such that

inf S+ = inf
n>1

un.

We have
Ap(un) + A(un) = Nf (un) ∀n > 1, (18)

so the sequence {un}n>1 ⊆ W 1,p
0 (Ω) is bounded (recall that un ∈ [0, w+] for all

n > 1).
So, we may assume that

un −→ u∗ weakly in W 1,p
0 (Ω), (19)

un −→ u∗ in Lp(Ω). (20)

On (18) we act with un − u∗ ∈ W 1,p
0 (Ω), pass to the limit as n → +∞ and

use (19). We obtain limn→+∞
(
〈Ap(un), un − u∗〉+ 〈A(un), un − u∗〉

)
= 0, so

lim sup
n→+∞

(
〈Ap(un), un − u∗〉+ 〈A(u∗), un − u∗〉

)
6 0

(since A is monotone), thus lim supn→+∞〈Ap(un), un − u∗〉 6 0 and hence

un −→ u∗ in W 1,p
0 (Ω) (21)

(see Proposition 2.6).
Therefore, if in (18) we pass to the limit as n→ +∞ and use (21), then

Ap(u∗) + A(u∗) = Nf (u∗), u∗ > 0. (22)

We need to show that u∗ 6= 0. To this end, note that hypothesis H1(i),(iii)
imply that given ε > 0 and r > 1, we can find c2 = c2(ε, r) > 0 such that

f(z, ζ)ζ > (η0(z)− ε)ζ2 − c2|ζ|r for a.a. z ∈ Ω, all |ζ| 6 %0, (23)
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where %0 = max{‖w+‖∞, ‖w−‖∞}. We introduce the following Carathéodory
function

k+(z, ζ) =


0 if ζ < 0,
(η0(z)− ε)ζ − c2ζ

r−1 if 0 6 ζ 6 w+(z),
(η0(z)− ε)w+(z)− c2w+(z)r−1 if w+(z) < ζ.

(24)

We consider the following auxiliary Dirichlet problem{−∆pu(z)−∆u(z) = k+(z, u(z)) in Ω,

u|∂Ω = 0.
(25)

We show that this problem has a unique positive solution u ∈ [0, w+] ∩ intC+.
For this purpose we set

K+(z, ζ) =

∫ ζ

0

k+(z, s) ds

and consider the C1-functional ψ+ : W 1,p
0 (Ω) −→ R defined by

ψ+(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

K+(z, u(z)) dz ∀u ∈ W 1,p
0 (Ω).

It is clear from (24) that ψ+ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, we can find u ∈ W 1,p

0 (Ω) such that

ψ+(u) = inf{ψ+(u) : u ∈ W 1,p
0 (Ω)}. (26)

As in the proof of Proposition 3.3, for t ∈ (0, 1) small (at least such that
tû1(2) 6 w+) and choosing ε > 0 small, we can have ψ+(tû1(2)) < 0, so

ψ+(u) < 0 = ψ+(0)

(see (26)), hence u 6≡ 0.
From (26), we have ψ′+(u) = 0, so

Ap(u) + A(u) = Nk+(u). (27)

Acting on (27) with −u−0 ∈ W 1,p
0 (Ω) and with (u0 − w+)+ ∈ W 1,p

0 (Ω) and
using (23), hypothesis H1(ii) and the nonlinear regularity theory (see Lieberman
[30, Theorem 1]) and the nonlinear maximum principle (see Pucci–Serrin [38,
p. 111]), we obtain

u ∈ [0, w+] ∩ intC+

(see also the proof of Proposition 3.3).
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From (24) and (27) it follows that u ∈ intC+ is a positive solution of
problem (25). We show that this is the unique positive solution of (25). Let

G0(t) =
1

p
tp +

1

2
t2 ∀t > 0

and set
G(y) = G0(|y|) ∀y ∈ RN .

Note that G ∈ C1(RN) and ∇G(y) = a(y) = |y|p−2y+ y for all y ∈ RN (see the
proof of Proposition 3.5).

We consider the integral functional σ+:Lp(Ω)−→R=R∪{+∞} defined by

σ+(u) =


∫

Ω

G(∇u
1
2 ) dz if u > 0, u

1
2 ∈ W 1,p

0 (Ω),

+∞ otherwise.

Using Benguria–Brézis–Lieb [4, Lemma 4] (see also Dı́az–Saá [9, Lemma 1]),
we see that σ+ is convex, while using Fatou’s lemma we have that σ+ is lower
semicontinuous.

Suppose that u, y ∈ W 1,p
0 (Ω) are both positive solutions of (25). From the

previous part of the proof, we have that u, y ∈ intC+ and so u2, y2 ∈ domσ+ =
{u ∈ L1(Ω) : σ+(u) < +∞} (the effective domain of σ+). Let h ∈ C1

0(Ω). For
t ∈ [−1, 1] small in absolute value, we have

u2 + th ∈ domσ+, y2 + th ∈ domσ+.

Therefore the Gâteaux derivative of σ+ at u2, y2 in the direction h exists and
using the chain rule, we have

σ′+(u)(h) =
1

2

∫
Ω

−∆pu−∆u

u
h dz, σ′+(y)(h) =

1

2

∫
Ω

−∆py −∆y

y
h dz.

The convexity of σ+ implies the monotonicity of σ′+ and so with h = u2 − y2 ∈
C1

0(Ω), we have

0 6
∫

Ω

(
k+(z, u)

u
− k+(z, y)

y

)
(u2− y2) dz = c2

∫
Ω

(yr−1− ur−1)(u2− y2) dz 6 0

(see (24), (25) and recall that u, y ∈ [0, w+]), so u = y (due to the strict
monotonicity of the map ζ 7−→ ζr−1 for ζ > 0). This proves the uniqueness of
the positive solutions u ∈ intC+ of problems (25).

Claim. u 6 u for all u ∈ S+.

Let u ∈ S+ and consider the following Carathéodory function:

e+(z, ζ) =


0 if ζ < 0,
(η0(z)− ε)ζ − c2ζ

r−1 if 0 6 ζ 6 u(z),
(η0(z)− ε)u(z)− c2u(z)r−1 if u(z) < ζ.

(28)
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Let

E+(z, ζ) =

∫ ζ

0

e(z, s) ds

and let ξ̂+ : W 1,p
0 (Ω) −→ R be the C1-functional defined by

ξ̂+(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

E+(z, u(z)) dz ∀u ∈ W 1,p
0 (Ω).

As before, from (28) we see that ξ̂+ is coercive. Also, it is sequentially weakly
lower semicontinuous. So, we can find ũ ∈ W 1,p

0 (Ω) such that

ξ̂+(ũ) = inf
{
ξ̂+(u) : u ∈ W 1,p

0 (Ω)
}
. (29)

Again for t ∈ (0, 1) small, we have ξ̂+(tû1(2)) < 0 and so ũ 6= 0. From (29) we

have ξ̂′+(ũ) = 0, so
Ap(ũ) + A(ũ) = Ne+(ũ). (30)

Acting on (30) with −ũ− ∈ W 1,p
0 (Ω) and with (ũ− u)+ ∈ W 1,p

0 (Ω), we obtain

ũ ∈ [0, u], ũ 6= 0, (31)

so ũ is a positive solution of (25) (recall u 6 w+), so ũ = u (due to the uniqueness
of the positive solution u ∈ intC+) and thus u 6 u (see (31)). This proves the
Claim.

By virtue of the Claim, we have u 6 un ∀n > 1, so

u 6 u∗

(see (21)) and so u∗ 6= 0.
From (22) we see that u∗ ∈ S+. Therefore

u∗ = inf S+, u∗ ∈ S+,

so u∗ ∈ intC+ is the smallest positive solution of (1).
For the biggest negative solution v∗ ∈ −intC+ we argue similarly starting

from the Carathéodory function

k−(z, ζ) =


(η0(z)− ε)w−(z)− c2|w−(z)|r−2w−(z) if ζ < w−(z),
(η0(z)− ε)ζ − c2|ζ|r−2ζ if w−(z) 6 ζ 6 0,
0 if 0 < ζ.

In this case the auxiliary problem{−∆pu(z)−∆u(z) = k−(z, u(z)) in Ω,

u|∂Ω = 0

has a unique negative solution v ∈ −intC+ and v 6 v for all v ∈ S−. So, we
can have v = supS−, v ∈ S−.
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4. Nodal solutions

In this section we produce nodal (sign changing) solutions for problem (1). To
do this we need to strengthen a little our condition on f(z, ·) near zero (see
hypothesis H1(iii)), but without altering the essential geometry of the problem.
So, the new conditions on the reaction f(z, ·) are the following:

H3 : f : Ω×R −→ R is a Carathéodory function, such that f(z, 0) = 0 for almost
all z ∈ Ω, hypotheses H3(i),(ii) are the same as the corresponding hypotheses
H1(i),(ii) and

(iii) λ̂2(2) < lim infζ→0
f(z,ζ)
ζ

uniformly for almost all z ∈ Ω.

In what follows, u∗ ∈ intC+ and v∗ ∈ −intC+ are the two extremal constant
sign solutions of problem (1) produced in Proposition 3.6.

Proposition 4.1. If hypotheses H3 hold, then problem (1) admits a nodal so-
lution y0 ∈ [v∗, u∗] ∩ C1

0(Ω).

Proof. With u∗ ∈ intC+ and v∗ ∈ −intC+ being the two extremal constant sign
solutions of problem (1) produced in Proposition 3.6, we introduce the following
truncation of f(z, ·):

β(z, ζ) =


f(z, v∗(z)) if ζ < v∗(z),
f(z, ζ) if v∗(z) 6 ζ 6 u∗(z),
f(z, u∗(z)) if u∗(z) < ζ.

(32)

We also consider the positive and negative truncation of β(z, ·), namely the
functions

β±(z, ζ) = β(z,±ζ±) ∀(z, ζ) ∈ Ω× R.

All three are Carathéodory functions. We set

B(z, ζ) =

∫ ζ

0

β(z, s) ds, B±(z, ζ) =

∫ ζ

0

β±(z, s) ds

and consider the C1-functionals ψ̂, ψ̂± : W 1,p
0 (Ω) −→ R defined by

ψ̂(u) =
1

p
‖∇u‖pp +

1

p
‖∇u‖2

2 −
∫

Ω

B(z, u(z)) dz ∀u ∈ W 1,p
0 (Ω),

ψ̂±(u) =
1

p
‖∇u‖pp +

1

p
‖∇u‖2

2 −
∫

Ω

B±(z, u(z)) dz ∀u ∈ W 1,p
0 (Ω).

Claim 1. Kψ̂ ⊆ [v∗, u∗], Kψ̂+
= {0, u∗}, Kψ̂−

= {0, v∗}.
Let u ∈ Kψ̂. We have

Ap(u) + A(u) = Nβ(u). (33)
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On (33) we act with (u− u∗)+ ∈ W 1,p
0 (Ω). We obtain

〈Ap(u), (u−u∗)+〉+〈A(u), (u−u∗)+〉=
∫

Ω

β(z, u)(u−u∗)+ dz

=

∫
Ω

f(z, u∗)(u−u∗)+ dz

=〈Ap(u∗), (u−u∗)+〉+〈A(u∗), (u−u∗)+〉

(see (32) and since u∗ ∈ S+), so∫
{u>u∗}

(
|∇u|p−2∇u− |∇u∗|p−2∇u∗,∇u−∇u∗

)
RN dz + ‖∇(u− u∗)+‖2

2 = 0

and thus u 6 u∗. Similarly, acting on (33) with (v∗ − v)− ∈ W 1,p
0 (Ω), we show

that v∗ 6 u. Therefore
u ∈ [v∗, u∗],

where [v∗, u∗] = {w ∈ W 1,p
0 (Ω) : v∗(z) 6 w(z) 6 u∗(z) for a.a. z ∈ Ω}, so

Kψ̂ ⊆ [v∗, u∗].

Using a similar argument, we show that Kψ̂+
⊆ [0, u∗] and Kψ̂−

⊆ [v∗, 0]. The
extremality of the solutions u∗ and v∗ implies that

Kψ̂+
= {0, u∗} and Kψ̂−

= {0, v∗}.

This proves Claim 1.

Claim 2. u∗ ∈ intC+ and v∗ ∈ −intC+ are local minimizers of ψ̂.

From (32) it is clear that ψ̂ is coercive. Also, it is sequentially weakly lower
semicontinuous. So, by the Weierstrass theorem, we can find û∗ ∈ W 1,p

0 (Ω) such
that

ψ̂+(û∗) = inf{ψ̂+(u) : u ∈ W 1,p
0 (Ω)} = m̂+. (34)

As in the proof of Proposition 3.3, using hypothesis H3(iii), for t ∈ (0, 1) small
(at least such that tû1(2) 6 u∗, recall that u∗ ∈ intC+ and see Lemma 3.3 of
Filippakis-Kristaly-Papageorgiou [11], to check that this is possible), we have

ψ̂+(tû1(2)) < 0,

so ψ̂+(û∗) < 0 = ψ̂+(0) (see (34)) and thus

û∗ 6≡ 0.

Since û∗ ∈ Kψ̂+
(see (34)), from Claim 1, we infer that û∗ = u∗. Note that

ψ̂+|C+
= ψ̂|

C+
(see (32)), so

u∗ ∈ intC+ is a local C1
0(Ω)-minimizer of ψ̂
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and thus
u∗ ∈ intC+ is a local W 1,p

0 (Ω)-minimizer of ψ̂

(see Proposition 2.2).

Similarly, using this time the functional ψ̂−, we show that v∗ ∈ −intC+ is
a local minimizer of ψ̂. This proves Claim 2.

We may assume that Kψ̂ is finite (otherwise we already have a whole se-
quence of distinct nodal solutions, see Claim 1). Without any loss of generality,

we may assume that ψ̂(v∗) 6 ψ̂(u∗) (the analysis is similar if the opposite
inequality holds).

Because of Claim 2, we can find % ∈ (0, 1) small such that

ψ̂(v∗) 6 ψ̂(u∗) < inf
{
ψ̂(u) : ‖u− u∗‖ = %

}
= m̂%, ‖v∗ − u∗‖ > % (35)

(see Gasiński–Papageorgiou [16]). From (32) it is clear that ψ̂ is coercive. So, it
satisfies the Palais–Smale condition (see Papageorgiou-Winkert [37]). This fact
and (35) permit the use of the mountain pass theorem (see Theorem 2.1). So,
we can find y0 ∈ W 1,p

0 (Ω) such that

y0 ∈ Kψ̂ ⊆ [v∗, u∗] and m̂% 6 ψ̂(y0) (36)

(see Claim 1 and (35)). From (35) and (36) we see that y0 6∈ {u∗, v∗}. We need
to show that y0 6≡ 0 and then from (36) and the extremality of the solutions u∗
and v∗, we can conclude that y0 is nodal.

From the mountain pass theorem (see Theorem 2.1), we have

ψ̂(y0) = inf
γ∈Γ

max
06t61

ψ̂(γ(t)), (37)

where Γ = {γ ∈ C([0, 1];W 1,p
0 (Ω)) : γ(0) = v∗, γ(1) = u∗}. According to (37),

in order to establish the nontriviality of y0, it suffices to produce a path γ∗ ∈ Γ
such that ψ̂|γ∗ < 0. In what follows, we construct such a path.

Recall that ∂BL2

1 = {u ∈ L2(Ω) : ‖u‖2 = 1}, M = H1
0 (Ω) ∩ ∂BL2

1 . Also we
introduce the Banach manifold Mc = C1

0(Ω) ∩ ∂BL2

1 and consider the following
sets of paths:

Γ̂ = {γ̂ ∈ C([−1, 1];M) : γ̂(−1) = −û1(2), γ̂(1) = û1(2)},

Γ̂c = {γ̂ ∈ C([−1, 1];Mc) : γ̂(−1) = −û1(2), γ̂(1) = û1(2)}.

We know that Γ̂c is dense in Γ̂ (see Gasiński–O’Regan–Papageorgiou [13]). Then

from Proposition 2.4 we see that given δ̂ > 0, we can find γ̂0 ∈ Γ̂c such that

‖∇γ̂0(t)‖2
2 6 λ̂1(2) + δ̂ ∀t ∈ [−1, 1]. (38)
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Hypothesis H1(iii) implies that we can find δ > 0 and c3 > λ̂2(2) such that

1

2
c3ζ

2 6 F (z, ζ) for a.a. z ∈ Ω, all |ζ| 6 δ. (39)

Since γ̂0 ∈ Γ̂c and u∗ ∈ intC+, v∗ ∈ −intC+, we can find τ ∈ (0, 1) small such
that

τ γ̂0(t) ∈ [v∗, u∗], τ |γ̂0(t)(z)| 6 δ ∀z ∈ Ω (40)

and
τ |∇γ̂0(t)(z)| 6 δ ∀t ∈ [−1, 1] ∀z ∈ Ω. (41)

Then for all t ∈ [−1, 1], we have

ψ̂(τγ0(t)) =
τ p

p
‖∇γ̂0(t)‖pp +

τ 2

2
‖∇γ̂0(t)‖2

2 −
∫

Ω

F (z, τ γ̂0(t)) dz

6
τ p

p
‖∇γ̂0(t)‖pp +

τ 2

2

(
λ̂2(2) + δ̂ − c3

)
6
τ p

p
c4 −

τ 2

2

(
c3 − (λ̂2(2) + δ̂)

)
,

(42)

with c4 > max−16t61 ‖∇γ̂0(t)‖pp > 0 (see (38)–(41)) and recall that ‖û1(2)‖ = 1).

We choose δ̂ ∈ (0, c3 − λ̂2(2)) and recall that 2 < p and τ ∈ (0, 1). So,
from (42) and by choosing τ ∈ (0, 1) even smaller if necessary, we have

ψ̂(τ γ̂0(t)) < 0 ∀t ∈ [−1, 1]. (43)

Let γ0 = τ γ̂0. This is a continuous path in H1
0 (Ω) which connects −τ û1(2) and

τ û1(2) and

ψ̂|γ0
< 0 (44)

(see (43)).
Next we construct a path in H1

0 (Ω) which connects τ û1(2) and u∗ and along

which ψ̂ is strictly negative.
From (34) and the previous part of the proof, we have

ψ̂+(u∗) = m̂+ < 0 = ψ̂+(0). (45)

Using the second deformation theorem (see e.g., Gasiński–Papageorgiou [15,

p. 628]), we can find a deformation h : [0, 1]× (ψ̂0
+ \K0

ψ̂+
) −→ ψ̂0

+ such that

h(0, u) = u ∀u ∈ ψ̂0
+ \Kψ̂+

, (46)

h(1, ψ̂0
+ \K0

ψ̂+
) ⊆ ψ̂

m̂+

+ (47)
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and
ψ̂+(h(t, u)) 6 ψ̂+(h(s, u)) ∀t, s ∈ [0, 1], s 6 t, u ∈ ψ̂0

+ \K0
ψ̂+
. (48)

Note that ψ̂
m̂+

+ = {u∗} (see (34), (45) and Claim 1). Also ψ̂+(τ û1(2)) =

ψ̂(τ û1(2)) = ψ̂(γ0(1)) < 0 (since ψ̂+|C+
= ψ̂|

C+
, see (32) and (44)), so

τ û1(2) ∈ ψ̂0
+ \K0

ψ̂+
= ψ̂0

+ \ {0}

(see Claim 1).
So, we can define

γ+(t) = h(t, τ û1(2))+ ∀t ∈ [0, 1].

Evidently γ+ is a path in H1
0 (Ω) such that

γ+(0) = h(0, τ û1(2))+ = τ û1(2)

(see (46) and recall that τ û1(2) ∈ intC+) and

γ+(1) = h(1, τ û1(2))+ = u∗

(see (47) and recall that ψ̂
m̂+

+ = {u∗}, u∗ ∈ intC+). Moreover, for all t ∈
[0, 1], we have ψ̂(γ+(t)) = ψ̂+(γ+(t)) = ψ̂+(h(t, τ û1(2))+) 6 ψ̂+(h(t, τ û1(2))) 6
ψ̂+(h(0, τ û1(2))) = ψ̂+(τ û1(2)) = ψ̂(τ û1(2)) < 0 (since ψ̂|

C+
= ψ̂+|C+

, see (32),

(44), (46), (48) and recall that τ û1(2) ∈ intC+). Thus

ψ̂|γ+
< 0. (49)

In a similar fashion, we produce a path γ− in H1
0 (Ω) which connect −τ û1(2)

and v∗ and such that
ψ̂|γ− < 0. (50)

We concatenate γ0, γ+, γ− and obtain a path γ∗ ∈ Γ such that

ψ|γ∗ < 0

(see (44), (49) and (50)), so y0 6≡ 0 and thus y0 ∈ [v∗, u∗] ∩ C1
0(Ω) is a nodal

solution of (1).

We can state our first multiplicity theorem for problem (1). We stress that
we provide sign information for all the solutions produced.

Theorem 4.2. If hypotheses H3 hold, then problem (1) has at least three non-
trivial solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ [v0, u0] ∩ C1
0(Ω) nodal.
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As we did in Proposition 3.5, if we assume an additional mild condition for f
(without affecting the geometry of the problem), we can improve the conclusion
of Theorem 4.2. We will need this improved version in our next multiplicity
theorem.

The new conditions on the reaction f are the following:

H4 : f : Ω × R −→ R is a Carathéodory function, such that f(z, 0) = 0 for
almost all z ∈ Ω, hypotheses H4(i)–(iii) are the same as the corresponding
hypotheses H3(i)–(iii) and

(iv) for every % ∈ (0, %0] with %0 = max{‖w+‖∞, ‖w−‖∞}, there exists ξ% > 0
such that for almost all z ∈ Ω, the function ζ 7−→ f(z, ζ) + ξ%|ζ|p−2ζ is
nondecreasing on [−%, %].

Remark 4.3. This extra condition is automatically satisfied if for almost all
z ∈ Ω, f(z, ·) ∈ C1(R) and f ′ζ(z, ·) is locally L∞(Ω)-bounded.

In this case we have the following multiplicity theorem.

Theorem 4.4. If hypotheses H4 hold, then problem (1) has at least three non-
trivial solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ intC1
0 (Ω)[v0, u0] nodal.

Proof. From Theorem 4.2, we already have three nontrivial solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ [v0, u0] ∩ C1
0(Ω) nodal.

Let %0 = max{‖w+‖∞, ‖w−‖∞} and let ξ%0 > 0 be as postulated by hypothesis

H4(iv). We choose ξ̂0 > ξ%0 and have

−∆py0(z)−∆y0(z) + ξ̂0|y0(z)|p−2y0(z)

= f(z, y0(z)) + ξ̂0|y0(z)|p−2y0(z)

6 f(z, u0(z)) + ξ̂0u0(z)p−1

= −∆pu0(z)−∆u0(z) + ξ̂0u0(z)p−1 for a.a. z ∈ Ω

(51)

(see hypothesis H4(iv) and recall that y0 6 u0).
Because of (15) and (16) (see the proof of Proposition 3.5), we can apply

the tangency principle of Pucci–Serrin [38, p. 35] and have that

y0(z) < u0(z) ∀z ∈ Ω. (52)

We consider the following two L∞(Ω)-functions

h(z) = f(z, y0(z)) + ξ̂0|y0(z)|p−2y0(z)

= f(z, y0(z)) + ξ%0|y0(z)|p−2y0(z) + (ξ̂0 − ξ%0)|y0(z)|p−2y0(z)

= h∗(z) + (ξ̂0 + ξ%0)|y0(z)|p−2y0(z),
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with h∗(z) = f(z, y0(z)) + ξ%0 |y0(z)|p−2y0(z), h∗ ∈ L∞(Ω) and

ĥ(z) = f(z, u0(z)) + ξ̂0u0(z)p−1 = ĥ∗(z) + (ξ̂ − ξ%0)u0(z)p−1,

with ĥ∗(z) = f(z, u0(z)) + ξ%0u0(z), ĥ∗ ∈ L∞(Ω).

Note that h∗ 6 ĥ∗ (see hypothesis H4(iv)). Moreover, from (52) it follows

that (ξ̂0 − ξ%0)|y0|p−2y0 ≺ (ξ̂0 − ξ%0)up−1
0 . Therefore we have

h ≺ ĥ

and so because of (51) we can apply Proposition 2.3 and infer that

u0 − y0 ∈ intC+.

In a similar fashion, we show that

y0 − v0 ∈ intC+.

We conclude that y0 ∈ intC1
0 (Ω)[v0, u0].

Now we improve the regularity of f(z, ·) and strengthen the condition near
zero. With these new hypotheses on the reaction, we can improve the previous
multiplicity theorems (Theorems 4.2 and 4.4) and produce two nodal solutions
(for a total of four nontrivial solutions for problem (1)).

The new conditions on the reaction f are the following:

H5 : f : Ω × R −→ R is a Carathéodory function, such that f(z, 0) = 0 and
f(z, ·) ∈ C1(R) for almost all z ∈ Ω and

(i) for every % > 0 there exists a% ∈ L∞(Ω)+ such that |f ′ζ(z, ζ)| 6 a%(z) for
almost all z ∈ Ω and all |ζ| 6 %;

(ii) there exist functions w± ∈ W 1,p(Ω) ∩ C(Ω) such that

w−(z) 6 c− < 0 < c+ 6 w+(z) ∀z ∈ Ω,

Ap(w−) + A(w−) 6 0 6 Ap(w+) + A(w+) in W−1,p′(Ω),

f(z, w+(z)) 6 0 6 f(z, w−(z)) for a.a. z ∈ Ω;

(iii) there exists an integer m > 2 such that f ′ζ(z, 0) ∈ [λ̂m(2), λ̂m+1(2)] for

almost all z ∈ Ω and f ′ζ(·, 0) 6≡ λ̂m(2), f ′ζ(·, 0) 6≡ λ̂m+1(2).

Remark 4.5. Note that now the geometry near zero changes since f(z, ·) is
necessarily linear near there. Also, the extra regularity on f(z, ·) implies that
for every % ∈ (0, %0) (with %0 = max{‖w+‖∞, ‖w−‖∞}) there exists ξ% > 0 such
that for almost all z ∈ Ω, the function ζ 7−→ f(z, ζ)+ξ%|ζ|p−2ζ is nondecreasing
on [−%, %].
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Under these conditions on the reaction f we can prove the following multi-
plicity theorem.

Theorem 4.6. If hypotheses H5 hold, then problem (1) has at least four non-
trivial solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0, ŷ ∈ intC1
0 (Ω)[v0, u0] nodal.

Proof. From Theorem 4.4 we already have three solutions

u0 ∈ intC+, v0 ∈ −intC+ and y0 ∈ intC1
0 (Ω)[v0, u0] nodal.

We can always assume that u0, v0 are extremal (see Proposition 3.6). Let

ψ̂ ∈ C1(W 1,p
0 (Ω)) be the functional introduced in the proof of Proposition 4.1.

From Claim 2 in that proof, we know that u0, v0 are both local minimizers of ψ̂.
So, we have

Ck(ψ, u0) = Ck(ψ, v0) = δk,0Z ∀k > 0. (53)

Note that ψ̂ ∈ C2−0(W 1,p
0 (Ω)) (see (32)) and so we cannot apply directly on ψ̂

the results of Morse theory. We need to produce a smooth modification of ψ
near u0 and v0 where we can have nonsmoothness of ψ̂ (see (32)). We have

u0 − y0 ∈ intC+ and y0 − v0 ∈ intC+.

Fix ũ ∈ intC+. Invoking Lemma 3.3 of Filippakis–Kristaly–Papageorgiou [11],
we know that we can find ε > 0 small such that

εũ 6 u0 − y0 and εũ 6 y0 − v0.

We consider the multifunction Lε : Ω −→ 2C
1(R) defined by

Lε(z) =

ϑ ∈ C1(R)

∣∣∣∣∣∣∣
d
C1(R)

(β(z, ·), ϑ) < εũ(z) and β(z, ζ) = ϑ(z)

for |ζ − u0(z)| > εũ(z) and for

|ζ − v0(z)| > εũ(z)

 . (54)

Evidently

GrLε =
{

(z, ϑ) ∈ Ω× C1(R) : ϑ ∈ Lε(z)
}
∈ L × B(C1(R)),

with L being the Lebesgue σ-field on Ω and B(C1(R)) being the Borel σ-field
on C1(R). Recall that C1(R) is a separable Fréchet space. So, we can apply
the Yankov–von Neumann–Aumann selection theorem (see Hu–Papageorgiou
[27, p. 158] or Gasiński–Papageorgiou [15, Theorem A.2.33, p. 906]) and obtain

a Lebesgue measurable map ϑ̂ : Ω −→ C1(R), such that

ϑ̂(z) ∈ Lε(z) ∀z ∈ Ω.
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We set
ϑ0(z, ζ) = ϑ̂(z)(ζ) ∀(z, ζ) ∈ Ω× R.

Then ϑ0(·, ·) is a measurable function and for all z ∈ Ω, ϑ0(z, ·) ∈ C1(R). We
set

Θ0(z, ζ) =

∫ ζ

0

ϑ0(z, s) ds

and consider the C2-functional ψ̂0 : W 1,p
0 (Ω) −→ R defined by

ψ̂0(u) =
1

p
‖∇u‖pp +

1

2
‖∇u‖2

2 −
∫

Ω

Θ0(z, u(z)) dz ∀u ∈ W 1,p
0 (Ω).

From (54) it is clear that ψ̂ and ψ̂0 are nearby in C1(W 1,p
0 (Ω)). So, by choosing

ε > 0 small and exploiting the continuity of the critical groups in the C1-norm
(see Chang [6, p. 334]), we infer that

Ck(ψ̂, y0) = Ck(ψ̂0, y0) ∀k > 0. (55)

From the proof of Proposition 4.1, we know that y0 is a critical point of mountain
pass type for the functional ψ̂. Therefore

C1(ψ̂, y0) 6= 0

(see Motreanu–Motreanu–Papageorgiou [31, p. 176]), so C1(ψ̂0, y0) 6= 0 by (55)
and thus

Ck(ψ̂0, y0) = δk,1Z ∀k > 0

(see Papageorgiou–Smyrlis [36] and recall that ψ̂0 ∈ C2(W 1,p
0 (Ω))). Hence

Ck(ψ̂, y0) = δk,1Z ∀k > 0 (56)

(see (55)).
Let ξ(z) = f ′ζ(z, 0), ξ ∈ L∞(Ω)+ (see hypotheses H5(i),(iii)) and consider

the C2-functional σ0 : H1
0 (Ω) −→ R defined by

σ0(u) =
1

p
‖∇u‖2

2 −
1

2

∫
Ω

ξ(z)u(z)2 dz ∀u ∈ H1
0 (Ω).

Let σ̂0 = σ0|
W

1,p
0 (Ω)

and consider the following homotopy

h(t, u) = tψ(u) + (1− t)σ̂0(u) ∀(t, u) ∈ [0, 1]×W 1,p
0 (Ω).

Suppose that we can find two sequences

{tn}n>1 ⊆ [0, 1] and {un}n>1 ⊆ W 1,p
0 (Ω) \ {0}
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such that

tn −→ t, un −→ 0 in W 1,p
0 (Ω) and h′u(tn, un) = 0 ∀n > 1. (57)

From the equation in (57), we have

tnAp(un) + A(un) = tnNβ(un) + (1− tn)ξun ∀n > 1, (58)

so {−tn∆pun(z)−∆un(z) = tnβ(z, un(z)) + (1− tn)ξ(z)un(z) in Ω,

un|∂Ω = 0.
(59)

From (59) and Lieberman [30, Theorem 1], we know that we can find µ ∈ (0, 1)
and c5 > 0 such that

un ∈ C1,µ
0 (Ω) and ‖un‖C1,µ

0 (Ω) 6 c5 ∀n > 1. (60)

From (57), (60) and since C1,µ
0 (Ω) is embedded compactly in C1

0(Ω), we have

un −→ 0 in C1
0(Ω).

Recall that u0 ∈ intC+, v0 ∈ −intC+. So, we can find n0 ∈ N such that

un ∈ [v0, u0] ∀n > n0. (61)

Then (58) becomes

tnAp(un) + A(un) = tnNf (un) + (1− tn)ξun ∀n > n0 (62)

(see (32) and (61)).
Let

yn =
un
‖un‖

∀n > 1.

Then ‖yn‖ = 1 for all n > 1 and so we may assume (at least for a subsequence)
that

yn −→ u weakly in W 1,p
0 (Ω), (63)

yn −→ u in Lp(Ω). (64)

From (62) we have

tn‖un‖p−2Ap(yn) + A(yn) = tn
Nf (un)

‖un‖
+ (1− tn)ξyn ∀n > n0. (65)
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Hypotheses H5(i),(iii) imply that the sequence
{Nf (un)

‖un‖

}
n>1
⊆ L2(Ω) is bounded

and so for at least for a subsequence, we have

Nf (un)

‖un‖
−→ ξy weakly in L2(Ω) (66)

(see Gasiński–Papageorgiou [16]). So, if in (65) we pass to the limit as n→ +∞
and since ‖un‖ → +∞ (see (57)), we obtain A(y) = ξy, so{−∆y(z) = ξ(z)y(z) in Ω,

y|∂Ω = 0.
(67)

From Proposition 2.5 we have

λ̂m(2, ξ) < λ̂m(2, λ̂m(2)) = 1, (68)

1 = λ̂m+1(2, λ̂m+1(2)) < λ̂m+1(2, ξ). (69)

From (67)–(69), it follows that y ≡ 0. On the other hand, from (65) as before
via the nonlinear regularity result of Lieberman [30, Theorem 1], we have

yn −→ y in C1
0(Ω),

so ‖y‖ = 1, a contradiction.
Therefore (57) cannot occur and then from the homotopy invariance of

critical groups (see Chang [6, p. 334]), we have

Ck(ψ̂, 0) = Ck(σ̂0, 0) ∀k > 0. (70)

Since W 1,p
0 (Ω) is dense in H1

0 (Ω), we have

Ck(σ̂0, 0) = Ck(σ̂, 0) ∀k > 0 (71)

(see Palais [33]). Note that u = 0 is a nondegenerate critical point of σ̂. Hence

Ck(σ̂, 0) = δk,dmZ ∀k > 0, (72)

with dm = dim
⊕m

i=1E(λ̂i(2)) > 2 (see Motreanu–Motreanu–Papageorgiou [31,
p. 155]). From (70)–(72) it follows that

Ck(ψ̂, 0) = δk,dmZ ∀k > 0. (73)

Recall that ψ̂ is coercive (see (32)). Hence

Ck(ψ̂,∞) = δk,0Z ∀k > 0. (74)
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Suppose that Kψ̂ = {0, u0, v0, y0}. Then from (55), (56), (73), (74) and the
Morse relation (4) with t = −1, we have

(−1)dm + 2(−1)0 + (−1)1 = (−1)0,

so (−1)dm = 0, a contradiction. Thus, there exists ŷ ∈ Kψ̂, ŷ 6∈ {0, u0, v0, y0}.
It follows (see the proof of Lieberman [30, Proposition 10]) that

ŷ ∈ [v0, y0] ∩ C1
0(Ω).

Hence ŷ is nodal. Moreover, as in the proof of Theorem 4.4, we have
ŷ ∈ intC1

0 (Ω)[v0, u0].
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tional Science Center of Poland under Projects No. 2015/19/B/ST1/01169 and
2012/06/A/ST1/00262.

References

[1] Ambrosetti, A. and Rabinowitz, P. H., Dual variational methods in critical
point theory and applications. J. Funct. Anal. 14 (1973), 349 – 381.

[2] Arcoya, D. and Ruiz, D., The Ambrosetti–Prodi problem for the p-Laplace
operator. Comm. Partial Diff. Equ. 31 (2006), 849 – 865.

[3] Benci, V., D’Avenia, P., Fortunato, D. and Pisani, L., Solitons in several space
dimensions: Derrick’s problem and infinitely many solutions. Arch. Ration.
Mech. Anal. 154 (2000), 297 – 324.
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[19] Gasiński, L. and Papageorgiou, N. S., Nonlinear periodic equations driven by
a nonhomogeneous differential operator. J. Nonlinear Convex Anal. 14 (2013),
583 – 600.

[20] Gasiński, L. and Papageorgiou, N. S., On generalized logistic equations with a
non-homogeneous differential operator. Dyn. Systems. 29 (2014), 190 – 207.
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