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Examples of Plentiful Discrete Spectra
in Infinite Spatial Cruciform Quantum

Waveguides
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Abstract. Spatial cruciform quantum waveguides (the Dirichlet problem for Laplace
operator) are constructed such that the total multiplicity of the discrete spectrum
exceeds any preassigned number.
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1. Introduction

In the informative paper [12], D. Grieser proved in particular that the spectrum
of a finite lattice of thin (with diameter O(ε), ε ≪ 1) quantum waveguides gets
much more complicated asymptotic structure than the Neumann Laplacian in
the same thin lattice whose spectrum is described by the classical L. Pauling
model [24], that is, a one-dimensional skeletal lattice graph with differential
structures on edges and the classical Kirchhoff transmission conditions at the
vertices. Indeed, according to [12], the low-frequency range of the Dirichlet
Laplacian modeling quantum waveguides, consists of the finite family

ε−2λ1, . . . , ε
−2λJ (1)
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where λ1, . . . , λJ are eigenvalues in the discrete spectra of the Dirichlet prob-
lem in unbounded domains which describe the boundary layer phenomenon,
have several cylindrical outlets to infinity and are obtained from the lattice by
stretching the coordinate systems centered at the nodes. For the Neumann case,
set (1) is obviously empty but in the Dirichlet case to detect those eigenvalues
becomes a much more complicated and challenging question. In our paper we
will demonstrate particular shapes of cruciform spatial quantum waveguides
where the number J in list (1) can be made arbitrarily large. To this end,
we traditionally apply the max-min principle (cf. [8, 15] for acoustics, [7, 9] for
quantum waveguides, and [6, 16] for water-waves) but construct trial functions
in plenty by means of an asymptotic method described below.

For two-dimensional rectangular lattices of thin (with width ε ≪ 1) quan-
tum waveguides in Figure 1,a, comprehensive results have been obtained in
[17, 21, 22] where in particular it was proved that the discrete spectrum of
the cruciform waveguide Π = {(x1, x2) ∈ R2 : |x1| < 1

2
or |x2| < 1

2
} consists

of the only eigenvalue ΛΠ ∈ (0, λ†(Π)) while clearly the continuous spectrum
[λ†(Π),+∞) has the cut-off value λ†(Π) = π2. The corresponding eigenfunction
normalized in L2(Π) will be denoted by UΠ:

−∆yUΠ(y) = ΛΠUΠ(y), y ∈ Π and UΠ = 0, y ∈ ∂Π. (2)

Moreover, this homogeneous Dirichlet problem with the threshold parameter
λ = λ†(Π) has no bounded solutions, neither eigenfunction decaying at infinity,
nor solution which stabilizes to c±j cos xj as x3−j → ±∞, j = 1, 2. The latter,
again due to a result in [12], implies that the mid-frequency range of the spec-
trum of the rectangular lattice of thin planar quantum waveguides is described
by ordinary differential equations on edges of the rectangular graph, Fig 1,b,
but in contrast to the Pauling model [24], all vertices are supplied with the
Dirichlet conditions splitting the graph into independent line intervals.

Quite the same conclusions but by means of a substantively modified ap-
proach were made in [3, 4] for a rectangular quantum lattice composed of thin
circular cylinders as well as for the cruciform waveguide Q = {(x1, x2, x3) :
x2
1+x2

3 <
1
4
or x2

2+x2
3 <

1
4
} ⊂ R3, Figure 2a, which also has only one point in the

discrete spectrum of the Dirichlet problem. However, three-dimensional geom-
etry offers much many options and in the sequel we will describe cross-sections
of cylinders in the cruciform junction that provide any prescribed number J
in (1). We mention that, after factoring cos(πx3) out, the spatial waveguide
with the unit square cross-section in Figure 2b inherits the only isolated eigen-
value ΛΠ < π2 from the planar waveguide Π but the total multiplicity of the
discrete spectrum in the waveguide with the right-angled rhombic cross-section
in Figure 2c is not known yet.
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a) b) c)

Figure 1: Thin rectangular lattice (a), its one-dimensional model (b) and the
planar cruciform waveguide (c).

a) b) c)

Figure 2: Spatial cruciform waveguides, circular (a), square (b) and rhombic (c).

2. Statement of the problem

Let QH = QH
1 ∪QH

2 be a union of the cylinders

QH
j =

{
x = (x1, x2, x3) ∈ R3 : (x3−j, H

−1x3) ∈ ω
}
, j = 1, 2, (3)

where H > 0 is a parameter and ω ⊂ R2 is a domain which is enveloped by
a Lipschitz contour ∂ω and contains the origin O = (0, 0). We consider two
particular cases:

(i) the diamond-shaped cross-section with the unscaled right-angled rhombic
prototype

ω♢ =
{
(y, z) ∈ R2 : |y|+ |z| < 1

2

}
,

(ii) the ellipsoidal cross-section with the unscaled circular prototype

ω◦ =
{
(y, z) ∈ R2 : |y|2 + |z|2 < 1

4

}
.

We are able to treat the case of big H, that is H → +∞, while a desirable
information when H → +0 is still unattainable for us.
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a) b)

Figure 3: Cruciform waveguides with high (H ≫ 1) rhombic (a) and ellipsoid (b)
cross-section of cylinders

We consider the Dirichlet spectral problem for the Laplace operator

−∆xu(x) = λu(x), x ∈ QH and u(x) = 0, x ∈ ∂QH . (4)

Its variational formulation reads:

(∇xu,∇xv)H = λ(u, v)H , v ∈ H1
0 (Q

H), (5)

where (·, ·)H is the natural inner product in the Lebesgue space L2(QH) and
H1

0 (Q
H) is a subspace of functions in the Sobolev spaceH1(QH) vanishing at the

boundary. Since the bilinear form on the left of (5) is closed and positive def-
inite, the formulation gives rise to unbounded positive definite and self-adjoint
operator AH in the Hilbert space L2(QH).

It is known that the continuous spectrum σH
c of the operator AH is the

semi-axis [λH
† ,+∞) where the principal threshold λH

† := λ†(Q
H) > 0 coincides

with the first eigenvalue of the Dirichlet problem on the cross-section in (3)

ωH = {(y, z) ∈ R2 : (y,H−1z) ∈ ω}.

According to [10, 19] and [5, 23] the threshold value admits the asymptotic
form

λH
† = π2 + µ†H

−α +O(H−2α), H → +∞, (6)

where α = α♢ = 2
3
and α = α◦ = 1

2
. Moreover µ† is the smallest eigenvalue of

either the Airy equation

−∂2
ζw(ζ) + 4π2|ζ|w(ζ) = νw(ζ), ζ ∈ R (7)

in case (i), or the harmonic oscillator equation

−∂2
ζw(ζ) + 4π2ζ2w(ζ) = νw(ζ), ζ ∈ R (8)

in case (ii).
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The total multiplicity #σH
d of the discrete spectrum (1)

0 < λH
1 < λH

2 ≤ · · · ≤ λH
#σH

d
< λH

† ,

of the operator AH is finite and #σH
d ≥ 1 according to [17].

The main result of the paper implies the following assertion for sufficiently
high diamonds and ellipses.

Theorem 2.1. For any N ∈ N = {1, 2, 3, . . .}, one finds positive HN and CN

such that the inequality H > HN guarantees that #σH
d ≥ N and

λH
N < ΛΠ + CNH

−α < π2 < λH
† ,

where α = α♢ = 2
3
and α = α◦ = 1

2
.

Our scheme of the proof works for both cases (i) and (ii) in a very similar
manner. Namely, based on the asymptotic analysis performed in the papers
[5, 10, 11, 14, 19, 23] and others, we use basic properties of eigenfunctions of the
ordinary differential equations (7) and (8) with λ†(Π) = π2 replaced by ΛΠ, pre-
pare appropriate, in particular “almost orthonormalized”, trial functions and
finally apply the max-min principle for the operator AH to detect its eigenvalues
below the cutoff value (6). The conclusive observation demonstrates that the
number of constructed linear independent trial functions grows infinitely when
H → +∞. This similarity and common fundamental properties of eigenfunc-
tions in (7) and (8) as well as recalling the above-mentioned analyses allow us
to focus on a bit more complicated case (i) and only to outline some features
of case (ii).

3. Total multiplicity in the diamond case

Our construction of announced trial functions ΦH
j in the max-min principle,

see (22) below, imitates the asymptotic procedures proposed in the papers
[10,19] where it was proved that eigenfunctions of the Dirichlet problem in thin
polygons and polyhedra are localized in the vicinity of certain vertices and/or
edges while in the waveguide QH with H > 1 the role of such concentrator is
taken by four broken edges in {x ∈ ∂QH : z = x3 = 0}, that is, the boundary of
the planar waveguide Π of width 1, the maximal one among all cross-sections
of the polyhedron QH ,

Πτ = {y : (y, τ) ∈ QH} of width h(τ) = 1− 2

H
|τ |, τ ∈

[
−H

2
,
H

2

]
. (9)

We accept the ansatz

ΦH
n (x) = H−α

4 χH(ζ)wn(ζ)UΠ((h(z)
−1y), n ≥ 1, (10)
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where y = (x1, x2) are the “horizontal” coordinates and

ζ = H−α
2 z (11)

is the rescaled “vertical” coordinate with the exponent α = α♢ = 2
3
. Further-

more, χH(ζ) = χ(2H−αζ), χ ∈ C∞(R) is a cut-off function,

χ(τ) = 1 for |τ | < 1

4
and χ(τ) = 0 for |τ | > 1

2
, (12)

and the last multiplier in (10) involves the eigenfunction UΠ in Π, so that it is
defined on the cross-section Πz, see (9). We emphasize that the function ΦH

n

vanishes on the boundary ∂QH because the multiplier UH(x) = UΠ(h(z)
−1y)

is taken from the Dirichlet problem (2). Finally, the “approximate” eigenvalue
takes the form

ΛΠ + µnH
−α, (13)

while {µn, wn} in (13) and (10) is an eigenpair of the Airy equation

−∂2
ζw(ζ) + 4ΛΠ|ζ|w(ζ) = µw(ζ), ζ ∈ R, (14)

in the class of functions decaying at infinity. It is known, cf. [25, Theorem
XIII.67], that the spectrum of the equation (14) is discrete and composes the
monotone unbounded sequence of simple eigenvalues

0 < µ1 < µ2 < · · · < µn < · · · → +∞,

while the corresponding eigenfunctions w1, w2, . . . , wn, . . . can be subject to the
normalization and orthogonality conditions

(wj, wk)L2(R) = δj,k, j, k ∈ N, (15)

where δj,k stands for the Kronecker symbol. Moreover, wk can be expressed in
terms of the Airy function,

wn(ζ) = anAi
(
(4ΛΠ)

1
3 |ζ| − (4ΛΠ)

− 2
3µn

)
, (16)

where an is a normalization factor. According to [1, 10.4.59] (see, e.g., the
book [2] for a proof),

Ai(t) ∼ 1

2
π− 1

2 t−
1
4 e−T

+∞∑
k=0

(−1)kckT
−k, t > 0, (17)

where

T =
2

3
t
3
2 , c0 = 1, ck =

Γ
(
3k + 1

2

)
54kk!Γ

(
k + 1

2

) ,
and Γ denotes the gamma function. In view of the exponential decay of (16)
caused by (17), the following inequality becomes evident.
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Lemma 3.1. The inequality∣∣∣∣∣
∫ 1

4
Hα

− 1
4
Hα

wj(ζ)wk(ζ)dζ − δj,k

∣∣∣∣∣ ≤ cNH
−α , (18)

is valid for any j, k = 1, . . . , N and with some factor cN depending on N ∈ N
and α = α♢.

In the same way as in [10, 19] the differential equation (14) can be derived
by using the coordinate (11), inserting the asymptotic ansätze (10), (13) into

the original problem (4), and collecting the terms of order H− 5α
4 . To make

such formal asymptotic analysis rigorous, it is necessary to estimate discrepan-
cies generated in the Helmholtz equation in QH . Moreover, aiming to employ
the max-min principle, we have to evaluate reciprocal scalar products of func-
tions (10). We will do these step by step and, first of all, observe that the last
factor UH(x) in (10) enjoys the relations∫

Πz

|UH(x)|2 dy = h(z)2,

∫
Πz

|∇yU
H(x)|2 dy = ΛΠ. (19)

Lemma 3.2. For any N ∈ N, there exists cN such that∣∣∣(ΦH
j ,Φ

H
k )H − δj,k

∣∣∣ ≤ cNH
−α♢

, j, k = 1, . . . , N.

In other words, the functions ΦH
1 , . . . ,Φ

H
N are “almost orthonormal” in L2(QH)

for a sufficiently big H, in particular, they are linear independent.

Proof. Using (19), we calculate the scalar product

(ΦH
j ,Φ

H
k )H =

∫ 1
2
H

2
3

− 1
2
H

2
3

χH(ζ)2wj(ζ)wk(ζ)h(H
− 1

3 ζ)2dζ.

Since h(H− 1
3 ζ)2 = 1−4H− 2

3 |ζ|+4H− 4
3 |ζ|2, according to (18) and (12) it suffices

to observe that the integral∫ 1
2
H

2
3

− 1
2
H

2
3

χH(ζ)2(|ζ|+ |ζ|2)|wj(ζ)||wk(ζ)|dζ

converges due to the exponential decay of wj and wk.

Lemma 3.3. There exist positive HN and cN such that for H > HN we have∣∣∣(∇xΦ
H
j ,∇xΦ

H
k )H − ΛΠδj,k

∣∣∣ < cNH
−α♢

, j, k = 1, . . . , N. (20)
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Proof. The scalar product on the left of (20) is the sum of two expressions

I1 = (∇yΦ
H
j ,∇yΦ

H
k )H and I2 = (∂zΦ

H
j , ∂zΦ

H
k )H .

The second equality in (19) leads to the formula

I1 = ΛΠ

∫ 1
2
H

2
3

− 1
2
H

2
3

|χH(ζ)|2wj(ζ)wk(ζ)dζ.

Thus, Lemma 3.1 provides the estimate |I1 − ΛΠδj,k| ≤ cNH
− 2

3 .
In order to evaluate the scalar product I2 we rewrite it as the sum of four

expressions
I2 = J jk

1 + J jk
2 + J jk

3 + Jkj
3 ,

where

J jk
1 = H− 1

3

(
∂z(χ

Hwj)U
H ; ∂z(χ

Hwk)U
H
)
H
,

J jk
2 = H− 1

3

(
χHwj ∂zU

H ;χHwk ∂zU
H
)
H
,

J jk
3 = H− 1

3

(
∂z(χ

Hwj)U
H ;χHwk ∂zU

H
)
H
.

The first equality (19) yields

J jk
1 = H− 2

3

∫ 1
2
H

2
3

− 1
2
H

2
3

∂ζ
(
χH(ζ)wj(ζ)

)
∂ζ

(
χH(ζ)wk(ζ)

)
|h(H

1
3 ζ)|2 dζ.

Since the factor |h(H 1
3 ζ)|2 in the integrand is uniformly bounded for ζ ∈

[−1
2
H

2
3 , 1

2
H

2
3 ], it is sufficient to estimate the L2(R)-norm of ∂ζ

(
χHwj

)
for

j = 1, . . . , N . The solution wj of the differential equation (14) satisfies

∥∂ζwj;L
2(R)∥2 ≤ µj∥wj;L

2(R)∥2 < µN .

Combining the evident inequality |∂ζχH(ζ)| ≤ cH− 2
3 with the normalization

condition (15), we conclude that J jk
1 ≤ cNH

− 2
3 .

Furthermore, we have

J jk
2 =H− 1

3

∫ 1
2
H

− 1
2
H

|χH(ζ)|2wj(ζ)wk(ζ)|∂z(h(z)−1)|2
∫
Πz

∣∣y∇yUΠ(h(z)
−1y)

∣∣2 dydz. (21)

The Fourier analysis of the problem (2) ensures that the eigenfunction UΠ and

its derivatives decay at infinity at the exponential rate e−
√

π2−ΛΠ |y|. Thus, the

last integral in (21) is bounded and we write

J jk
2 ≤ C

∫ 1
2
H

2
3

− 1
2
H

2
3

∣∣χH(ζ)
∣∣2 wj(ζ)wk(ζ)

∣∣∣∂zh(H 1
3 ζ
)∣∣∣2 ∣∣∣h(H 1

3 ζ
)∣∣∣−2

dζ.
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Recalling formula for h(τ) in (9), we repeat the above argumentation and derive
the inequality J jk

2 ≤ cNH
−2.

We complete the proof by estimating the scalar product J jk
3 . The bound

cNH
− 2

3 follows from the Cauchy–Schwartz inequality:

J jk
3 ≤

(
J jj
1 Jkk

2

) 1
2 ≤ cNH

− 2
3 .

Eigenvalues of the problem (4) can be determined by the max-min principle
(see, e.g, [25, Theorem XIII,1])

λH
n = sup

E
inf

u∈E\{0}

∥∇u;L2(QH)∥2

∥u;L2(QH)∥2
, (22)

where supremum is calculated over all subspaces E ⊂ H1
0 (QR) of co-dimension

n − 1. Due to Lemma 3.2 the functions ΦH
j , j = 1, . . . , N , are linearly inde-

pendent for a large H, each subspace E in (22) contains a linear combination∑N
j=1 αjΦ

H
j with coefficients subject to

∑N
j=1 |αj|2 = 1. In view of Lemmas 3.2

and 3.3 we obtain that for H > HN∥∥∥∑N
j=1 αj∇xΦ

H
j ;L

2(QH)
∥∥∥2

∥∥∥∑N
j=1 αjΦH

j ;L
2(QH)

∥∥∥2 ≤
∑N

j=1 |αj|2
∥∥∇xΦ

H
j ;L

2(QH)
∥∥2

+CNH
− 2

3∑N
j=1 |αj|2

∥∥ΦH
j ;L

2(QH)
∥∥2 −CNH

− 2
3

≤ ΛΠ + C♢
NH

− 2
3 ,

where HN , CN and C♢
N are some positive constants.

We also choose a bound H♢
N such that, for H > H♢

N , the relation

ΛΠ+C♢
NH

− 2
3 < λH

† holds for the cutoff value (6). This guarantees that σH
d ≥ N .

The proof of Theorem 2.1 is completed in case (i).

4. Total multiplicity in ellipsoidal case

To investigate the cruciform quantum waveguide with high ellipsoidal cross-
section, see Section 1, it is enough to repeat word-to-word our consideration in
Section 3 and modify the attendant computations to a very little degree. First
of all, this case requires in (9) for

h(z) =

(
1− 4z2

H2

) 1
2

.

With the same argument as in [5, 23] we replace the limit one-dimensional
spectral problem (14) by the following one:

−∂2
ζw(ζ) + 4ΛΠζ

2w(ζ) = µw(ζ), ζ ∈ R.
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Now its eigenvalues take the very simple form

µn = 2Λ
1
2
Π(2n+ 1), n ≥ 0

while the corresponding normalized in L2(R) eigenfunctions can be expressed
in terms of the Hermite polynomials Hn [1, 13] as follows:

wn(ζ) = (2nn!
√
π)−

1
2

(
4Λ

1
2
Π

) 1
4

e−Λ
1
2
Π ζ2Hn

(
(4ΛΠ)

1
4 ζ

)
. (23)

These explicit formulas and the exponential decay of the eigenfunctions (23)
lead to assertions similar to Lemmas 3.1, 3.2 and 3.3 with the usual change
α♢ 7→ α◦. Hence, the max-min principle (22) applies just in the same way and
supports Theorem (2.1) in case (ii) too.

5. Final remarks

In view of the localization effect for eigenfunctions of the Dirichlet problem
on the cross-section ωH of the cylinders (3) composing the waveguide Q, the
shape of ωH can be perturbed outside a neighbourhood of the mid-line {(y, z) :
z = 0, |y| < 1}, cf. Figure 4. Let ωH

⋆ be a perturbed cross-section while ω⋆ =
{(y, z) : |z| < 1, |y| < h⋆(z)} is its prototype.

a) b) c) d)

Figure 4: Different types of cross-sections.

In the case h⋆(z) = h(z) for |z| < δ, 0 < h⋆(z) < 1 for |z| ∈ [δ, 1], δ > 0
see Figures 4a and b, when the unique global strict maximum of the width
function h⋆ is attained at the point z = 0, Theorem 2.1 remains valid even
literally.

If the function h⋆ has local maxima as depicted in Figures 4c and d, at the
first sight the asymptotic procedures in use may help to construct approximate
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eigenfunctions which are localized near those maximum points. However, the
corresponding eigenvalues get asymptotic forms, different from (13), and climb
above the lower bound (6) of the continuous spectrum where the max-min prin-
ciple does not apply and detection of eigenvalues becomes much more compli-
cated task, cf. [18, 20]. At the same time, recalling elegant trick [8], we impose
the artificial Dirichlet conditions on the horizontal cross section {x ∈ Q : z = 0}
and consider the Dirichlet problem (4) in the upper half Q+ = {x ∈ Q : z > 0}
of the cruciform waveguide Q. According to [17], this problem has at least one
eigenvalue λ+ below the principle eigenvalue λ†(Q

+) of the continuous spectrum
in Q+. Moreover, the odd extension in the vertical coordinate z of the corre-
sponding eigenfunction u+ gives an eigenfunction of the original problem in the
intact waveguide Q.

For the cruciform waveguide composed from the circular cylinders, cf. [4],
we readily observe that λ+ stays above the threshold λ†(Q) < λ†(Q

+). In-
deed, as was shown in [4], the discrete spectrum consists of the only eigenvalue
λ◦ ∈ (0, λ†(Q)) while the corresponding eigenfunction is even in variable z. How-
ever, for the waveguides QH in cases (i) and (ii) such inference may become
wrong because the reach family of above-constructed eigenfunctions contains
ones which are odd in the vertical coordinate z.
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