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Abstract. In this paper we consider an interior stabilization problem for the wave
equation with dynamic boundary delay. We prove some stability results under the
choice of damping operator. The proof of the main result is based on a frequency
domain method and combines a contradiction argument with the multiplier technique
to carry out a special analysis for the resolvent.
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1. Introduction

We study the interior stabilization of a wave equation in an open bounded
domain Ω of Rn, n ≥ 2. We denote by ∂Ω the boundary of Ω and we assume
that ∂Ω = Γ0 ∪ Γ1, where Γ0, Γ1 are closed subsets of ∂Ω with Γ0 ∩ Γ1 = ∅.
Moreover we assume meas(Γ0) > 0. The system is given by:

utt −∆u+ a ut = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0, t > 0,

utt(x, t) = −∂u
∂ν

(x, t)− µut(x, t− τ) x ∈ Γ1, t > 0,

u(x, 0) = u0(x) x ∈ Ω,

ut(x, 0) = u1(x) x ∈ Ω,

ut(x, t− τ) = f0(x, t− τ) x ∈ Γ1, t ∈ (0, τ),

(1.1)
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where ν stands for the unit normal vector of ∂Ω pointing towards the exterior
of Ω and ∂

∂ν
is the normal derivative. Moreover, the constant τ > 0 is the time

delay, a and µ are positive numbers and the initial data u0, u1, f0 are given
functions belonging to suitable spaces that will be precised later.

Let us first review some results for particular cases which seem to us inter-
esting.

In the absence of the delay term (i.e., τ = 0) problem (1.1) becomes

utt −∆u+ a ut = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0, t > 0,

utt(x, t) = −∂u
∂ν

(x, t)− µut(x, t) x ∈ Γ1, t > 0,

u(x, 0) = u0(x) x ∈ Ω,

ut(x, 0) = u1(x) x ∈ Ω.

(1.2)

This type of problems arise (for example) in modelling of longitudinal vi-
brations in a homogeneous bar in which there are viscous effects. The term aut,
indicates that the stress is proportional not only to the strain, but also to the
displacement rate (see [13] for instance). From the mathematical point of view,
these problems do not neglect acceleration terms on the boundary. Such type of
boundary conditions are usually called dynamic boundary conditions. They are
not only important from the theoretical point of view but also arise in several
physical applications. For instance in one space dimension, problem (1.2) can
modelize the dynamic evolution of a viscoelastic rod that is fixed at one end and
has a tip mass attached to its free end. The dynamic boundary conditions rep-
resents the Newton’s law for the attached mass (see [6,12,17] for more details).
In the two dimension space, as showed in [49] and in the references therein, these
boundary conditions arise when we consider the transverse motion of a flexible
membrane Ω whose boundary may be affected by the vibrations only in a re-
gion. Also some dynamic boundary conditions as in problem (1.2) appear when
we assume that Ω is an exterior domain of R3 in which homogeneous fluid is at
rest except for sound waves. Each point of the boundary is subjected to small
normal displacements into the obstacle (see [9] for more details). This type of
dynamic boundary conditions are known as acoustic boundary conditions.

Well-posedness and longtime behavior for analogous equations as (1.1) (with
out delay) on bounded domains have been investigated by many authors in
recent years (see, e.g., [25, 26,45,46]).

Among the early results dealing with this type of boundary conditions are
those of Grobbelaar-Van Dalsen [25–27] in which the author has made contri-
butions to this field.

In [25] the author introduced a model which describes the damped longi-
tudinal vibrations of a homogeneous flexible horizontal rod of length L when
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the end x = 0 is rigidly fixed while the other end x = L is free to move with
an attached load. This yields to a system of two second order equations of the
form

utt − uxx − utxx = 0, x ∈ (0, L), t > 0,

u(0, t) = ut(0, t) = 0, t > 0,

utt(L, t) = − [ux + utx] (L, t), t > 0,

u (x, 0) = u0 (x) , ut (x, 0) = v0 (x) x ∈ (0, L),

u (L, 0) = η, ut (L, 0) = µ.

(1.3)

By rewriting problem (1.3) within the framework of the abstract theories of
the so-called B-evolution theory, an existence of a unique solution in the strong
sense has been shown. An exponential decay result was also proved in [27] for
a problem related to (1.3), which describe the weakly damped vibrations of an
extensible beam. See [27] for more details.

Subsequently, Zang and Hu [51], considered the problem
utt − p (ux)xt − q (ux)x = 0, x ∈ (0, 1) , t > 0,

u (0, t) = 0, t ≥ 0,

p (ux)t + q (ux) (1, t) + kutt (1, t) = 0, t ≥ 0,

u (x, 0) = u0 (x) , ut (x, 0) = u1 (x) , x ∈ (0, 1) .

By using the Nakao inequality, and under appropriate conditions on p and q,
they established both exponential and polynomial decay rates for the energy
depending on the form of the terms p and q.

Similarly, and always in the absence of the delay term, Pellicer and Sol-
Morales [46] considered the one dimensional problem of (1.1) as an alternative
model for the classical spring-mass damper system, and by using the dominant
eigenvalues method, they proved that for small values of the parameter a the
partial differential equations in problem (1.2) has the classical second order
differential equation

m1u
′′(t) + d1u

′(t) + k1u(t) = 0,

as a limit, where the parameter m1, d1 and k1 are determined from the values
of the spring-mass damper system. Thus, the asymptotic stability of the model
has been determined as a consequence of this limit. But they did not obtain
any rate of convergence. This result was followed by recent works [45, 47]. In
particular in [47], the authors considered a one dimensional nonlocal nonlinear
strongly damped wave equation with dynamical boundary conditions. In other
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words, they looked to the following problem:
utt − uxx − αutxx + εf

(
u(1, t),

ut(1, t)√
ε

)
= 0,

u(0, t) = 0,

utt(1, t) + ε [ux + αutx + rut] (1, t) + εf

(
u(1, t),

ut(1, t)√
ε

)
= 0,

(1.4)

with x ∈ (0, 1), t > 0, r, α > 0 and ε ≥ 0. The above system models a

spring-mass-damper system, where the term εf
(
u(1, t), ut(1,t)√

ε

)
represents a con-

trol acceleration at x = 1. By using the invariant manifold theory, the authors
proved that for small values of the parameter ε, the solutions of (1.4) are at-
tracted to a two dimensional invariant manifold. See [47], for further details.

The main difficulty of the problem considered is related to the non ordinary
boundary conditions defined on Γ1. Very little attention has been paid to this
type of boundary conditions. We mention only a few particular results in the
one dimensional space [23,29,32,46].

A related problem to (1.2) is the following:

utt −∆u+ g(ut) = f in Ω× (0, T )

∂u

∂ν
+K(u)utt + h(ut) = 0 on ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω

ut(x, 0) = u1(x) in Ω

where the boundary term h(ut) = |ut|ρut arises when one studies flows of gas in
a channel with porous walls. The term utt on the boundary appears from the
internal forces, and the nonlinearity K(u)utt on the boundary represents the
internal forces when the density of the medium depends on the displacement.
This problem has been studied in [22,23]: by using the Fadeo–Galerkin approx-
imations and a compactness argument the authors proved the global existence
and the exponential decay of the solution of the problem.

We recall some results related to the interaction of an elastic medium with
rigid mass. By using the classical semigroup theory, Littman and Markus [35]
established a uniqueness result for a particular Euler–Bernoulli beam rigid body
structure. They also proved the asymptotic stability of the structure by using
the feedback boundary damping. In [36] the authors considered the Euler–
Bernoulli beam equation which describes the dynamics of clamped elastic beam
in which one segment of the beam is made with viscoelastic material and the
other of elastic material. By combining the frequency domain method with
the multiplier technique, they proved the exponential decay for the transversal
motion but not for the longitudinal motion of the model, when the Kelvin–Voigt
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damping is distributed only on a subinterval of the domain. In relation with
this point, see also the work by Chen et al. [16] concerning the Euler–Bernoulli
beam equation with the global or local Kelvin–Voigt damping. Also models
of vibrating strings with local viscoelasticity and Boltzmann damping, instead
of the Kelvin–Voigt one, were considered in [37] and an exponential energy
decay rate was established. Recently, Grobbelaar-Van Dalsen [28] considered
an extensible thermo-elastic beam which is hanged at one end with rigid body
attached to its free end, i.e., one dimensional hybrid thermoelastic structure,
and showed that the method used in [44] is still valid to establish an uniform
stabilization of the system. Concerning the controllability of the hybrid system
we refer to the work by Castro and Zuazua [14], in which they considered flexible
beams connected by point mass and the model takes account of the rotational
inertia.

The purpose of this paper is to study problem (1.1), in which a delay term
acted in the dynamic boundary conditions. In recent years one very active area
of mathematical control theory has been the investigation of the delay effect
in the stabilization of hyperbolic systems and many authors have shown that
delays can destabilize a system that is asymptotically stable in the absence of
delays (see [2, 3, 21,39,40,42] for more details).

As it has been proved by Datko [19, Example 3.5], systems of the form
wtt − wxx − awxxt = 0, x ∈ (0, 1), t > 0,

w (0, t) = 0, t > 0

wx (1, t) = −kwt (1, t− τ) , t > 0,

(1.5)

where a, k and τ are positive constants become unstable for an arbitrarily small
values of τ and any values of a and k. In (1.5) and even in the presence of
the strong damping −awxxt, without any other damping, the overall structure
can be unstable. This was one of the main motivations for considering problem
(1.1)( of course the structure of problem (1.1) and (1.5) are different due to the
nature of the boundary conditions in each problem).

Subsequently, Datko et al. [21] treated the following one dimensional
problem:

utt(x, t)− uxx(x, t) + 2aut(x, t) + a2u(x, t) = 0, 0 < x < 1, t > 0,

u(0, t) = 0, t > 0,

ux(1, t) + kut(1, t− τ) = 0, t > 0,

(1.6)

which models the vibrations of a string clamped at one end and free at the
other end, where u(x, t) is the displacement of the string. Also, the string is
controlled by a boundary control force (with a delay) at the free end. They
showed that, if the positive constants a and k satisfy

k
e2a + 1

e2a − 1
< 1,



302 K. Ammari and S. Gerbi

then the delayed feedback system (1.6) is stable for all sufficiently small delays.
On the other hand if

k
e2a + 1

e2a − 1
> 1,

then there exists a dense open set D in (0,∞) such that for each τ ∈ D, system
(1.6) admits exponentially unstable solutions.

It is well known that in the absence of delay in (1.6), that is for τ = 0,
system (1.6) is uniformly asymptotically stable under the condition a2 + k2 > 0
and the total energy of the solution satisfies for all t > 0,

E(t, u) =

∫ 1

0

(u2
t + u2

x + a2u2)dx ≤ CE (0, u) e−αt

for some positive constant α. See [15] for more details.
Recently, Ammari et al. [5] have treated the N -dimensional wave equation

utt(x, t)−∆u(x, t) + aut(x, t− τ) = 0, x ∈ Ω, t > 0,

u(x, t) = 0, x ∈ Γ0, t > 0,
∂u

∂ν
(x, t) + ku(x, t) = 0, x ∈ Γ1, t > 0,

u(x, 0) = u0(x) x ∈ Ω

ut(x, 0) = u1(x) x ∈ Ω

ut(x, t− τ)− f0(x, t− τ) = 0 x ∈ Γ1, t ∈ (0, τ)

where Ω is an open bounded domain of RN , N ≥ 2 with boundary ∂Ω = Γ0∪Γ1

and Γ0 ∩ Γ1 = ∅. Under the usual geometric condition on the domain Ω, they
showed an exponential stability result, provided that the delay coefficient a is
sufficiently small.

In [39] the authors examined a system of wave equation with a linear bound-
ary damping term with a delay. Namely, they looked to the following system

utt −∆u = 0, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ Γ0, t > 0
∂u

∂ν
(x, t)− µ1ut(x, t)− µ2ut(x, t− τ) = 0 x ∈ Γ1, t > 0

u(x, 0) = u0(x) x ∈ Ω

ut(x, 0) = u1(x) x ∈ Ω

ut(x, t− τ)− g0(x, t− τ) = 0 x ∈ Ω, τ ∈ (0, 1)

(1.7)

and proved under the assumption
µ2 < µ1 (1.8)

(which means that the weight of the feedback with delay is smaller than the
one without delay) that null stationary state is exponentially stable. On the
contrary, if (1.8) does not hold, they found a sequence of delays for which the
corresponding solution of (1.7) will be unstable. The main approach used in [39],
is an observability inequality obtained with a Carleman estimate.
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The case of time-varying delay (i.e., τ = τ(t) is a function depending on t)
has been studied by Nicaise, Valein and Fridman [43] in one space dimension.
In their work, an exponential stability result was given under the condition:

µ2 <
√

1− d µ1,

where d is a constant such that

τ ′(t) ≤ d < 1, ∀t > 0.

Delay effects arise in many applications and practical problems and it is
well-known that an arbitrarily small delay may destabilize a system which is
uniformly asymptotically stable in absence of delay (see, e.g., [18,21,33,34,52]).

The stability of (1.1) with τ = 0, a = 0 has been studied in [1] where it has
been shown that the system is stable under some geometric condition on Γ1 (as
in [7]). Moreover, if µ = 0, that is in absence of delay, the above problem for
any a > 0 is exponentially stable even. On the contrary, in presence of a delay
term there are instability phenomena probably, as in [39].

Let us also cite the recent work of Ammari and Nicaise, [4], in which the
authors performed a complete study of the stabilisation of elastic systems by
collocated feedback with or without delay.

In this paper the idea is to contrast the effect of the time delay by using the
dissipative feedback (i.e., by giving the control in the feedback form a ut(x, t)
or −a∆ut(x, t), x ∈ Ω, t > 0).

In the next section, we will show the global existence of problem (1.1) by
transforming the delay term and by using a semigroup approach. The natural
question is then the stability of problem (1.1). This is the goal of Section 3. We
will show that a “shifted” problem is asymptotically stable with a polynomial
decay rate and we cannot answer the question of the stability of problem (1.1).
In fact, in the last section, numerical experiments in 1D shows that under certain
conditions, problem (1.1) is unstable. To stabilize problem (1.1), we will see
that a Kelvin–Voigt damping is efficient. This is done in Section 4.

Lastly, we will conduct some numerical examples in 1D to illustrate these
stability or instability results.

2. Well-posedness of problem (1.1)

In this section we will first transform the delay boundary conditions by adding
a new unknown. Then we will use a semigroup approach and the Lumer–
Phillips’ theorem to prove the existence and uniqueness of the solution of the
problem (1.1).

We point out that the well-posedness in evolution equations with delay
is not always obtained. Recently, Dreher, Quintilla and Racke have shown
some ill-posedness results for a wide range of evolution equations with a delay
term [24].
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2.1. Setup and notations. We present here some material that we shall use
in order to prove the local existence of the solution of problem (1.1). We denote

H1
Γ0

(Ω) =
{
u ∈ H1(Ω)

∣∣uΓ0 = 0
}
.

We set γ1 the trace operator from H1
Γ0

(Ω) on L2(Γ1) and

H
1
2 (Γ1) = γ1

(
H1

Γ0
(Ω)
)
.

By (·, ·) we denote the scalar product in L2(Ω) ,i.e., (u, v)(t)=
∫

Ω
u(x, t)v(x, t)dx.

Also we mean by ‖.‖q the Lq(Ω) norm for 1 ≤ q ≤ ∞, and by ‖.‖q,Γ1 the Lq(Γ1)
norm.

Let T >0 be a real number and X a Banach space endowed with norm ‖·‖X .
Lp(0, T ;X), 1 ≤ p <∞ denotes the space of functions f which are Lp over (0, T )
with values in X, which are measurable and ‖f‖X ∈ Lp (0, T ). This space is a
Banach space endowed with the norm

‖f‖Lp(0,T ;X) =

(∫ T

0

‖f‖pXdt
) 1

p

.

L∞ (0, T ;X) denotes the space of functions f : ]0, T [→ X which are measurable
and ‖f‖X ∈ L∞ (0, T ). This space is a Banach space endowed with the norm:

‖f‖L∞(0,T ;X) = ess sup0<t<T ‖f‖X .

We recall that if X and Y are two Banach spaces such that X ↪→ Y (continuous
embedding), then

Lp (0, T ;X) ↪→ Lp (0, T ;Y ) , 1 ≤ p ≤ ∞ .

2.2. Semigroup formulation of the problem. In this section, we will prove
the global existence and the uniqueness of the solution of problem (1.1). We will
first transform the problem (1.1) to the problem (2.2) by making the change of
variables (2.1), and then we use the semigroup approach to prove the existence
of the unique solution of problem (2.2).

To overcome the problem of the boundary delay, we introduce the new
variable:

z (x, ρ, t) = ut (x, t− τρ) , x ∈ Γ1, ρ ∈ (0, 1) , t > 0. (2.1)

Then, we have

τzt (x, ρ, t) + zρ (x, ρ, t) = 0, in Γ1 × (0, 1)× (0,+∞) .
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Therefore, problem (1.1) is equivalent to:

utt −∆u+ a ut = 0, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ Γ0, t > 0

utt(x, t) +
∂u

∂ν
(x, t) + µz(x, 1, t) = 0, x ∈ Γ1, t > 0

τzt(x, ρ, t) + zρ(x, ρ, t) = 0, x ∈ Γ1, ρ ∈ (0, 1), t > 0

z(x, 0, t) = ut(x, t) x ∈ Γ1, t > 0

u(x, 0) = u0(x) x ∈ Ω

ut(x, 0) = u1(x) x ∈ Ω

z(x, ρ, 0)− f0(x,−τρ) = 0 x ∈ Γ1, ρ ∈ (0, 1).

(2.2)

The first natural question is the existence of solutions of the problem (2.2).
In this section we will give a sufficient condition that guarantees that this prob-
lem is well-posed.

For this purpose we will use a semigroup formulation of the initial-boundary
value problem (2.2). If we denote V := (u, ut, γ1(ut), z)

T , we define the energy
space:

H = H1
Γ0

(Ω)× L2 (Ω)× L2(Γ1)× L2(Γ1 × (0, 1)).

Clearly, H is a Hilbert space with respect to the inner product

〈V1, V2〉H =

∫
Ω

∇u1.∇u2dx+

∫
Ω

v1v2dx+

∫
Γ1

w1w2dσ+ξ

∫
Γ1

∫ 1

0

z1z2dρdσ (2.3)

for V1 = (u1, v1, w1, z1)T , V2 = (u2, v2, w2, z2)T and ξ > 0 a nonnegative real
number defined later.

Therefore, if V0 ∈H and V ∈H , the problem (2.2) is formally equivalent
to the following abstract evolution equation in the Hilbert space H :{

V ′(t) = A V (t), t > 0,

V (0) = V0,
(2.4)

where ′ denotes the derivative with respect to time t,

V0 := (u0, u1, γ1(u1), f0(.,−.τ))T

and the operator A is defined by:

A


u

v

w

z

 =


v

∆u− a v
−∂u
∂ν
− µz (., 1)

− 1
τ
zρ

 .
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The domain of A is the set of V = (u, v, w, z)T such that:

(u, v, w, z)T ∈
(
H1

Γ0
(Ω)∩H2(Ω)

)
×H1

Γ0
(Ω)× L2(Γ1)× L2

(
Γ1;H1(0, 1)

)
,

w = γ1(v) = z(., 0) on Γ1. (2.5)

Let us finally define ξ? = µτ . For all ξ > ξ?, we also define µ1 = ξ
2τ

+ µ
2

and
Ad = A − µ1 I.

The well-posedness of problem (2.2) is ensured by:

Theorem 2.1. Let V0 ∈H , then there exists a unique solution V ∈ C (R+; H )
of problem (2.4). Moreover, if V0 ∈ D (A ), then

V ∈ C (R+; D (A )) ∩ C1 (R+; H ) .

Proof. To prove Theorem 2.1, we first prove that there exists a unique solution
V ∈ C (R+; H ) of the shifted problem:{

V ′(t) = AdV (t), t > 0,

V (0) = V0,
(2.6)

Then as A =Ad+µ1I, there will exist V ∈C
(
R+; H

)
solution of problem (2.4).

In order to prove the existence and uniqueness of the solution of problem
(2.6) we use the semigroup approach and the Lumer–Phillips’ theorem.

Indeed, let V = (u, v, w, z)T ∈ D (A ). By definition of the operator A and
the scalar product of H , we have:

〈A V, V 〉H =

∫
Ω

∇u.∇vdx+

∫
Ω

v∆udx−
∫

Ω

a|v(x)|2dx

+

∫
Γ1

w

(
−∂u
∂ν
− µz (σ, 1)

)
dσ − ξ

τ

∫
Γ1

∫ 1

0

zzρdρdσ.

By Green’s formula we obtain:

〈A V, V 〉H = −
∫

Ω

a|v(x)|2dx− µ
∫

Γ1

z (σ, 1)wdσ − ξ

τ

∫
Γ1

∫ 1

0

zρzdρdx. (2.7)

But we have:

ξ

τ

∫
Γ1

∫ 1

0

zρz(σ, ρ)dρdσ =
ξ

2τ

∫
Γ1

∫ 1

0

∂

∂ρ
z2(σ, ρ)dρdσ =

ξ

2τ

∫
Γ1

(
z2(σ, 1)−z2(σ, 0)

)
dσ.

Thus from the compatibility condition (2.5), we get − ξ
τ

∫
Γ1

∫ 1

0
zρz dρ dσ =

ξ
2τ

∫
Γ1

(v2 − z2(σ, 1)) dσ. Therefore equation (2.7) becomes:

〈A V, V 〉H = −
∫

Ω

a|v(x)|2dx− ξ

2τ

∫
Γ1

∫ 1

0

z2(σ, 1)dσ

+
ξ

2τ

∫
Γ1

|v|2(σ)dσ − µ
∫

Γ1

z (σ, 1)wdσ.
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To treat the last term in the preceding equation, Young’s inequality gives:

−
∫

Γ1

v(σ)z (σ, 1) dσ ≤ 1

2

∫
Γ1

z2 (σ, 1) dσ +
1

2

∫
Γ1

v2(σ)dσ.

Therefore, we firstly get:

〈A V, V 〉H +

∫
Ω

a|v(x)|2dx−
(
ξ

2τ
+
µ

2

)∫
Γ1

|v(σ)|2dσ+

(
ξ

2τ
−µ

2

)∫
Γ1

z2(σ, 1)dσ

≤ 0

which writes

〈A V, V 〉H +

∫
Ω

a|v(x)|2dx− µ1

∫
Γ1

|v(σ)|2dσ +

(
ξ

2τ
− µ

2

)∫
Γ1

z2(σ, 1)dσ ≤ 0.

From the preceding inequality, we get:〈(
A − µ1 I

)
V, V

〉
H
≤ −

∫
Ω

a|v(x)|2dx−
(
ξ

2τ
− µ

2

)∫
Γ1

z2(σ, 1)dσ. (2.8)

As
(
ξ

2τ
− µ

2

)
> 0 for all ξ > ξ?, we finally get:〈(

A − µ1 I
)
V, V

〉
H
≤ 0.

Thus the operator Ad = A − µ1 I is dissipative.
Now we want to show that ∀λ > 0, ∀ξ > ξ?, λI−Ad is surjective. To prove

that, it is clear that it suffices to show that λI −A is surjective for all λ > 0.
For F = (f1, f2, f3, f4)T ∈H , let V = (u, v, w, z)T ∈ D (A ) solution of

(λI −A )V = F,

which is:

λu− v = f1, (2.9)

λv −∆u+ av = f2, (2.10)

λw +
∂u

∂ν
+ µz(., 1) = f3, (2.11)

λz +
1

τ
zρ = f4. (2.12)

To find V = (u, v, w, z)T ∈ D (A ) solution of the system (2.9)–(2.12), we
suppose u is determined with the appropriate regularity. Then from (2.9), we
get:

v = λu− f1. (2.13)
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Therefore, from the compatibility condition on Γ1, (2.5), we determine z(., 0) by:

z(x, 0) = v(x) = λu(x)− f1(x), for x ∈ Γ1.

Thus, from (2.12), z is the solution of the linear Cauchy problem:{
zρ = τ

(
f4(x)− λz(x, ρ)

)
, for x ∈ Γ1, ρ ∈ (0, 1),

z(x, 0) = λu(x)− f1(x).
(2.14)

The solution of the Cauchy problem (2.14) is given by:

z(x, ρ) = λu(x)e−λρτ − f1e
−λρτ + τe−λρτ

∫ ρ

0

f4(x, σ)eλστdσ (2.15)

for x ∈ Γ1, ρ ∈ (0, 1). So, we have at the point ρ = 1,

z(x, 1) = λu(x)e−λτ + z1(x), for x ∈ Γ1 (2.16)

with

z1(x) = −f1e
−λτ + τe−λτ

∫ 1

0

f4(x, σ)eλστdσ, for x ∈ Γ1.

Since f1 ∈ H1
Γ0

(Ω) and f4 ∈ L2(Γ1 × (0, 1)), then z1 ∈ L2(Γ1).
Consequently, knowing u, we may deduce v by (2.13), z by (2.15) and using

(2.16), we deduce w by (2.11). We recall that since V = (u, v, w, z)T ∈ D (A )
we automatically get w = γ1(v).

From equations (2.10), (2.11), and (2.13), u must satisfy:

λ(λ+ a)u−∆u = f2 + (λ+ a)f1, in Ω (2.17)

with the boundary conditions

u = 0, on Γ0 (2.18)

∂u

∂ν
= f3 − λz(., 0)− µz(., 1) on Γ1.

Using the preceding expression of z(., 1) and the expression of v given by (2.13),
we have:

∂u

∂ν
= −

(
λ2 + µλe−λτ

)
u+ f(x), for x ∈ Γ1 (2.19)

with

f(x) = f3(x) + λf1(x)− µz1(x), for x ∈ Γ1.

From the regularity of f3, f2, z1, we get f ∈ L2(Γ1).
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The variational formulation of problem (2.17), (2.18),(2.19) is to find u ∈
H1

Γ0
(Ω) such that:∫

Ω

λ(λ+ a)uω +∇u∇ωdx+

∫
Γ1

(
λ2 + µλe−λτ

)
u(σ)ω(σ)dσ,

=

∫
Ω

(f2 + (λ+ a)f1)ωdx+

∫
Γ1

f(σ)ω(σ)dσ,

(2.20)

for any ω ∈ H1
Γ0

(Ω). Since λ > 0, µ > 0, the left hand side of (2.20) defines a
coercive bilinear form on H1

Γ0
(Ω). Thus by applying the Lax-Milgram theorem,

there exists a unique u ∈ H1
Γ0

(Ω) solution of (2.20). Now, choosing ω ∈ C∞c , u is
a solution of (2.17) in the sense of distribution and therefore u ∈ H2(Ω)∩H1

Γ0
(Ω).

Thus using the Green’s formula and exploiting the equation (2.17) on Ω, we
obtain finally:∫

Γ1

(
λ2 + µλe−λτ

)
u(σ)ω(σ)dσ +

〈
∂u

∂ν
;ω

〉
Γ1

=

∫
Γ1

f(σ)ω(σ)dσ ∀ω ∈ H1
Γ0

(Ω).

So u ∈ H2(Ω)∩H1
Γ0

(Ω) verifies (2.19) and we recover u and v and thus by (2.15),
we obtain z and finally setting w=γ1(v), we have found V =(u, v, w, z)T ∈D(A )
solution of (I −A )V = F .

Thus from the Lumer–Phillips’ theorem, there exists a unique solution
V ∈ C (R+; H ) of the shifted problem (2.6). This completes the proof of
Theorem 2.1.

Remark 2.2. According to the above the operator Ad generates a C0 semigroup
of contractions etAd on H .

3. Asymptotic behavior

In this section, we show that if ξ > ξ∗, the semigroup etAd decays to the null
steady state with a polynomial decay rate for regular initial data. To obtain
this, our technique is based on a frequency domain method and combines a
contradiction argument with the multiplier technique to carry out a special
analysis for the resolvent.

Theorem 3.1. Let ξ > ξ∗. Denote µ1 = ξ
2τ

+ µ
2

and Ad = A − µ1 I. Then
there exists a constant C > 0 such that, for all V0 ∈ D(Ad), the semigroup etAd

satisfies the following estimate∥∥etAdV0

∥∥
H
≤ C√

t
‖V0‖D(Ad) , ∀ t > 0. (3.1)
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Remark 3.2. Let us notice that although the semigroup etAd generates a poly-
nomial stability, we cannot conclude on the stability of the semigroup etA .

Indeed let us consider V0 ∈ D(A ) and Ṽ0 = V0−µ1V0, and the two following
problems: {

V ′ = A V
Vt=0 = V0

and

{
Ṽ ′ = AdṼ

Ṽt=0 = Ṽ0.

Given V0 = (u0, u1, γ1(u1), z0)T ∈ D(A ), the second problem writes in term of
V = (u, ut, γ1(ut), z)

T :

utt −
1

1 + µ1

∆u+
a+ µ1

1 + µ1

ut = 0, x∈Ω, t>0

u(x, t) = 0, x∈Γ0, t>0

utt(x, t) +
∂u

∂ν
(x, t) + µz(x, 1, t)− µut(x, t) = 0, x∈Γ1, t>0

τzt(x, ρ, t) + zρ(x, ρ, t) + µ1τz(x, ρ, t) = 0, x∈Γ1, ρ∈(0, 1), t>0

z(x, 0, t)− ut(x, t) = 0, x∈Γ1, t>0

u(x, 0)− (1− µ1)u0(x) = 0, x∈Ω

ut(x, 0)− (1− µ1)u1(x) = 0, x∈Ω

z(x, ρ, 0)− (1− µ1)f0(x,−τρ) = 0, x∈Γ1, ρ∈(0, 1).

(3.2)

We call this problem the “shifted” problem.

By Duhamel’s formula, we get:

e−µ1tV (t) =
−e−µ1t

1 + µ1

V0 +
Ṽ (t)

1 + µ1

− µ1

1 + µ1

∫ t

0

e−µ1(t−s) Ṽ (s)ds, ∀t > 0. (3.3)

The first two terms of the right hand side of equation (3.3) tends to zero as t
tends to infinity. So we obtain:

V (t) '
∫ t

0

eµ1s Ṽ (s)ds.

We only know at this stage that ‖Ṽ (s)‖D(Ad) tends to zero at least as s−
1
2 , and

thus ‖V (t)‖D(A ) may tend to zero or blow-up in infinite time. We will illustrate
this behavior by numerical examples in 1D in the last section of this work.

Proof of Theorem 3.1. We will use the following frequency domain theorem for
polynomial stability from [10] (see also [8,38] for weaker variants) of a C0 semi-
group of contractions on a Hilbert space:
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Lemma 3.3. A C0 semigroup etL of contractions on a Hilbert space H satisfies

||etLU0||H ≤
C

t
1
θ

||U0||D(L)

for some constant C > 0 and for θ > 0 if and only if

ρ(L) ⊃
{
iβ
∣∣ β ∈ R

}
≡ iR,

and

lim sup
|β|→∞

1

βθ
‖(iβI − L)−1‖L(H) <∞, (3.4)

where ρ(L) denotes the resolvent set of the operator L.

Remark 3.4. In view of this theorem we need to identify the spectrum of Ad ly-
ing on the imaginary axis. Unfortunately, as the embedding of L2 (Γ1, H

1(0, 1))
into L2 (Γ1 × (0, 1)) is not compact, Ad has not a compact resolvent. Therefore
its spectrum σ(Ad) does not consist only of eigenvalues of Ad. We have then to
show that :

1. if β is a real number, then iβI −Ad is injective and

2. if β is a real number, then iβI −Ad is surjective.

It is the objective of the two following lemmas.

First we look at the point spectrum of Ad.

Lemma 3.5. If β is a real number, then iβ is not an eigenvalue of Ad.

Proof. We will show that the equation

AdZ = iβZ (3.5)

with Z = (u, v, w, z)T ∈ D(Ad) and β ∈ R has only the trivial solution.
Equation (3.5) writes :

(iβ + µ1)u− v = 0, (3.6)

(iβ + µ1)v −∆u+ av = 0,

(iβ + µ1)w +
∂u

∂ν
+ µz(., 1) = 0,

(iβ + µ1)z +
1

τ
zρ = 0. (3.7)

By taking the inner product of (3.5) with Z and using (2.8), we get:

< (< AdZ,Z >H ) ≤ −
∫

Ω

a |v(x)|2 dx−
(
ξ

2τ
− µ

2

)∫
Γ1

|z(σ, 1)|2 dσ. (3.8)



312 K. Ammari and S. Gerbi

Thus we firstly obtain that:

v = 0 and z(., 1) = 0.

Next, according to (3.6), we have v = (iβ + µ1)u. Thus we have u = 0; since
w= γ1(v) = z(., 0), we obtain also w= 0 and z(., 0) = 0. Moreover as z satisfies
(3.7) by integration, we obtain:

z(., ρ) = z(., 0) e−τ(iβ+µ1)ρ.

But as z(., 0) = 0, we finally have z = 0. Thus the only solution of (3.5) is the
trivial one.

Next, we show that Ad has no continuous spectrum on the imaginary axis.

Lemma 3.6. Let ξ > ξ∗. If β is a real number, then iβ belongs to the resolvent
set ρ(Ad) of Ad.

Proof. In view of Lemma 3.5 it is enough to show that iβI −Ad is surjective.
For F = (f1, f2, f3, f4)T ∈H , let V = (u, v, w, z)T ∈ D (Ad) solution of

(iβI −Ad)V = F,

which is:

(iβ + µ1)u− v = f1, (3.9)

(iβ + µ1)v −∆u+ av = f2, (3.10)

(iβ + µ1)w +
∂u

∂ν
+ µz(., 1) = f3, (3.11)

(iβ + µ1)z +
1

τ
zρ = f4. (3.12)

To find V =(u, v, w, z)T ∈D(Ad) solution of system (3.9)–(3.12), we suppose u
is determined with the appropriate regularity. Then from (3.9), we get:

v = (iβ + µ1)u− f1. (3.13)

Therefore, from the compatibility condition on Γ1, equation (2.5), we determine
z(., 0) by:

z(x, 0) = v(x) = (iβ + µ1)u(x)− f1(x), for x ∈ Γ1.

Thus, from (3.12), z is the solution of the linear Cauchy problem:{
zρ = τ (f4(x)− (iβ + µ1)z(x, ρ)) , for x ∈ Γ1, ρ ∈ (0, 1),

z(x, 0) = (iβ + µ1)u(x)− f1(x).
(3.14)
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The solution of the Cauchy problem (3.14) is given by: for x ∈ Γ1, ρ ∈ (0, 1)

z(x, ρ) = (iβ + µ1)u(x)e−(iβ+µ1)ρτ − f1e
−(iβ+µ1)ρτ

+ τe−(iβ+µ1)ρτ

∫ ρ

0

f4(x, σ)e(iβ+µ1)στdσ.
(3.15)

So, we have at the point ρ = 1,

z(x, 1) = (iβ + µ1)u(x)e−(iβ+µ1)τ + z1(x), for x ∈ Γ1 (3.16)

with

z1(x) = −f1e
−(iβ+µ1)τ + τe−(iβ+µ1)τ

∫ 1

0

f4(x, σ)e(iβ+µ1)στdσ, for x ∈ Γ1.

Since f1 ∈ H1
Γ0

(Ω) and f4 ∈ L2(Γ1)× L2(0, 1), then z1 ∈ L2(Γ1).
Consequently, knowing u, we may deduce v by (3.13), z by (3.15) and using

(3.16), we deduce w by (3.11). We recall that since V = (u, v, w, z)T ∈ D (Ad)
we automatically get w = γ1(v).

From equations (3.10) and (3.11), u must satisfy:

(iβ + µ1)(iβ + µ1 + a)u−∆u = f2 + (iβ + µ1 + a)f1, in Ω (3.17)

with the boundary conditions

u = 0, on Γ0 (3.18)

∂u

∂ν
= f3 − (iβ + µ1)z(., 0)− µz(., 1), on Γ1.

Using the preceding expression of z(., 1) and the expression of v given by (3.13),
we have:

∂u

∂ν
= −

(
(iβ + µ1)2 + µ(iβ + µ1)e−(iβ+µ1)τ

)
u+ f(x), for x ∈ Γ1 (3.19)

with
f(x) = f3(x) + (iβ + µ1)f1(x)− µz1(x), for x ∈ Γ1.

From the regularity of f3, f2, z1, we get f ∈ L2(Γ1).
The variational formulation of problem (3.17), (3.18), (3.19) is to find

u ∈ H1
Γ0

(Ω) such that for any ω ∈ H1
Γ0

(Ω):∫
Ω

(
(iβ + µ1)(iβ + µ1 + a)uω̄ +∇u∇ω̄

)
dx

+

∫
Γ1

(
(iβ + µ1)2 + µ(iβ + µ1)e−(iβ+µ1)τ

)
u(σ)ω̄(σ)dσ

=

∫
Ω

(f2 + (iβ + µ1 + a)f1) ω̄dx+

∫
Γ1

f(σ)ω̄(σ)dσ.

(3.20)
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Multiplying the preceding equation by −iβ + µ1 leads to, for any ω ∈ H1
Γ0

(Ω):∫
Ω

(
|iβ + µ1|2(iβ + µ1 + a)uω̄ + (−iβ + µ1)∇u∇ω̄

)
dx

+

∫
Γ1

|iβ + µ1|2
(
iβ + µ1 + µe−(iβ+µ1)τ

)
u(σ)ω̄(σ)dσ

=

∫
Ω

(−iβ + µ1)(f2 + (iβ + µ1 + a)f1)ω̄dx+

∫
Γ1

(−iβ + µ1)f(σ)ω̄(σ)dσ.

(3.21)

Since µ1 > µ > 0, the left hand side of (3.21) defines a coercive sesquilinear
form on H1

Γ0
(Ω). Thus by applying the Lax-Milgram theorem, there exists a

unique u ∈ H1
Γ0

(Ω) solution of (3.20). Now, choosing ω ∈ C∞c , u is a solution of
(3.17) in the sense of distribution. Using the regularity of f1 and f2, we finally
have u ∈ H2(Ω) ∩H1

Γ0
(Ω). Thus using the Green’s formula and exploiting the

equation (3.17) on Ω, we obtain finally: ∀ω ∈ H1
Γ0

(Ω),∫
Γ1

(
(iβ + µ1)2 + µ(iβ + µ1)e−(iβ+µ1)τ

)
u(σ)ω(σ)dσ +

〈
∂u

∂ν
;ω

〉
Γ1

=

∫
Γ1

f(σ)ω(σ)dσ.

So u ∈ H2(Ω) ∩ H1
Γ0

(Ω) verifies (3.19). Then we recover v by equation (3.9)
and by equation (3.15), we obtain z. Finally setting w = γ1(v), we have found
V = (u, v, w, z)T ∈ D (Ad) solution of (iβI −Ad)V = F .

The following lemma shows that (3.4) holds with L = Ad and θ = 2.

Lemma 3.7. The resolvent operator of Ad satisfies condition (3.4) for θ = 2.

Proof. Suppose that condition (3.4) is false with θ = 2. By the Banach–
Steinhaus Theorem (see [11]), there exist a sequence of real numbers βn → +∞
and a sequence of vectors Zn = (un, vn, wn, zn)t ∈ D(Ad) with ‖Zn‖H = 1 such
that

||β2
n(iβnI −Ad)Zn||H → 0 as n→∞, (3.22)

i.e.,

βn ((iβn + µ1)un − vn) ≡ fn → 0 in H1
Γ0

(Ω),

βn (iβnvn −∆un + (µ1 + a)vn) ≡ gn → 0 in L2(Ω),

βn

(
(iβn + µ1)wn +

∂un
∂ν

+ µzn(., 1)

)
≡ hn → 0 in L2(Γ1), (3.23)

βn

(
(iβn + µ1)zn +

1

τ
∂ρzn

)
≡ kn → 0 in L2(Γ1 × (0, 1)) (3.24)

since βn ≤ β2
n.
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Our goal is to derive from (3.22) that ||Zn||H converges to zero, thus there
is a contradiction.

We first notice that we have

||β2
n(iβnI −Ad)Zn||H ≥ |<

(
〈β2

n(iβnI −Ad)Zn, Zn〉H
)
|.

Then, by (3.8) and (3.22),

βn vn → 0 in L2(Ω), βn zn(., 1)→ 0 in L2(Γ1),

and
un → 0, ∆un → 0 in L2(Ω) ⇒ un → 0 in H1

Γ0
(Ω).

This further leads, by (3.23) and the trace theorem, to

wn → 0 in L2(Γ1). (3.25)

Moreover, since Zn ∈ D(Ad), we have, by (3.25),

zn(., 0)→ 0 in L2(Γ1). (3.26)

We have

zn(., ρ) = zn(., 0) e−(iβn+µ1)τρ +

∫ ρ

0

e−(iβn+µ1)τ(ρ−s) τkn(s)

βn
ds. (3.27)

This implies, according to (3.27), (3.26) and (3.24), that zn → 0 in L2(Γ1×(0, 1))
and clearly contradicts ‖Zn‖H = 1.

The two hypotheses of Lemma 3.3 are proved by Lemma 3.7 and Lemma 3.6.
Then (3.1) holds. The proof of Theorem 3.1 is then finished.

4. Changing the damping law

Let us consider now the same system as (1.1) but with a Kelvin–Voigt damping.
The system is given by:



utt −∆u− a∆ut = 0, x ∈ Ω, t > 0

u(x, t) = 0, x ∈ Γ0, t > 0

utt(x, t) +
∂u

∂ν
(x, t) + a

∂ut
∂ν

+ µut(x, t− τ) = 0, x ∈ Γ1, t > 0

u(x, 0)− u0(x) = 0, x ∈ Ω

ut(x, 0)− u1(x) = 0, x ∈ Ω

ut(x, t− τ)− f0(x, t− τ) = 0, x ∈ Γ1, t ∈ (0, τ).

(4.1)
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Which, as above, is equivalent to:

utt−∆u−a∆ut = 0, x∈Ω, t>0

u(x, t) = 0, x∈Γ0, t>0

utt(x, t)+
∂u

∂ν
(x, t)+a

∂ut
∂ν

(x, t)+µz(x, 1, t) = 0, x∈Γ1, t>0

τzt(x, ρ, t)+zρ(x, ρ, t) = 0, x∈Γ1, ρ∈(0, 1), t>0

z(x, 0, t)−ut(x, t) = 0, x∈Γ1, t>0

u(x, 0)−u0(x) = 0, x∈Ω

ut(x, 0)−u1(x) = 0, x∈Ω

z(x, ρ, 0)−f0(x,−τρ) = 0, x∈Γ1, ρ∈(0, 1)

(4.2)

Let the operator Akv defined by:

Akv


u

v

w

z

 =


v

∆u+ a∆v

−∂u
∂ν
− a∂v

∂ν
− µz (·, 1)

− 1
τ
zρ

 .

The domain of Akv is the set of V = (u, v, w, z)T such that:

(u, v, w, z)T ∈
(
H1

Γ0
(Ω) ∩H2(Ω)

)
×H1

Γ0
(Ω)× L2(Γ1)× L2

(
Γ1;H1(0, 1)

)
(4.3)

∂v

∂ν
∈ L2(Γ1)

w = γ1(v) = z(·, 0) on Γ1. (4.4)

Notations: For c ∈ R, we define:

CΩ(c) = inf
u∈H1

Γ0
(Ω)

‖∇u‖2
2 + c‖u‖2

2,Γ1

‖u‖2
2

. (4.5)

CΩ(c) is the first eigenvalue of the operator −∆ under the Dirichlet–Robin
boundary conditions: 

u(x) = 0 x ∈ Γ0

∂u

∂ν
(x) + cu(x) = 0 x ∈ Γ1.

(4.6)

From Kato’s perturbation theory [30] (see also [31, Theorem 1.3.1]), CΩ(c) is a
continuous increasing function. From Poincaré inequality and the continuity of
the trace operator γ1, we have CΩ(0) > 0 and CΩ(c)→ −∞ as c→ −∞. Thus
it exists a unique c? < 0 such that:

CΩ(c?) = 0. (4.7)

In the following, we fix ξ = µτ in the norm (2.3). We will see in the next
result why this choice is well adapted.
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Theorem 4.1. Suppose that a and µ satisfy the following assumption:

µ < |c?|a. (4.8)

Then, the operator Akv generates a C0 semigroup of contractions on H . If,
in particular, V0 ∈ H , then there exists a unique solution V ∈ C (R+; H ) of
problem (4.1). Moreover, if V0 ∈ D (Akv), then

V ∈ C (R+; D (Akv)) ∩ C1 (R+; H ) .

Proof. To prove Theorem 4.1, we use again the semigroup approach and the
Lumer–Phillips’ theorem.

For this purpose, we show firstly that the operator Akv is dissipative. In-
deed, let V = (u, v, w, z)T ∈ D (Akv). By definition of the operator Akv and
the scalar product of H , we have:

〈AkvV, V 〉H =
∫

Ω
∇u.∇vdx+

∫
Ω
v (∆u+ a∆v) dx

+
∫

Γ1
w
(
−∂u
∂ν
− a∂v

∂ν
− µz (σ, 1)

)
dσ − ξ

τ

∫
Γ1

∫ 1

0
zzρdρdσ.

Applying Green’s formula and the compatibility condition w = γ1(v), we obtain:

〈AkvV, V 〉H = −µ
∫

Γ1

z (σ, 1)wdσ − a
∫

Ω

|∇v|2 dx− ξ

τ

∫
Γ1

∫ 1

0

zρzdρdx. (4.9)

But we have:

ξ

τ

∫
Γ1

∫ 1

0

zρz(σ, ρ) dρ dσ =
ξ

2τ

∫
Γ1

∫ 1

0

∂

∂ρ
z2(σ, ρ) dρ dσ

=
ξ

2τ

∫
Γ1

(
z2(σ, 1)− z2(σ, 0)

)
dσ .

Thus from the compatibility condition (4.4), we get:

− ξ
τ

∫
Γ1

∫ 1

0

zρz dρ dσ =
ξ

2τ

∫
Γ1

(
v2 − z2(σ, 1)

)
dσ .

Therefore equation (4.9) becomes:

〈AkvV, V 〉H = −a
∫

Ω

|∇v|2 dx+
ξ

2τ

∫
Γ1

v2dσ

− ξ

2τ

∫
Γ1

∫ 1

0

z2(σ, 1)dσ − µ
∫

Γ1

v(σ)z (σ, 1) dσ.

To treat the last term in the preceding equation, Young’s inequality gives:

−
∫

Γ1

v(σ)z (σ, 1) dσ ≤ 1

2

∫
Γ1

z2 (σ, 1) dσ +
1

2

∫
Γ1

v2(σ)dσ.
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Therefore, we firstly get:

〈AkvV, V 〉H +a

∫
Ω

|∇v|2 dx−
(
ξ

2τ
+
µ

2

)∫
Γ1

v2dσ+

(
ξ

2τ
− µ

2

)∫
Γ1

z2(σ, 1)dσ ≤ 0

At this point, as ξ = µτ , the previous inequality becomes:

〈AkvV, V 〉H + a

∫
Ω

|∇v|2 dx− µ
∫

Γ1

v2dσ ≤ 0.

Denoting now c = −µ
a
, we get 〈AkvV, V 〉H + a

(∫
Ω
|∇v|2 dx+ c

∫
Γ1
v2dσ

)
≤ 0.

By definition (4.5), we thus get:

〈AkvV, V 〉H + aCΩ(c)‖v‖2
2 ≤ 0. (4.10)

From assumption (4.8), CΩ(c) > 0. This inequality proves that the operator
Akvis dissipative. To show that λI − Akv is surjective for all λ > 0, we easily
adapt the proof of Theorem 2.1.

The proof of Theorem 4.1, follows from the Lumer–Phillips’ theorem.

Moreover the semigroup operator etAkv is exponential stable on H . We
have the following result.

Theorem 4.2. Suppose that the assumption (4.8) is satisfied. Then, there
exists C, ω > 0 such that for all t > 0 we have∥∥etAkv∥∥L(H )

≤ Ce−ωt.

Remark 4.3. We note here that, in this case where the damping operator is
sufficiently unbounded for controlling the delay one, we obtain the exponential
stability result.

Note that without internal damping (i.e., if a = 0, the previous model is
destabilized for arbitrarily small delays for every value µ>0, see [20]. Thus, the
internal damping −a∆ut makes the system robust with respect to time delays in
the boundary condition if the coefficient a is sufficiently large with respect to µ.

Remark 4.4. In the recent work of Nicaise and Pignotti, [41], they studied
the existence and stability of a problem closely related to problem (4.1). They
obtain a slightly different condition to ensure the existence and the stability.
Namely, let us define CP , a sort of Poincaré constant, by:

CP = sup
u∈H1

Γ0
(Ω)

‖u‖2
2,Γ1

‖∇u‖2
2

.
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By using the semigroup approach and the Lumer–Phillips’ theorem they proved
the global existence of the solution and by using an observability inequality they
proved the exponential stability under the condition:

µCP < a.

A simple argument shows that 1
CP
≥ |c?|. Thus the bound for the damping

coefficient a obtained in this work is of the same type that the one obtained by
Nicaise and Pignotti.

Proof of Theorem 4.2. We will employ the following frequency domain theorem
for exponential stability from [48] of a C0 semigroup of contractions on a Hilbert
space:

Lemma 4.5. A C0 semigroup etL of contractions on a Hilbert space H satisfies,
for all t > 0,

||etL||L(H) ≤ Ce−ωt

for some constant C, ω > 0 if and only if

ρ(L) ⊃
{
iβ
∣∣ β ∈ R

}
≡ iR,

and
lim sup
|β|→∞

‖(iβI − L)−1‖L(H) <∞, (4.11)

where ρ(L) denotes the resolvent set of the operator L.

The proof of Theorem 4.2 is based on the following lemmas. For the same
reason as before (see Remark 3.4), we have to show that there is no eigenvalue
lying on the imaginary axis and that Akv has no continuous spectrum on the
imaginary axis.

We first look at the point spectrum.

Lemma 4.6. If β is a real number, then iβ is not an eigenvalue of Akv.

Proof. We will show that the equation

AkvZ = iβZ (4.12)

with Z = (u, v, w, z)T ∈ D(Akv) and β ∈ R has only the trivial solution. System
(4.12) writes:

v = iβu (4.13)

∆u+ a∆v = iβv (4.14)

−∂u
∂ν
− a∂v

∂ν
− µz (., 1) = iβw (4.15)

−1

τ
zρ = iβz. (4.16)
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Let us firstly treat the case where β = 0. From (4.13), we deduce that v = 0 and
from the compatibility condition (4.4), we deduce that w = 0 and z(., 0) = 0.
From (4.16), we obtain that z(., ρ) = 0. Replacing v and z in (4.15) by 0 and
using (4.14) with v = 0, since u ∈ H1

Γ0
(Ω) ∩ H2(Ω), we finally deduce that

u = 0. Thus in the case where β = 0, the only solution of (4.12) is the trivial
one.

Let us suppose now that β 6= 0. Denoting now c = −µ
a
, by taking the inner

product of (4.12) with Z, using the inequality (4.10) we get:

< (< AkvZ,Z >H ) ≤ −aCΩ(c)‖v‖2
2. (4.17)

From assumption (4.8), CΩ(c) > 0 and thus we obtain that v = 0. Thus from
(4.13), we deduce that u = 0.

Next, since we have w = γ1(v), we also have w = 0. Moreover as we have
w = z(., 0), we get: z(., 0) = 0. From (4.15) we also have z(., 1) = 0. As z
satisfies (4.16), we get the following identity:

z(., ρ) = e−iβτρz(., 0).

Thus the only solution of (4.12) is the trivial one.

By the same way, as in Lemma 3.6, we show that Akv has no continuous
spectrum on the imaginary axis.

Lemma 4.7. If λ is a real number, then iλ belongs to the resolvent set ρ(Akv)
of Akv.

Lemma 4.8. The resolvent operator of Akv satisfies condition (4.11).

Proof. Suppose that condition (4.11) is false. By the Banach–Steinhaus Theo-
rem (see [11]), there exist a sequence of real numbers βn → +∞ and a sequence
of vectors Zn = (un, vn, wn, zn)T ∈ D(Akv) with ‖Zn‖H = 1 such that

||(iβnI −Akv)Zn||H → 0 as n→∞, (4.18)

i.e.,

(iβnun − vn) ≡ fn → 0 in H1
Γ0

(Ω), (4.19)

(iβnvn −∆un − a∆vn) ≡ gn → 0 in L2(Ω), (4.20)(
iβnwn +

∂un
∂ν

+ a
∂vn
∂ν

+ µzn(., 1)

)
≡ hn → 0 in L2(Γ1), (4.21)(

iβnzn +
1

τ
∂ρzn

)
≡ kn → 0 in L2(Γ1 × (0, 1)). (4.22)
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Our goal is to derive from (4.18) that ||Zn||H converges to zero, thus there
is a contradiction. We first notice that we have

||(iβnI −Akv)Zn||H ≥ |< (〈(iβnI −Akv)Zn, Zn〉H ) |.

Thus by (4.17) and (4.18), vn → 0 in L2(Ω). From (4.19), un → 0 in L2(Ω).
But we also have,

∆un → 0 in L2(Ω) and ∆vn → 0 in L2(Ω).

Thus we firstly obtain:

un → 0 in H1
Γ0

(Ω) and vn → 0 in H1
Γ0

(Ω). (4.23)

By the trace theorem, we have:

wn = γ(vn)→ 0 in L2(Γ1). (4.24)

Moreover, since Zn ∈ D(Akv), wn = zn(., 0). Thus we get:

zn(., 0)→ 0 in L2(Γ1). (4.25)

Now from (4.21), we also have:

zn(., 1)→ 0 in L2(Γ1).

As the following identity zn(., ρ) = zn(., 0)e−iτβnρ + τ
∫ ρ

0
e−iτβn(ρ−s)kn(., s) ds

holds, according to (4.22), (4.25) we finally have:

zn → 0 in L2(Γ1 × (0, 1)). (4.26)

Identities (4.23), (4.24) and (4.26) clearly contradicts the fact that, for all n ∈ N,
‖Zn‖H = 1.

The two hypotheses of Lemma 4.5 are proved. The proof of Theorem 4.2 is
then finished.

5. Comments and numerical illustrations

To illustrate numerically the results presented in this paper, we present numer-
ical simulations for problem (1.1) and for the Kelvin–Voigt damping, namely
problem (4.1), in 1D. So let us consider Ω = (0, 1), Γ0 = {0}, Γ1 = {1}.

To solve numerically problem (1.1) (resp. problem (4.1)), we have to con-
sider its equivalent formulation, namely problem (2.2) (resp. problem (4.2)),
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which writes in the present case:

utt − uxx + a ut = 0, x ∈ (0, 1), t > 0

u(0, t) = 0, t > 0

utt(1, t) + ux(1, t) + µz(x, 1, t) = 0 t > 0

τzt(1, ρ, t) + zρ(1, ρ, t) = 0, ρ ∈ (0, 1), t > 0,

z(1, 0, t) = ut(1, t) t > 0

u(x, 0) = u0(x) x ∈ (0, 1)

ut(x, 0) = u1(x) x ∈ (0, 1)

z(1, ρ, 0)− f0(1,−τρ) = 0 ρ ∈ (0, 1).

A 1D formulation of the “shifted” problem (3.2) as well as the Kelvin–Voigt
damping problem, problem (4.2) is of the same type.

As the stability result that we have presented in this work, namely Theo-
rem 3.1, is a stability result for the “shifted” problem (3.2), we have to perform
numerical simulations for both problems: the original one, problem (1.1) and
the “shifted” problem (3.2).

For this sake, to avoid a CFL condition between the mesh size and the time
step, we decided to discretize the different problems by implicit first order in
time, and finite difference method in space. For every simulations the numerical
parameters are the following:

τ = 2, ξ = 2ξ?, ∆x = 1
20
, ∆ρ = 1

20
, ∆t = 0.1

u0(x) = u1(x) = xe10x, f0(1, ρ) = eρe10.

For every time t > 0, we denote E(t) =
∥∥∥(u(., t), ut(., t), ut(1, t), z(1, ., t)

)T∥∥∥
H

.

The choice of u0, u1, f0 ensures a large initial energy.

In Figure 1 and Figure 2, we present the resulting simulation for the original
problem and the “shifted” one.

Let us first notice that the convergence rate for the shifted problem is bet-
ter than the one expected: we have proved a polynomial decay rate whereas
numerically, we observe an exponential decay rate. This is probably due two
facts:

1. the particular case of the dimension 1 as proved recently by G. Q. Xu,
S. P. Yung and L. Kwan Li [50].

2. the numerical diffusion participates to the exponential stability as for the
Kelvin–Voigt damping.

Moreover, as it was conjectured in Remark 3.2, the “shifted” problem con-
verges for a large set of parameters a and µ whereas the original problem does
not and even worse, it exhibits an exponential growth.
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Figure 1: Energy (in -log scale) versus time: influence of µ.
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Figure 2: Energy (in -log scale) versus time: influence of a.

I
¯
n Figure 3, we present the simulations for the case of the Kelvin–Voigt

damping for which we have proved that under the condition µ < |c?|a, we have
an exponential decay rate.

From equations (4.6) and (4.7), the constant c? must satisfy:{
uxx = 0, x ∈ (0, 1),

u(0) = 0, ux(1) + c?u(1) = 0.

Thus we obtain c? = −1. Let us first notice that even though the condition
between a and µ is not fulfilled, we have an exponential decay of the solution.
This is also probably due to the particular case of the dimension 1 as well.
Secondly it seems that numerically the convergence rate does not depend on
the parameter µ.



324 K. Ammari and S. Gerbi

0 50 100 150 200 250 300
−50

0

50

100

150

200

250

300

350

400

Kelvin-Voigt damping. µ = 1.00, τ = 2.00

Time t

−
L
o
g
(E

(t
))

 

 
a= 0.25
a= 0.50
a= 0.75
a= 1.00
a= 1.25
a= 1.50
a= 1.75
a= 2.00
a= 2.25
a= 2.50

(a) Influence of a

0 50 100 150 200 250 300
−50

0

50

100

150

200

250

300

Kelvin-Voigt damping. a = 1.00, τ = 2.00

Time t

−
L
o
g
(E

(t
))

 

 
µ = 0.00
µ = 1.00
µ = 2.00
µ = 3.00
µ = 4.00
µ = 5.00
µ = 6.00
µ = 7.00
µ = 8.00
µ = 9.00

(b) Influence of µ

Figure 3: Energy (in -log scale) versus time.
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