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Abstract. We provide explicit conditions for uniform stability, global asymptotic
stability and uniform exponential stability for dynamic equations with a single delay
and a nonnegative coefficient. Some examples on nonstandard time scales are also
given to show applicability and sharpness of the new results.
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1. Introduction

Different types of stability for linear delay differential and difference equations,
even with a single delay, continue to attract attention, see, for example, the
recent papers [20, 35] and references therein. For linear delay equations, the
stability type has been connected to properties of the kernels of solution repre-
sentations [4, 8, 35].

The purpose of the present paper is two-fold:

1. to unify the results connecting different types of stability with estimates of
the fundamental solutions for delay differential and difference equations,
and extend them to equations on other types of time scales;

2. to outline the difference between discrete and continuous time scales: the
two parts of our main results coincide for differential equations but have
a meaningful difference for difference equations; for other time scales, the
two conditions coincide at the right-dense points and differ at the right-
scattered ones.
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In this paper, we study uniform stability, global asymptotic stability and uni-
form exponential stability of solutions to the delay dynamic equation

x∆(t) + A(t)x(α(t)) = 0 for t ∈ [t0,∞)T, (1)

where T is a time scale unbounded above, A ∈ Crd([t0,∞)T,R+
0 ) and

α ∈ Crd([t0,∞)T,T) with limt→∞ α(t) = ∞. Here, the notations R+ := (0,∞)
and R+

0 := [0,∞) are used. Further, we will be assuming one of the following
properties for the delay function α:

(A1) α(t) ≤ t for all t ∈ [t0,∞)T;

(A2) α(σ(t)) ≤ t for all t ∈ [t0,∞)T.

To use in the sequel, we need to define the least value of the delayed argument

α∗(t) := inf{α(η) : η ∈ [t,∞)T} for t ∈ [t0,∞)T.

Note here that α∗(t) > −∞ for any t ∈ [t0,∞)T since limt→∞ α(t) = ∞ yields
that there exists t1 ∈ [t0,∞)T such that α(t) ≥ t0 for all t ∈ [t1,∞)T and
infη∈[t0,t1]T α∗(η) is finite by [13, Theorem 1.60 (ii) and Theorem 1.65]. Clearly, α∗
is a nondecreasing rd-continuous function on [t0,∞)T. Further, for monotone
nondecreasing α, we have α∗ = α on [t0,∞)T. We also define

α−1(t) := sup{η ∈ [t0,∞)T : α∗(η) ≤ t} for t ∈ [t0,∞)T.

It is easy to see that for each s ∈ [t0,∞)T, we have α∗(t) ≥ s for all
t ∈ [α−1(s),∞)T.

If the delay α is strict, i.e., α(t) < t for all t ∈ [t0,∞)T, then (A2) holds. In
particular, (A1) and (A2) are the same for T = R since σ(t) = t for all t ∈ R,
while (A1) is weaker than (A2) for T = Z since (A2) means α(t) ≤ t− 1 for all
t ∈ Z.

The so-called Hilger-derivative x∆ in (1) turns out to be the usual deriva-
tive x′ when T = R, and the forward difference operator ∆ when T = Z, i.e.,
∆x(t) = x(t+ 1)− x(t) for t ∈ Z. Hence, our study here will unify some of the
fundamental stability results for delay differential equations

x′(t) + A(t)x(α(t)) = 0 for t ∈ [t0,∞)R (2)

and delay difference equations

∆x(t) + A(t)x(α(t)) = 0 for t ∈ [t0,∞)Z. (3)

As presented in [13, Examples 1.38–1.40], there exist some phenomena in real
world applications which cannot be described by only either continuous or dis-
crete models. The present paper aims to extend the classical stability tests for
more general type of equations called dynamic equations.
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Stability and asymptotic stability of the differential equation (2) have been
studied in [31, 39, 40, 47], and the exponential stability of (2) in [4, 5]. Some
results on stability and asymptotic stability of (3) can be found in [18, 23, 26,
33,35–37,48,49], and some results on the exponential stability in [6, 7, 35].

We mention here [1, 2, 12, 30, 45, 46] and [3, 19, 21, 22, 41–44], which deal
with asymptotic stability and exponential stability of the dynamic equation (1),
respectively. Further, we refer the readers to the papers [9, 14, 24, 29] for a
discussion on stability and the time scale exponential function.

Let us proceed with definitions of the solution and the stability of (1).

Definition 1.1 (Solution). A function x : [α∗(t0),∞)T → R, which is rd-
continuous on [α∗(t0), t0]T and ∆-differentiable on [t0,∞)T with an rd-conti-
nuous derivative, is called a solution of (1) provided that it satisfies the equal-
ity (1) identically on [t0,∞)T.

Definition 1.2 (Uniform Stability). The trivial solution of (1) is said to be
uniformly stable if for any ε ∈ R+, there exists δ ∈ R+ such that for any
s ∈ [t0,∞)T, any solution x of the initial value problem{

x∆(t) + A(t)x(α(t)) = 0 for t ∈ [s,∞)T

x(s) = x0 and x(t) = φ(t) for t ∈ [α∗(s), s)T,
(4)

with |x0|+ supη∈[α∗(s),s)T
|φ(η)| < δ satisfies |x(t)| < ε for all t ∈ [s,∞)T.

Definition 1.3 (Global Attractivity). The trivial solution of (1) is said to be
globally attracting if for any s ∈ [t0,∞)T, any solution x of the initial value
problem (4) satisfies limt→∞ x(t) = 0.

Definition 1.4 (Global Asymptotic Stability). The trivial solution of (1) is
said to be globally asymptotically stable if it is uniformly stable and globally
attracting.

Definition 1.5 (Uniform Exponential Stability). The trivial solution of (1) is
said to be uniformly exponentially stable if there exist constants M,λ ∈ R+

such that for any s ∈ [t0,∞)T, any solution x of the initial value problem (4)
satisfies

|x(t)| ≤ Me⊖λ(t, s)

(
|x0|+ sup

η∈[α∗(s),s)T

|φ(η)|
)

for all t ∈ [s,∞)T.

It is shown in [16, Theorem 2.1] that for time scales with bounded graininess
(such as T = R and T = Z), the term e⊖λ(t, s), where λ ∈ R+, in Definition 1.5
can be replaced by e−λ(t, s), where λ ∈ R+ and 1− λµ(t) > 0 for all t ∈ T (see
[16, Theorem 2.1]).

Obviously, one has the following implication chart (see [29, Corollary 5.7]
or Corollary 7.5):
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Uniform
Exponential
Stability

=⇒
Global

Asymptotic
Stability

=⇒ Uniform
Stability

The structure of the paper is as follows. In Section 2, we start with fun-
damental properties related to the fundamental solution of (1), which will be
required in the sequel. Section 3 and Section 4 include explicit conditions for
uniform stability, global asymptotic stability and uniform exponential stability
under the primary assumptions (A1) and (A2), respectively. In Section 5, we
provide three examples to show applicability of the new results on some non-
standard time scales. Section 6 includes some directions for future research.
Section 7 is the appendix. We describe auxiliary results related to the fun-
damental solution in Subsection 7.1, the time scales exponential function in
Subsection 7.2 and the basic time scales calculus is presented in Subsection 7.3.

2. Definitions and auxiliary results

In this section, we first introduce the notion of the fundamental solution and the
variation of parameters formula for (1). Then, we will give three main theorems
on the stability of (1).

Definition 2.1 (Fundamental Solution). For s ∈ [t0,∞)T, the solution
X = X (·, s) : [α∗(s),∞)T → R of the initial value problem{

x∆(t) + A(t)x(α(t)) = 0 for t ∈ [s,∞)T,

x(s) = 1 and x(t) ≡ 0 for t ∈ [α∗(s), s)T

is called the fundamental solution of (1).

The following result can be found in [15, Lemma 2.2].

Lemma 2.2 (Solution Representation). Let s ∈ [t0,∞)T and x be the solution
of the initial value problem{

x∆(t) + A(t)x(α(t)) = f(t) for t ∈ [s,∞)T,

x(s) = x0 and x(t) = φ(t) for t ∈ [α∗(s), s)T,

then

x(t) = X (t, s)x0 −
∫ t

s

X (t, σ(η))A(η)φ(α(η))∆η +

∫ t

s

X (t, σ(η))f(η)∆η

for t∈ [s,∞)T, where X is the fundamental solution of (1). We assume above
that functions vanish out of their specified domains, i.e., φ(t)≡0 for t∈ [s,∞)T.
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For the next theorem, we introduce the condition

sup
s∈[t0,∞)T

{∫ α−1(s)

s

A(η)∆η

}
< ∞, (5)

which is equivalent to lim sups→∞
∫ α−1(s)

s
A(η)∆η < ∞.

Theorem 2.3. Assume that (5) holds. Then, the following statements are
equivalent:

(i) The trivial solution of (1) is uniformly stable.

(ii) There exists M0 ∈ R+ such that

|X (t, s)| ≤ M0 for all (t, s) ∈ Λt0 , (6)

where
Λt0 := {(t, s) ∈ T× T : t ≥ s ≥ t0}. (7)

Proof. (i) =⇒ (ii). Let the trivial solution of (1) be uniformly stable. Given
ε ∈ R+, there exists δ ∈ R+ such that for any s ∈ [t0,∞)T, any solution x of
(4) with |x0| + supη∈[α∗(s),s)T

|φ(η)| < δ satisfies |x(t)| < ε for all t ∈ [s,∞)T.

For a fixed s ∈ [t0,∞)T and the solution x(t) := δ
2
X (t, s) for t ∈ [s,∞)T, we

see that |x(t)| < ε for all t ∈ [s,∞)T since |x(s)|+ supη∈[α∗(s),s)T
|x(η)| = δ

2
< δ.

Hence, (6) holds with M0 :=
2ε
δ
.

(ii) =⇒ (i). Let K0 := sups∈[t0,∞)T

{∫ α−1(s)

s
A(η)∆η

}
. Using Lemma 2.2 and

the vanishing property of the initial function φ, we have for all t ∈ [s,∞)T

|x(t)| ≤ M0

(
x0 +

∫ t

s

A(η)φ(α(η))∆η

)
≤ M0

(
x0 +

∫ α−1(s)

s

A(η)φ(α(η))∆η

)
≤ M0

(
x0 +K0 sup

η∈[α∗(s),s)T

|φ(η)|
)

≤ M0(K0 + 1)

(
x0 + sup

η∈[α∗(s),s)T

|φ(η)|
)
,

from which the uniform stability of the trivial solution of (1) follows.

Theorem 2.4. Assume that (5) holds. Then, the following statements are
equivalent:

(i) The trivial solution of (1) is globally attracting.

(ii) limt→∞X (t, s) = 0 for any s ∈ [t0,∞)T.

Proof. (i) =⇒ (ii). If the trivial solution of (1) is globally attracting, then it is
obvious from Definition 1.3 that limt→∞ X (t, s) = 0 for any s ∈ [t0,∞)T.

(ii) =⇒ (i). By Theorem 7.1, the fundamental solution X (as a function of
two variables) is continuous in (the triangular domain) Λt0 , thus we have

lim
t→∞

max
η∈[s,α−1(s)]T

|X (t, η)| = 0 for any s ∈ [t0,∞)T.
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The claim follows immediately from the inequality

|x(t)| ≤ |X (t, s)||x0|+
∫ α−1(s)

s

|X (t, σ(η))|A(η)|φ(α(η))|∆η

≤ |X (t, s)||x0|+K0

(
max

η∈[s,α−1(s)]T
|X (t, η)|

)(
sup

η∈[α∗(s),s)T

|φ(η)|
)

for all t ∈ [α−1(s),∞)T, where K0 := sups∈[t0,∞)T

{∫ α−1(s)

s
A(η)∆η

}
.

Now, we require the condition

sup
s∈[t0,∞)T

{α−1(s)− s} < ∞, (8)

which is equivalent to lim sups→∞[α−1(s)− s] < ∞.

Theorem 2.5. Assume that (5) and (8) hold. Then, the following statements
are equivalent:

(i) The trivial solution of (1) is uniformly exponentially stable.

(ii) There exist M0, λ0 ∈ R+ such that

|X (t, s)| ≤ M0e⊖λ0(t, s) for all (t, s) ∈ Λt0 , (9)

where Λt0 is defined in (7).

Proof. (i) =⇒ (ii). If the trivial solution of (1) is uniformly stable, then it is
obvious from Definitions 1.5 and 2.1 that (9) holds.

(ii) =⇒ (i). Let

K0 := sup
s∈[t0,∞)T

{∫ α−1(s)

s

A(η)∆η

}
and H0 := sup

s∈[t0,∞)T

{α−1(s)− s}.

Hence, Lemma 2.2 and the vanishing property of the initial function φ imply
for all t ∈ [s,∞)T that

|x(t)| ≤ M0e⊖λ0(t, s)

(
x0 +

∫ t

s

e⊖λ0(s, σ(η))A(η)φ(α(η))∆η

)
= M0e⊖λ0(t, s)

(
x0 +

∫ t

s

eλ0(σ(η), s)A(η)φ(α(η))∆η

)
≤ M0e⊖λ0(t, s)

(
x0 +

∫ α−1(s)

s

eλ0(σ(η), s)A(η)φ(α(η))∆η

)
≤ M0e⊖λ0(t, s)

(
x0 + eλ0H0

∫ α−1(s)

s

A(η)φ(α(η))∆η

)
≤ M0e⊖λ0(t, s)

(
x0 +K0e

λ0H0 sup
η∈[α∗(s),s)T

|φ(η)|
)

≤ M0e⊖λ0(t, s)
(
K0e

λ0H0 + 1
)(

x0 + sup
η∈[α∗(s),s)T

|φ(η)|
)
,
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from which the uniform exponential stability of the trivial solution of (1) fol-
lows. Note that we have used [11, Lemma 3.2] in the third step. It should be
noted here that the integral variable satisfies η ∈ [s, α−1(s))T, which implies
σ(η) ∈ [s, α−1(s)]T.

Remark 2.6. Note that the implication (i)⇒(ii) of Theorem 2.3 and (i)⇒(ii) of
Theorem 2.4 hold without the additional assumption (5), and the part (i)⇒(ii)
of Theorem 2.5 requires neither (5) nor (8).

Clearly, Theorem 2.5 improves [16, Theorem 4.1].

Remark 2.7. Consider the conditions

sup
s∈[t0,∞)T

{∫ ∞

s

A(η)χ(−∞,s)T(α(η))∆η

}
< ∞ (10)

and for all fixed λ ∈ R+

sup
s∈[t0,∞)T

{∫ ∞

s

eλ(σ(η), s)A(η)χ(−∞,s)T(α(η))∆η

}
< ∞, (11)

where χD : D → {0, 1} is the characteristic function of the set D ⊂ R, i.e.,
χD(t) = 1 for t ∈ D and χD(t) = 0 for t ̸∈ D. The condition limt→∞ α(t) = ∞
and the function α−1 in Theorems 2.3, 2.4 and 2.5 can be omitted by assum-
ing (10) and (11) instead of (5) and (8), respectively.

The following example demonstrates that the conditions (10) and (11)
(thus (5) and (8)) are crucial in Theorems 2.3, 2.4 and 2.5, as well as the
condition limt→∞ α(t) = ∞.

Example 2.8. Consider the time scale P1,1 = ∪k∈Z[2k, 2k+1]R = · · · ∪ [0, 1]R∪
[2, 3]R ∪ · · · and the dynamic equation

x∆(t) + x(α(t)) = 0 for t ∈ [0,∞)P1,1 , (12)

where α(t) := t if µ(t) = 0 and α(t) := −1 if µ(t) = 1 for t ∈ [0,∞)P1,1 , where µ
is the graininess function defined in Section 7.3. We show below that (10) does
not hold. Simply, we have

χ(−∞,s)T(α(t)) =

{
χ(−∞,s)T(t) = 0, t ≥ s, t ∈ [2k, 2k + 1)R and k ∈ N0,

χ(−∞,s)T(−1) = 1, t ≥ s, t = 2k + 1 and k ∈ N0

for s ∈ [t0,∞)T. By [13, Theorem 1.75], we get∫ ∞

s

χ(−∞,s)T(α(η))∆η =
∑

η∈[s,∞)2N0+1

µ(η) = ∞ for s ∈ [t0,∞)T.
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On the other hand, examining (12) yields the system{
x′(t) + x(t) = 0 for t ∈ [2k, 2k + 1)R and k ∈ N0,

∆x(2k + 1) + x(−1) = 0 for k ∈ N0,

whose solution is

x(t) =

{
1
ek
x(0)− e

e−1

(
1− 1

ek

)
x(−1), t = 2k and k ∈ N0,

x(2k)e−(t−2k), t ∈ (2k, 2k + 1]R and k ∈ N0.

Clearly, lim supt→∞ |x(t)| = e
e−1

|x(−1)| > 0 provided that x(−1) ̸= 0. We can
easily show that the fundamental solution X of (12) is positive. Further, we

can estimate that 0 ≤ X (t, s) ≤ e e−( t−s
2

) for all (t, s) ∈ Λ0, where Λ is defined
in (7). This implies limt→∞X (t, s) = 0 uniformly in s ∈ [0,∞)P1,1 but the trivial
solution of (12) is not globally attracting. Thus, the conclusion of Theorem 2.4
may not be valid without (10).

Further, (11) is not fulfilled for this example. Since the graininess function
is bounded (µ(t) ≤ 1 for all t ∈ P1,1), by [16, Lemma 2.3], we see that the
fundamental solution of (12) satisfies the exponential estimate (9) but not (11).
The trivial solution of (1) is not uniformly exponentially stable. Thus, the
conclusion of Theorem 2.5 may also not be valid without (5) and (8).

3. Stability results under (A1)

In this section, we will provide stability results under the condition (A1). We
will start with a technical lemma and then estimate the fundamental solution.
And, finally, the last three subsections of this section will provide explicit condi-
tions for uniform stability, global asymptotic stability and uniform exponential
stability, respectively.

3.1. A technical lemma.

Lemma 3.1. Assume (A1) and

sup
t∈[t0,∞)T

{∫ σ(t)

α∗(t)

A(η)∆η

}
< 1. (13)

Then, there exists λ0 ∈ (0, 1)R such that∫ σ(t)

α∗(t)

eλ0A(t, α∗(η))A(η)∆η <
1− λ0

1 + λ0A(t)µ(t)
for all t ∈ [t0,∞)T.
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Proof. It follows from (13) that there exists ν0 ∈ (0, 1)R such that∫ σ(t)

α∗(t)

A(η)∆η < ν0 for all t ∈ [t0,∞)T, (14)

which implies

A(t)µ(t) < ν0 and

∫ σ(t)

α2
∗(t)

A(η)∆η < 2ν0 for all t ∈ [t0,∞)T. (15)

Now, we can estimate∫ σ(t)

α∗(t)

eλA(t, α∗(η))A(η)∆η ≤ eλA(t, α
2
∗(t))

∫ σ(t)

α∗(t)

A(η)∆η

for all λ ∈ (0, 1)R and all t ∈ [t0,∞)T. By using [11, Lemma 2.3], (13) and (15),
this yields that ∫ σ(t)

α∗(t)

eλA(t, α∗(η))A(η)∆η < ν0e
2λν0 (16)

for all λ ∈ (0, 1)R and all t ∈ [t0,∞)T.
Let us define the function ϕ ∈ C([0, 1]R,R) by the formula

ϕ(λ) =
1− λ

1 + λν0
− ν0e

2λν0 for λ ∈ [0, 1]R.

Clearly, ϕ(0) = 1 − ν0 > 0 and ϕ(1) = −ν0e
2ν0 < 0. Therefore, we may find

λ0 ∈ (0, 1)R such that ϕ(λ0) = 0. Using (15) and (16), we have∫ σ(t)

α∗(t)

eλ0A(t,α∗(η))A(η)∆η<ν0e
2λ0ν0 =

1−λ0

1+λ0ν0
−ϕ(λ0)=

1−λ0

1+λ0ν0
≤ 1−λ0

1+λ0A(t)µ(t)

for all t ∈ [t0,∞)T, which concludes the proof.

3.2. Some properties of the fundamental solution.

Lemma 3.2. Assume (A1) and∫ σ(t)

α(t)

A(η)∆η ≤ 1 for all t ∈ [t0,∞)T. (17)

Then,
|X (t, s)| ≤ 1 for all (t, s) ∈ Λt0 , (18)

where Λt0 is defined in (7).
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Proof. Fix s ∈ [t0,∞)T and denote x(t) := X (t, s) for t ∈ [s,∞)T. First,
let x be positive on [s,∞)T, then x is nonincreasing on [s,∞)T, which implies
0 < x(t) ≤ 1 for all t ∈ [s,∞)T. Thus for a positive x the claim is true. Next,
let x have some generalized zeros on [s,∞)T, i.e., there exists t1 ∈ [s,∞)T such
that either x(t1) = 0 or x(t1) > 0 and xσ(t1) < 0. Hence, 0 ≤ x(t) ≤ 1 for all
t ∈ [s, t1]T. Let

t2 := sup{t ∈ [s,∞)T : |x(η)| ≤ 1 for all η ∈ [s, t]T}.

Clearly, t2 ≥ t1. To prove t2 = ∞, assume the contrary that t2 is finite. Assume
for now that t2 is right-scattered, i.e., µ(t2) > 0. Then, we have |xσ(t2)| > 1
and |x(t)| ≤ 1 for all t ∈ [s, t2]T. Without loss of generality, let xσ(t2) > 1.

The case where xσ(t2) < 1 is treated similarly. Thus, x∆(t2) =
xσ(t2)−x(t2)

µ(t2)
> 0.

From (1), we have x(α(t2)) < 0. Integrating (1) from α(t2) to σ(t2), we get

xσ(t2) = x(α(t2))−
∫ σ(t2)

α(t2)

A(η)x(α(η))∆η <

∫ σ(t2)

α(t2)

A(η)∆η ≤ 1,

which contradicts xσ(t2) > 1 (note that η ∈ [α(t2), σ(t2))T implies α(η) ≤ t2).
This shows that t2 is right-dense. That is, x is continuous at t2. In this case,
|x(t2)| = 1. Hence, we can find t3 ∈ (t2,∞)T such that |x(t3)| > 1 and x is
of fixed sign on [t2, t3]T. Without loss of generality, assume that x(t2) = 1 and
x(t) > 0 for all t ∈ [t2, t3]T (the case where x(t2) = −1 and x(t) < 0 for all
t ∈ [t2, t3]T is treated similarly). Let t4 be the greatest generalized zero of x on
[s, t2)T. Hence, we have either x(t4) = 0 or x(t4) < 0 and xσ(t4) > 0. Further,
x(t) > 0 for all t ∈ (t4, t3]T. We can also find t5 ∈ [t2, t3]T such that x∆(t5) > 0
and xσ(t5) > 1. This implies x(α(t5)) < 0 by (1). If t4 < α(t5) ≤ t5, then
x(α(t5)) > 0, which is a contradiction. Thus, α(t5) ≤ t4. Further, we have
|x(α(t))| ≤ 1 for all t ∈ [t4, t5]T. So, integrating (1) from t4 to σ(t5) yields

xσ(t5) = x(t4)−
∫ σ(t5)

t4

A(η)x(α(η))∆η ≤
∫ σ(t5)

t4

A(η)∆η ≤
∫ σ(t5)

α(t5)

A(η)∆η ≤ 1,

which contradicts xσ(t5) > 1. This implies t2 = ∞ and completes the proof.

Lemma 3.3. Assume (A1), (5) and (13). Then,

|X (t, s)| ≤ M0e⊖(λ0A)(t, s) for all (t, s) ∈ Λt0 ,

where Λt0 is defined in (7), M0 ∈ R+ and λ0 ∈ (0, 1)R is the number provided
by Lemma 3.1.

Proof. For simplicity of notation, fix s ∈ [t0,∞)T and let x(t) := X (t, s) for
t ∈ [s,∞)T. From (13), the claim of Lemma 3.1 holds with some λ0 ∈ (0, 1)R
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on [s,∞)T. Using (1), we have

x∆(t) = −A(t)xσ(t) + A(t)

∫ σ(t)

α(t)

x∆(η)∆η

= −A(t)xσ(t)− A(t)

∫ σ(t)

α(t)

A(η)x(α(η))∆η

(19)

for all t ∈ [α−1(s),∞)T. Applying the solution representation formula in
Lemma 2.2 for (19), we get

x(t)=x(α−1(s))e⊖A(t, α−1(s))−
∫ t

α−1(s)

e⊖A(t, η)A(η)

∫ σ(η)

α(η)

A(ζ)x(α(ζ))∆ζ∆η (20)

for all t ∈ [α−1(s),∞)T. Let us define a function y ∈ C1
rd([s,∞)T,R) by

y(t) :=

{
x(t)eλ0A(t, α−1(s)), t ∈ [α−1(s),∞)T,

x(t), t ∈ [s, α−1(s)]T.
(21)

Multiplying (20) by eλ0A(·, α−1(s)), we get

y(t) = y(α−1(s))e(λ0A)⊖A(t, α−1(s))

−
∫ t

α−1(s)

e(λ0A)⊖A(t, η)A(η)

∫ σ(η)

α(η)

eλ0A(η, α(ζ))A(ζ)y(α(ζ))∆ζ∆η
(22)

for all t ∈ [α−1(s),∞)T.
Next, we claim that |y(t)| ≤ 1 for all t ∈ [s,∞)T. Let

t2 := sup{t ∈ [s,∞)T : |y(η)| ≤ 1 for all η ∈ [s, t]T}.

To prove t2 = ∞, assume the contrary that t2 is finite. Clearly, t2 > α−1(s)
by (21) and Lemma 3.2. Assume for now that t2 is right-scattered. Then, we
have |yσ(t2)| > 1 and |y(t)| ≤ 1 for all t ∈ [s, t2]T. Using (22) and Lemma 3.1,
we obtain

|yσ(t2)| ≤ e(λ0A)⊖A(σ(t2), α−1(s))

+

∫ σ(t2)

α−1(s)

e(λ0A)⊖A(σ(t2), η)A(η)

∫ σ(η)

α∗(η)

eλ0A(η, α∗(ζ))A(ζ)∆ζ∆η

< e(λ0A)⊖A(σ(t2), α−1(s)) +

∫ σ(t2)

α−1(s)

e(λ0A)⊖A(σ(t2), η)
(1− λ0)A(η)

1 + λ0A(η)µ(η)
∆η

= e(λ0A)⊖A(σ(t2), α−1(s)) +

∫ σ(t2)

α−1(s)

e(λ0A)⊖A(σ(t2), η)
(
A⊖ (λ0A)

)
(η)∆η

= e(λ0A)⊖A(σ(t2), α−1(s)) +

∫ σ(t2)

α−1(s)

∆

∆η
e(λ0A)⊖A(σ(t2), η)∆η = 1,
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which is a contradiction. This shows that t2 is right-dense. That is, y is contin-
uous at t2. In this case, |y(t2)| = 1. Using Lemma 3.1 and (22), we can proceed
as above and show that |y(t2)| < 1, which is also a contradiction. Thus, t2 = ∞,
i.e., |y(t)| ≤ 1 for all t ∈ [s,∞)T.

It follows from (21) that

|x(t)| ≤ e⊖(λ0A)(t, α−1(s))|y(t)|
≤ e⊖(λ0A)(t, α−1(s))

= eλ0A(α−1(s), s)e⊖(λ0A)(t, s)

(23)

for all t ∈ [α−1(s),∞)T. By [11, Lemma 3.2] and (5), we estimate

eλ0A(α−1(s), s) ≤ exp

{
λ0

∫ α−1(s)

s

A(η)∆η

}
≤ eλ0K0 =: M0,

where K0 := sups∈[t0,∞)T

{∫ α−1(s)

s
A(η)∆η

}
. Hence, by (23), M0 > 1 and the

fact that |x(t)| ≤ 1 for all t ∈ [s, α−1(s)]T, we have |x(t)| ≤ M0e⊖(λ0A)(t, s) for
all t ∈ [s,∞)T, which completes the proof.

3.3. Uniform stability.

Theorem 3.4. Assume (A1), (5) and (17). Then, the trivial solution of (1) is
uniformly stable.

Proof. The proof follows from Theorem 2.3 and Lemma 3.2.

3.4. Global asymptotic stability. In this section, we suppose that∫ ∞

t0

A(η)∆η = ∞. (24)

Theorem 3.5. Assume (A1), (5), (13) and (24). Then, the trivial solution
of (1) is globally asymptotically stable.

Proof. It follows from (24) together with (i) and (v) of Corollary 7.5 given in
Appendix B that limt→∞ e⊖(λA)(t, s)=0 for any s∈ [t0,∞)T and any λ∈(0, 1)R.
Thus, the proof follows from Theorem 2.4 and Lemma 3.3.

3.5. Uniform exponential stability.

Theorem 3.6. Assume (A1), (5), (8) and (13). Moreover, assume that there
exist M1, λ1 ∈ R+ such that

e⊖(λ0A)(t, s) ≤ M1e⊖λ1(t, s) for all (t, s) ∈ Λt0 ,

where Λt0 is defined in (7) and λ0 ∈ (0, 1)R is provided in Lemma 3.1. Then,
the trivial solution of (1) is uniformly exponentially stable.
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Proof. The proof follows from Theorem 2.5 and Lemma 3.3.

Corollary 3.7. Assume (A1), (5), (8) and (13). Moreover, assume for every
λ ∈ (0, 1)R that there exist M1, λ1 ∈ R+ (which may depend on λ) such that

e⊖(λA)(t, s) ≤ M1e⊖λ1(t, s) for all (t, s) ∈ Λt0 ,

where Λt0 is defined in (7). Then, the trivial solution of (1) is uniformly expo-
nentially stable.

4. Stability results under (A2)

This section includes analogous results to those in Section 3 under the condition
(A2). We will be relaxing the conditions (13) and (17) of the previous section
by replacing the condition (A1) with the stronger one (A2). We will show that
the condition (A2) for α implies the same for α∗. Indeed, under (A2), we have

α∗(σ(t)) ≤ α(σ(t)) ≤ t for all t ∈ [t0,∞)T.

4.1. A technical lemma.

Lemma 4.1. Assume (A2) and

sup
t∈[t0,∞)T

{∫ t

α∗(t)

A(η)∆η

}
< 1. (25)

Then, −A ∈ R+([t0,∞)T,R) and there exists λ0 ∈ (0, 1)R such that∫ t

α∗(t)

eλ0(⊖(−A))(σ(t), α∗(η))A(η)∆η < 1− λ0 for all t ∈ [t0,∞)T.

Proof. From (25), there exists ν0 ∈ (0, 1)R such that∫ t

α∗(t)

A(η)∆η < ν0 for all t ∈ [t0,∞)T. (26)

First, let us prove that −A ∈ R+([t0,∞)T,R). By (26), we obtain that

ν0 >

∫ σ(t)

α∗(σ(t))

A(η)∆η = A(t)µ(t) +

∫ t

α∗(σ(t))

A(η)∆η for all t ∈ [t0,∞)T, (27)

which yields

1− A(t)µ(t) > 1− ν0 > 0 for all t ∈ [t0,∞)T. (28)
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Therefore, −A ∈ R+([t0,∞)T,R). Using (26) and (27), we see that∫ σ(t)

α∗(t)

A(η)∆η =

∫ t

α∗(t)

A(η)∆η + A(t)µ(t) < 2ν0 for all t ∈ [t0,∞)T. (29)

Using (28), we have

A(t) ≤ A(t)

1− A(t)µ(t)
=

(
⊖(−A)

)
(t) <

1

1− ν0
A(t) for all t ∈ [t0,∞)T. (30)

Note that −(1 − λ)A ∈ R+([t0,∞)T,R) for λ ∈ (0, 1)R. From (30), we get the
estimate∫ t

α∗(t)

eλ(⊖(−A))(σ(t), α∗(η))A(η)∆η ≤ eλ(⊖(−A))

(
σ(t), α2

∗(t)
) ∫ t

α∗(t)

A(η)∆η

< e λ
1−ν0

A

(
σ(t), α2

∗(t)
) ∫ t

α∗(t)

A(η)∆η

for all λ ∈ (0, 1)R and all t ∈ [t0,∞)T. This yields by using (26) and (29) that∫ t

α∗(t)

eλ(⊖(−A))(σ(t), α∗(η))A(η)∆η < ν0 exp

{
3λν0
1− ν0

}
for all λ∈(0, 1)R and all t∈ [t0,∞)T. Now, consider the function φ∈C([0, 1]R,R)
defined by

ϕ(λ) = (1− λ)− ν0 exp

{
3λν0
1− ν0

}
for λ ∈ [0, 1]R.

Clearly, ϕ(1− ν0) = ν0(1− e3ν0) < 0 and ϕ(0) = 1− ν0 > 0. Therefore, we may
find λ0 ∈ (0, 1− ν0)R such that ϕ(λ0) = 0, i.e.,∫ t

α∗(t)

eλ0(⊖(−A))(σ(t), α∗(η))A(η)∆η<ν0 exp

{
3λ0ν0
1−ν0

}
=(1− λ0)− ϕ(λ0)=1− λ0

for all t ∈ [t0,∞)T, which concludes the proof.

4.2. Some properties of the fundamental solution.

Lemma 4.2. Assume (A2) and∫ t

α(t)

A(η)∆η ≤ 1 for all t ∈ [t0,∞)T. (31)

Then, (18) holds.
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Proof. Fix s ∈ [t0,∞)T and denote x(t) := X (t, s) for t ∈ [s,∞)T. First, let x be
positive on [s,∞)T, then x is decreasing on [s,∞)T, which implies 0 < x(t) ≤ 1
for all t ∈ [s,∞)T. Thus the claim is true for positive x. Next, let x have
some generalized zeros on [s,∞)T, i.e., there exists t1 ∈ [s,∞)T such that either
x(t1) = 0 or x(t1) > 0 and xσ(t1) < 0. Hence, 0 ≤ x(t) ≤ 1 for all t ∈ [s, t1]T.
Let

t2 := sup{t ∈ [s,∞)T : |x(η)| ≤ 1 for all η ∈ [s, t]T}.

Clearly, t2 ≥ t1. To prove t2 = ∞, assume the contrary that t2 is finite. Assume
for now that t2 is right-scattered, i.e., µ(t2) > 0. Then, we have |xσ(t2)| > 1
and |x(t)| ≤ 1 for all t ∈ [s, t2]T. Without loss of generality, let xσ(t2) > 1 (the
case where xσ(t2) < 1 is treated similarly), which implies x∆(t2) > 0. From (1),
we have x(α(t2)) < 0. Note that

µ(t2)A(t2) =

∫ σ(t2)

t2

A(η)∆η ≤
∫ σ(t2)

α(σ(t2))

A(η)∆η ≤ 1,

where we have used (A2) for the first inequality and (31) in the last inequality.
Integrating (1) from α(t2) to σ(t2), we get

xσ(t2) = x(α(t2))−
∫ σ(t2)

α(t2)

A(η)x(α(η))∆η

= [1− µ(t2)A(t2)]x(α(t2))−
∫ t2

α(t2)

A(η)x(α(η))∆η

≤ −
∫ t2

α(t2)

A(η)x(α(η))∆η

≤
∫ t2

α(t2)

A(η)∆η

≤ 1,

which contradicts xσ(t2) > 1. This shows that t2 is right-dense. That is, x is
continuous at t2. In this case, |x(t2)| = 1. Hence, we can find t3 ∈ (t2,∞)T
such that |x(t3)| > 1 and x is of fixed sign on [t2, t3]T. Without loss of gener-
ality, assume that x(t2) = 1 and x(t) > 0 for all t ∈ [t2, t3]T. The case where
x(t2) = −1 and x(t) < 0 for all t ∈ [t2, t3]T is treated similarly. Let t4 be the
greatest generalized zero of x in [s, t2)T. Hence, we have either x(t4) = 0 or
x(t4) < 0 and xσ(t4) > 0. Further, x(t) > 0 for all t ∈ (t4, t3]T. We can also find
t5 ∈ [t2, t3]T such that x∆(t5) > 0 and xσ(t5) > 1. This implies x(α(t5)) < 0
by (1). If t4 < α(t5) ≤ t5, then x(α(t5)) > 0, which is a contradiction. Thus,
α(t5)≤ t4. Further, we have |x(α(t))| ≤ 1 for all t∈ [t4, t5]T. So, integrating (1)
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from t4 to σ(t5) yields

xσ(t5) = x(t4)−
∫ σ(t5)

t4

A(η)x(α(η))∆η

= x(t4)− µ(t5)A(t5)x(α(t5))−
∫ t5

t4

A(η)x(α(η))∆η

≤
∫ t5

t4

A(η)∆η

≤
∫ t5

α(t5)

A(η)∆η

≤ 1,

which contradicts xσ(t5) > 1. This implies t2 = ∞ and completes the proof.

Lemma 4.3. Assume (A2), (5) and (25). Then,

|X (t, s)| ≤ e−λ0A(t, s) for all (t, s) ∈ Λt0 ,

where Λt0 is defined in (7) and λ0 ∈ (0, 1)R is provided in Lemma 4.1.

Proof. For simplicity of notation, fix s ∈ [t0,∞)T and let x(t) := X (t, s)
for t ∈ [s,∞)T. We may suppose that the claim of Lemma 4.1 holds with
λ0 ∈ (0, 1− ν0)R on [s,∞)T, where ν0 ∈ (0, 1)R satisfies (26). From (1), we have

x∆(t)=−A(t)x(t)+A(t)

∫ t

α(t)

x∆(η)∆η=−A(t)x(t)−A(t)

∫ t

α(t)

A(η)x(α(η))∆η (32)

for all t ∈ [α−1(s),∞)T. Applying the solution representation formula in Lem-
ma 2.2 for (32), we get

x(t) = x(α−1(s))e−A(t, α−1(s))

−
∫ t

α−1(s)

e−A(t, σ(η))A(η)

∫ η

α(η)

A(ζ)x(α(ζ))∆ζ∆η
(33)

for all t ∈ [α−1(s),∞)T. Let us define a function y ∈ C1
rd([s,∞)T,R) by

y(t) :=

{
x(t)eλ0(⊖(−A))(t, α−1(s)), t ∈ [α−1(s),∞)T,

x(t), t ∈ [s, α−1(s)]T.
(34)

Multiplying (33) by eλ0(⊖(−A))(·, α−1(s)) and considering the fact that

λ0

(
⊖(−A(t))

)
⊕(−A(t))=

λ0A(t)

1−A(t)µ(t)
−A(t)−λ0(A(t))

2µ(t)

1−A(t)µ(t)
=−(1− λ0)A(t)
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for all t ∈ [α−1(s),∞)T, we get

y(t) = y(α−1(s))e−(1−λ0)A(t, α−1(s))−
∫ t

α−1(s)

e−(1−λ0)A(t, σ(η))A(η)

×
∫ η

α(η)

e−(1−λ0)A(σ(η), α−1(s))A(ζ)x(α(ζ))∆ζ∆η

= y(α−1(s))e−(1−λ0)A(t, α−1(s))−
∫ t

α−1(s)

e−(1−λ0)A(t, σ(η))A(η)

×
∫ η

α(η)

eλ0(⊖(−A))(σ(η), α(ζ))A(ζ)y(α(ζ))∆ζ∆η

(35)

for all t ∈ [α−1(s),∞)T.
Next, we claim that |y(t)| ≤ 1 for all t ∈ [s,∞)T. Let

t2 := sup{t ∈ [s,∞)T : |y(η)| ≤ 1 for all η ∈ [s, t]T}.

To prove t2 = ∞, assume the contrary that t2 is finite. Clearly, t2 > α−1(s)
by (34) and Lemma 4.2. Assume for now that t2 is right-scattered. Then, we
have |yσ(t2)| > 1 and |y(t)| ≤ 1 for all t ∈ [s, t2]T. Using (35), Lemma 4.1 and
[13, Theorem 2.39], we obtain

|yσ(t2)| ≤ e−(1−λ0)A(σ(t2), α−1(s))

+

∫ σ(t2)

α−1(s)

e−(1−λ0)A(σ(t2), η)A(η)

∫ η

α∗(η)

eλ0(⊖(−A))(σ(η), α∗(ζ))A(ζ)∆ζ∆η

< e−(1−λ0)A(σ(t2), α−1(s)) + (1−λ0)

∫ σ(t2)

α−1(s)

e−(1−λ0)A(σ(t2), σ(η))A(η)∆η

= e−(1−λ0)A(σ(t2), α−1(s)) +

∫ σ(t2)

α−1(s)

∆

∆η
e−(1−λ0)A(σ(t2), η)∆η = 1,

which is a contradiction. Thus t2 is right-dense, hence y is continuous at t2. In
this case, |y(t2)| = 1. Using Lemma 3.1 and (22), we can proceed as above and
show that |y(t2)| < 1, which is also a contradiction. This implies t2 = ∞, i.e.,
|y(t)| ≤ 1 for all t ∈ [s,∞)T.

It follows from (34) that

|y(t)| = |x(t)|eλ0(⊖(−A))(t, α−1(s)) ≥ |x(t)|e⊖(−λ0A)(t, α−1(s)) (36)

for all t ∈ [α−1(s),∞)T since we have

λ0

(
⊖(−A(t))

)
=

λ0A(t)

1− A(t)µ(t)
≥ λ0A(t)

1− λ0A(t)µ(t)
= ⊖(−λ0A(t))
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for all t ∈ [α−1(s),∞)T. From (36), we obtain

|x(t)| ≤ e−λ0A(t, α−1(s)) = e⊖(−λ0A)(α−1(s), s)e−λ0A(t, s) (37)

for all t ∈ [α−1(s),∞)T. As in the proof of Lemma 4.1 and by virtue of [11,
Lemma 3.2], we estimate

e⊖(−λ0A)(α−1(s), s) = e λ0A
1−λ0ν0

(α−1(s), s)

≤ exp

{
λ0

1− λ0ν0

∫ α−1(s)

s

A(η)∆η

}
≤ e

λ0K0
1−λ0ν0 =: M0,

where K0 := sups∈[t0,∞)T

{∫ α−1(s)

s
A(η)∆η

}
. Hence, by (37), M0 > 1 and the

fact that |x(t)| ≤ 1 for all t ∈ [s, α−1(s)]T, we have |x(t)| ≤ M0e−λ0A(t, s) for all
t ∈ [s,∞)T, which concludes the proof.

4.3. Uniform stability.

Theorem 4.4. Assume (A2), (5) and (31). Then, the trivial solution of (1) is
uniformly stable.

Proof. The proof follows from Theorem 2.3 and Lemma 4.2.

4.4. Global asymptotic stability. In this section, we suppose that (24) holds.

Theorem 4.5. Assume (A2), (5), (24) and (25). Then, the trivial solution
of (1) is globally asymptotically stable.

Proof. The proof follows from Theorem 2.4 and Lemma 4.3 together with (i)
and (vi) of Corollary 7.5 given in Appendix B.

4.5. Uniform exponential stability.

Theorem 4.6. Assume (A2), (5), (8) and (25). Moreover, assume that there
exist M1, λ1 ∈ R+ such that

e−λ0A(t, s) ≤ M1e⊖λ1(t, s) for all (t, s) ∈ Λt0 ,

where Λt0 is defined in (7) and λ0 ∈ (0, 1)R is provided in Lemma 4.3. Then,
the trivial solution of (1) is uniformly exponentially stable.

Proof. The proof follows from Theorem 2.5 and Lemma 4.3.

Corollary 4.7. Assume (A2), (5), (8) and (25). Moreover, assume that for
every λ ∈ (0, 1)R there exist M1, λ1 ∈ R+ (which may depend on λ) such that

e−λA(t, s) ≤ M1e⊖λ1(t, s) for all (t, s) ∈ Λt0 , (38)

where Λt0 is defined in (7). Then, the trivial solution of (1) is uniformly expo-
nentially stable.
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5. Some applications

This section includes three examples, which show that our results are easily
applicable and fill some gaps in the literature.

Before presenting our examples, we would like to make a remark.

Remark 5.1. If the delay function α is increasing, then α∗ = α (which also
holds for nondecreasing α) and α−1 = α−1, where α−1 is the inverse of the
delay α. So, (5) is satisfied by (31), which is implied by (25). It should also be
noted that (17) implies (31). Further, in this case, (8) is equivalent to

lim sup
t→∞

[t− α(t)] < ∞. (39)

In the examples below, the delay function α is strictly increasing. Hence,
by Remark 5.1, we will omit the justification of (5).

Example 5.2. Consider the time scale P1,1 = ∪k∈Z[2k, 2k+1]R = · · · ∪ [0, 1]R∪
[2, 3]R ∪ · · · and the dynamic equation

x∆(t) + A(t)x(α(t)) = 0 for t ∈ [1,∞)P1,1 , (40)

where

A(t) :=

{
a4[t], t ∈ [2k, 2k+1)R and k ∈ N,
a, t = 2k+1 and k ∈ N0

and α(t) := t−
(
{t}(1−{t})

)[t]
for t ∈ [1,∞)P1,1 . Here, a ∈ R+, [·] and {·} denote the greatest integer and
the fractional part, respectively. Note that A(2k) = a16k for k ∈ N, i.e., the
coefficient A is unbounded on [1,∞)P1,1 . More precisely, we have α(n) = n for
n ∈ N and α(σ(2k − 1)) = α(2k) = 2k for k ∈ N. Hence, (A1) holds but (A2)
is not satisfies. We evaluate∫ σ(t)

α(t)

A(η)∆η =

{
a
(
4{t}(1− {t})

)[t]
, t ∈ [2k, 2k + 1)R and k ∈ N,

a, t = 2k + 1 and k ∈ N0

for t ∈ [1,∞)P1,1 . Note that

max
t∈[2n,2n+1]

(
4{t}(1− {t})

)[t]
=

(
4{t}(1− {t})

)[t]∣∣∣
t=2n+ 1

2

= 1 for n ∈ N.

Applying Theorem 3.4, we see that the trivial solution of (40) is uniformly
stable if a ≤ 1. If a < 1, then the trivial solution of (40) is globally asymptoti-
cally stable by Theorem 3.5 since (24) holds readily. Using Corollary 3.7 with
λ1 := λa for λ ∈ (0, 1)R, we see that the trivial solution of (40) is uniformly
exponentially stable provided that a < 1.

Since the delay α is not strict, the result in [46] (see also [30]) is not ap-
plicable. Further, as the coefficient A is unbounded, the results in [16] are not
applicable, either.
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Example 5.3. On the time scale T = ∪n∈N[sinh(n), cosh(n)]R (whose graininess
is unbounded), we define

A(t) :=


a, t ∈ [sinh(n), cosh(n))R and n ∈ N

a

sinh(n+ 1)− cosh(n)
, t = cosh(n) and n ∈ N

for t ∈ [1,∞)T, where a ∈ R+, and

α(t) := t−
(
cosh(n)− t

)(
t− sinh(n)

)
cosh(n)− sinh(n)

for t ∈ [sinh(n), cosh(n)]R and n ∈ N.

Obviously, (A1) holds. However, (A2) does not hold since α(σ(cosh(n))) =
α(sinh(n+ 1)) = sinh(n+ 1) for n ∈ N. Consider the dynamic equation

x∆(t) + A(t)x(α(t)) = 0 for t ∈ [sinh(1),∞)T. (41)

We compute∫ σ(t)

α(t)

A(η)∆η =

{
a
(
t− α(t)

)
, t ∈ [sinh(n), cosh(n))R and n ∈ N,

a, t = cosh(n) and n ∈ N

for t ∈ [sinh(1),∞)T. Further, for n ∈ N, we have

max
t∈[sinh(n),cosh(n)]R

(
t− α(t)

)
= en

(
cosh(n)− t

)(
t− sinh(n)

)∣∣∣
t= en

2

=
1

4en
< 1,

which tends to zero as n → ∞. By Theorem 3.4, the trivial solution of (41) is
uniformly stable if a ≤ 1. And by Theorem 3.5, we also have global asymptotic
stability for the trivial solution if a < 1. However, we cannot apply Theorem 3.6
to provide uniform exponential stability for the trivial solution.

The delay is not strict since α(sinh(n)) = sinh(n) for n ∈ N, which shows
that the result in [46] (see also [30]) does not apply. The graininess being
unbounded implies that the results in [16] fail for this equation.

Example 5.4. On the isolated time scale T = Z\3Z = {. . . , 1, 2, 4, 5, . . .}
consider the equation

x∆(t) + A(t)x(ρ2(t)) = 0 for t ∈ [1,∞)T, (42)

where

A(t) :=

{
a, t ∈ 3N0 + 1,

b, t ∈ 3N0 + 2,
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with a, b ∈ R+. Then, we see that (A2) holds for α = ρ2. Clearly, we have∫ t

ρ2(t)

A(η)∆η = A(ρ(t))µ(ρ(t)) + A(ρ2(t))µ(ρ2(t)) ≡ a+ 2b for t ∈ [1,∞)T.

Thus, Theorem 4.4 provides uniform stability for the trivial solution of (42)
when a + 2b ≤ 1. Let us note that [46, Theorem 1.1] cannot be applied when
a = 7

10
and b = 1

10
. Now, we see that∫ ∞

1

A(η)∆η = lim
n→∞

n−1∑
k=0

∫ 3(k+1)+1

3k+1

A(η)∆η = lim
n→∞

n[a+ 2b] = ∞.

Therefore, the trivial solution of (1) is globally asymptotically stable by The-
orem 4.5 if a + 2b < 1. With a = 7

10
and b = 1

10
satisfying a + 2b < 1,

[46, Theorem 1.2] also fails. Finally, let a + 2b < 1, then a < 1 and b < 1
2
.

We will show that the assumptions of Corollary 4.7 hold with M1 := 1 and
λ1 := min

{
λa

1−λa
, λb
1−2λb

}
(which is positive) for λ ∈ (0, 1)R. To this end, we will

prove that

e−λA(σ(t), t) ≤ e⊖λ1(σ(t), t) for t ∈ T and λ ∈ (0, 1)R (43)

or equivalently 1 − λA(t)µ(t) ≤ 1
1+λ1µ(t)

. Indeed, for t ∈ T and λ ∈ (0, 1)R, we
have

1− λA(t)µ(t) =
1

1 + λA(t)
1−λA(t)µ(t)

µ(t)
≤ 1

1 + λ1µ(t)
.

By the semigroup property (see [13, Lemma 2.31]) and T being isolated, it
follows from (43) that

e−λA(t, s) =
∏

η∈[s,t)T

e−λA(σ(η), η) ≤
∏

η∈[s,t)T

e⊖λ1(σ(η), η) = e⊖λ1(t, s)

for all (t, s) ∈ Λ1, where Λ is defined in (7). Thus, the trivial solution of (42)
is uniformly exponentially stable by Corollary 4.7 if a + 2b < 1. It should be
mentioned that [16, Theorem 6.1 and Theorem 6.2] cannot be applied to (42)
when a = 3

8
and b = 1

4
, which satisfy a+ 2b < 1.

6. Final Discussion

Let us start with commenting on the attractivity of the trivial solution of (1).
Under anyone of the following conditions, the trivial solution of (1) is globally
attracting:

(i) (A1), (24) and lim supt→∞
∫ σ(t)

α∗(t)
A(η)∆η < 1;

(ii) (A2), (24) and lim supt→∞
∫ t

α∗(t)
A(η)∆η < 1.



364 E. Braverman and B. Karpuz

For the asymptotic stability of the differential equation (2) and the differ-
ence equation (3), many of the results in the literature consider the so-called
constant delays, i.e., delays of the form α(t) = t− α0 for t ∈ [t0,∞)T, where α0

is a positive constant. Thus, by Remark 5.1, the condition (8) or equivalently
the condition (39) are satisfied, see [39, 40, 47] and [18, 23, 26, 33, 36, 37, 48, 49].
For the asymptotic stability of dynamic equations, we can refer to [46], which
assumes (39). So, this can make an impression that (8) is necessary for asymp-
totic stability. Our results (Theorems 3.5 and 4.5) show that the condition (8)
is not required for the asymptotic stability of (1).

As a general example, consider the so-called pantograph equation

x′(t) + A(t)x(θt) = 0 for t ∈ [1,∞)R, (44)

where A is a continuous function and θ ∈ (0, 1)R, which does not satisfy (39)
(see Remark 5.1). Using the idea in [28] with u = ln(t), we can transform (44)
into

y′(u) + euA(eu)y(u− ln(1
θ
)) = 0 for u ∈ [0,∞)R, (45)

where y′(u) denotes the derivative of y with respect to u here. Obviously, (45)
fulfils (39). For instance, assume that

sup
u≥0

{∫ u

u−ln(
1
θ
)

eζA(eζ)dζ

}
< 1 and inf

u≥0

{
euA(eu)

}
> 0,

which holds for A(t) := a
t
for t ∈ [1,∞)R, where a ∈R+, such that a ln(1

θ
)< 1.

By Corollary 3.7, we can say for the fundamental solution Y of (45) that
|Y(u, v)| ≤ Me−λ(u−v) for all u ≥ v ≥ 0, where M,λ ∈ R+. Therefore, we
see for the fundamental solution X of (44) that

|X (t, s)| =
∣∣Y(

ln(t), ln(s)
)∣∣ ≤ M

(
t

s

)−λ

for all t ≥ s ≥ 1.

This shows that the trivial solution of the pantograph equation (44) is globally
asymptotically stable by Theorem 2.4 (cf [35, Theorem 2.6]).

Consider the two-term equation with both a delay and a non-delay term

x∆(t) + A(t)xσ(t) + B(t)x(β(t)) = 0 for t ∈ [t0,∞)T, (46)

where A,B ∈ Crd([t0,∞)T,R+
0 ) and β ∈ Crd([t0,∞)T,T) satisfies β(t) ≤ t for

all t ∈ [t0,∞)T with limt→∞ β(t) = ∞. The substitution y(t) := eA(t, t0)x(t)
for t ∈ [t0,∞)T transforms (46) into the single-term equation

y∆(t) + B(t)eA(t, β(t))y(β(t)) = 0 for t ∈ [t0,∞)T. (47)
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By virtue of Lemma 7.3, the stability of (46) is equivalent to that of (47) under
the condition that ∫ ∞

t0

A(η)∆η < ∞. (48)

By using Corollary 7.5, a similar idea can be applied to show equivalence of
stability of

x∆(t) + A(t)x(t) +B(t)x(β(t)) = 0 for t ∈ [t0,∞)T

and

y∆(t) +B(t)e⊖(−A)(σ(t), β(t))y(β(t)) = 0 for t ∈ [t0,∞)T

provided that −A ∈ R+(T,R) and (48) holds. This discussion also brings an
exponential estimate for the solutions of two-term equations (46). For instance,
if the solution y of (47) satisfies |y(t)| ≤ M for t ∈ [t0,∞)T, whereM ∈ R+, then
the corresponding solution x of (46) satisfies |x(t)| ≤ Me⊖A(t, t0) for t ∈ [t0,∞)T
(see the proofs of Lemma 3.3 and Lemma 4.3).

Let {tn}n∈N0 be an increasing unbounded sequence of reals and consider on
the time scale T := {tn}n∈N0 , the equation

x∆(t) +
a

µ(t)
x(ρ(t)) = 0 for t ∈ [t1,∞)T, (49)

where a ∈ R+. Here, the delay function α is the backward jump operator ρ.
Using the so-called simple useful formula, we get

x(σ(t)) = x(t)− ax(ρ(t)) for t ∈ [t1,∞)T,

or equivalently x(tn+1) = x(tn) − ax(tn−1) for n = 1, 2, . . . . This leads to the
first-order vector recurrence(

x(tn+1)
x(tn)

)
=

(
1 −a
1 0

)(
x(tn)
x(tn−1)

)
for n = 1, 2, . . . ,

where the coefficient matrix has the eigenvalues 1
2

(
1±

√
1− 4a

)
, which are less

than or equal to 1 in absolute value if and only if a ≤ 1. Hence, the trivial
solution of (49) is uniformly stable if and only if a ≤ 1.

Clearly, (A2) holds with equality for (49) since for isolated time scales σ
and ρ are the inverses of each other on (inf T, supT)T (see [13, Example 1.4]).
Further, the condition (31) turns out to be a ≤ 1. This discussion shows that
the conditions of Theorem 4.4 (also of Theorem 4.5) are sharp.

The results of the present paper can be viewed as the generalization of the
classical results of [27] for delay differential equations and recent investigation
[34] for delay difference equations on the relations of the fundamental function
(the Cauchy operator) and various stability types to delay dynamic equations.
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In [27, § 6.6], linear differential systems with distributed delays are consid-
ered. Lemmas 6.2 and 6.3 presented therein are similar to Theorems 2.3 and 2.5
for delay dynamic equations. More precisely, uniform stability and uniform ex-
ponential stability are related with boundedness and exponential decay of the
fundamental solution, respectively. Further, some other properties (using the
uniform boundedness principle) of the solution operator are proved. In this
direction, if we define the Cauchy operator C by

(Cφ)(t) := X (t, s)x0 −
∫ t

s

X (t, σ(η))A(η)φ(α(η))∆η for t ∈ [s,∞)T,

then by using the technique in [27, § 6.6], we can show that the properties of
the Cauchy operator C are aligned with the asymptotics of the fundamental
solution X . For instance, the fundamental solution X is bounded if and only if
the Cauchy operator C is bounded, or the fundamental solution X satisfies an
exponential estimate if and only if the Cauchy operator C satisfies an exponential
estimate.

On the other hand, in [34], Kulikov and Malygina studied various stability
types of linear difference equations, and related stability types with the certain
properties of the fundamental solution. The technique applied in [34] estab-
lishes a connection between the fundamental solution of the difference equation
and the fundamental solution of an associated differential equation with piece-
wise continuous arguments, which allows them to retrieve results to difference
equations obtained for delay differential equations.

Results of this type (i.e., relating certain properties of the fundamental so-
lution with qualitative properties of all solutions) are of high importance in
the theory of delay differential and difference equations, as we have an explicit
definition of the fundamental solution. Understanding the nature of the fun-
damental solution is not only important in the stability theory but also in the
oscillation theory (see [15]) because it gives information on oscillation of all
solutions of the equation.

Finally, let us present some open problems and topics for further research:

(P1) Investigate various types of stability for the dynamic equation with several
delays

x∆(t) +
n∑

i=0

Ai(t)x(αi(t)) = 0 for t ∈ [t0,∞)T.

For example, extend the results of [32,37,38] and the present paper.

(P2) In addition to equations with concentrated delays, consider equations with
distributed delays, i.e., equations of the form

x∆(t) +

∫ t

α(t)

K(t, η)x(η)∆η = 0 for t ∈ [t0,∞)T.
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(P3) Unify the results in [33, Theorem 4] and [40, Theorem 3] to dynamic
equations. For instance, show that under (8) the inequality

sup
t∈[t0,∞)T

{∫ σ(t)

α(t)

A(η)∆η

}
<

3

2
+ some constant

implies the exponential estimate of Theorem 2.5 (ii). Extend those results
to unbounded delays if possible (see, for instance, [30, 46]).

(P4) In [17] it is shown that under certain conditions nonoscillation of a dy-
namic equation is monotonic, i.e., nonoscillation of (1) on a coarser scale T
implies nonoscillation of the same equation on a finer time scale T̃ satis-
fying T̃ ⊃ T. Is this property preserved for stability or boundedness of
solutions on time scales?

7. Appendix

7.1. Appendix A: Continuity of the fundamental solution.

Theorem 7.1 (Continuity of the fundamental solution). The fundamental so-
lution X of (1) is continuous in Λt0, which is defined in (7).

Proof. Pick r ∈ [t0,∞)T, and consider the triangular domain Ωr := {(t, s) :
t ∈ [s, r]T and s ∈ [t0, r]T} ⊂ Λt0 . Note that letting r → supT implies Ωr → Λt0 .
It is obvious that X (·, s) is continuous in [s, r]T for any fixed s ∈ [t0, r]T. If we
can show that X (t, ·) is continuous in [t0, t]T uniformly for t ∈ [t0, r]T, then
[25, Chapter 7, Section 2, Theorem 5] ensures continuity of X in Ωr. Let
s1, s2 ∈ [t0, r]T, and assume without loss of generality that s2 ≥ s1. Define
y ∈ C([s2, r]T,R+

0 ) by

y(t) := max
η∈[s1,t]T

|X (η, s2)−X (η, s1)| for t ∈ [s2, r]T.

By [13, Theorem 1.65], we may find M1,M2 ∈ R+ such that

|X (t, s1)| ≤ M1 for all t ∈ [α∗(t0), r]T (50)

and
|A(t)| ≤ M2 for all t ∈ [t0, r]T. (51)

By integrating (1), we obtain

|X (t, s2)−X (t, s1)|

=

∣∣∣∣(1− ∫ t

s2

A(η)X (α(η), s2)∆η

)
−

(
1−

∫ t

s1

A(η)X (α(η), s1)∆η

)∣∣∣∣
=

∣∣∣∣∫ t

s2

A(η)[X (α(η), s2)−X (α(η), s1)]∆η −
∫ s2

s1

A(η)X (α(η), s1)∆η

∣∣∣∣
≤

∫ t

s2

|A(η)||X (α(η), s2)−X (α(η), s1)|∆η +

∫ s2

s1

|A(η)||X (α(η), s1)|∆η
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for all t ∈ [s2, r]T. Now, using (50) and (51), we get

|X (t, s2)−X (t, s1)| ≤
∫ t

s2

|A(η)|y(α(η))χ[t0,∞)T(α(η))∆η +M1M2(s2 − s1)

≤
∫ t

s2

|A(η)|y(η)∆η +M1M2(s2 − s1)

≤ M2

∫ t

s2

y(η)∆η +M1M2(s2 − s1)

for all t ∈ [s2, r]T. This implies

y(t) ≤ M2

∫ t

s2

y(η)∆η +M1M2(s2 − s1) for all t ∈ [s2, r]T.

The application of Grönwall’s inequality (see [13, Theorem 6.4]) yields

y(t) ≤ M1M2(s2 − s1)eM2(t, t0) ≤ M1M2(s2 − s1)eM2(r, t0) for all t ∈ [t0, r]T.

Thus, picking s1 and s2 sufficiently close makes y sufficiently small on [t0, r]T,
i.e., X (t, ·) is continuous in [t0, t]T uniformly for t ∈ [t0, r]T. By [25, Chapter 7,
Section 2, Theorem 5], we learn that X is continuous in Ωr. Since r is arbitrary,
the proof is complete.

Remark 7.2. Let s ∈ [t0,∞)T, then limt→s+ X (t, s) = X (s, s) = 1 while
limt→s− X (t, s) = 0.

7.2. Appendix B: Some properties of the exponential function.

Lemma 7.3 ([29, Theorem 3.6]). Assume that supT = ∞, s ∈ T and
f ∈ Crd(T,R

+
0 ), then the following statements are equivalent:

(i)
∫∞
s

f(η)∆η = ∞;

(ii) limt→∞ ef (t, s) = ∞.

We have the following result which relates convergence of improper integrals
of f and ⊖(−f), when (−f) is positively regressive.

Lemma 7.4. Assume that supT = ∞, s ∈ T and f ∈ Crd(T,R
+
0 ) with

−f ∈ R+(T,R), then the following statements are equivalent:

(i)
∫∞
s

f(η)∆η = ∞;

(ii)
∫∞
s

⊖
(
−f(η)

)
∆η = ∞.

Proof. (i) =⇒ (ii). This implication is obvious since

⊖
(
−f(t)

)
=

f(t)

1− µ(t)f(t)
≥ f(t) for all t ∈ [s,∞)T.
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(ii) =⇒ (i). Now, assume the contrary that (ii) holds but (i) does not hold,
i.e., ℓ < ∞, where ℓ :=

∫∞
s

f(η)∆η. This implies limt→∞ µ(t)f(t) = 0. Indeed,

lim
t→∞

µ(t)f(t) = lim
t→∞

[∫ σ(t)

s

f(η)∆η −
∫ t

s

f(η)∆η

]
= ℓ− ℓ = 0.

Thus

lim
t→∞

⊖
(
−f(t)

)
f(t)

= lim
t→∞

1

1− µ(t)f(t)
= 1,

which implies by comparison (see [10, Theorem 4.6, Remark 4.7]) that ℓ = ∞,
This is a contradiction, therefore, (i) holds, which completes the proof.

Lemma 7.3 and Lemma 7.4 yield the following important properties of the
exponential function.

Corollary 7.5. Assume that supT = ∞, s ∈ T and f ∈ Crd(T,R
+
0 ) with

−f ∈ R+(T,R), then the following statements are equivalent:

(i)
∫∞
s

f(η)∆η = ∞;

(ii)
∫∞
s

⊖
(
−f(η)

)
∆η = ∞;

(iii) limt→∞ ef (t, s) = ∞;

(iv) limt→∞ e⊖(−f)(t, s) = ∞;

(v) limt→∞ e⊖f (t, s) = 0;

(vi) limt→∞ e−f (t, s) = 0.

7.3. Appendix C: Time scales essentials. A time scale, which inherits the
standard topology on R, is a nonempty closed subset of reals. A time scale
is denoted by the symbol T, and the intervals with a subscript T are used to
denote the intersection of the usual interval with T. For t ∈ T, we define the
forward jump operator σ : T → T by σ(t) := inf(t,∞)T, while the backward
jump operator ρ : T → T is defined by ρ(t) := sup(−∞, t)T, and the graininess
function µ : T → R+

0 is defined to be µ(t) := σ(t) − t. A point t ∈ T is
called right-dense if σ(t) = t and/or equivalently µ(t) = 0 holds; otherwise,
it is called right-scattered, and similarly left-dense and left-scattered points are
defined with respect to the backward jump operator. For f : T → R and t ∈ T,
the ∆-derivative f∆(t) of f at the point t is defined to be the number, provided
it exists, with the property that, for any ε > 0, there is a neighborhood U of t
such that

|[fσ(t)− f(s)]− f∆(t)[σ(t)− s]| ≤ ε|σ(t)− s| for all s ∈ U,

where fσ := f ◦ σ on T. We mean the ∆-derivative of a function when
we only say derivative unless otherwise is specified. A function f is called
rd-continuous provided that it is continuous at right-dense points in T, and
has a finite limit at left-dense points, and the set of rd-continuous functions
is denoted by Crd(T,R). The set of functions C1

rd(T,R) includes the functions
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whose derivative is in Crd(T,R) too. For a function f ∈ C1
rd(T,R), the so-called

simple useful formula holds

fσ(t) = f(t) + µ(t)f∆(t) for all t ∈ Tκ,

where Tκ := T\{supT} if supT < ∞ and satisfies ρ(supT) < supT; otherwise,
Tκ := T. For s, t ∈ T and a function f ∈ Crd(T,R), the ∆-integral of f is
defined by ∫ t

s

f(η)∆η = F (t)− F (s) for s, t ∈ T,

where F ∈ C1
rd(T,R) is an antiderivative of f , i.e., F∆ = f on Tκ. Ta-

ble 1 gives the explicit forms of the forward jump, graininess, ∆-derivative and
∆-integral on the well-known time scales of reals, integers and the quantum set,
respectively.

T R hZ (h > 0) qZ (q > 1)

σ(t) t t+ h qt

f∆(t) f ′(t)
f(t+ h)− f(t)

h

f(qt)− f(t)

(q − 1)t∫ t

s

f(η)∆η

∫ t

s

f(η) dη

t
h
−1∑

η= s
h

f(hη)h (q − 1)

logq(t)−1∑
η=logq(s)

f(qη)qη

Table 1: Forward jump, ∆-derivative, ∆-integral

A function f ∈ Crd(T,R) is called regressive if 1 + µf ̸= 0 on Tκ, and
positively regressive if 1 + µf > 0 on Tκ. The set of regressive functions and
the set of positively regressive functions are denoted by R(T,R) and R+(T,R),
respectively, and R−(T,R) is defined similarly. For simplicity, we denote by
Rc(T,R) the set of real regressive constants, and similarly, we define the sets
R+

c (T,R) and R−
c (T,R).

Let f ∈ R(T,R), then the exponential function ef (·, s) on a time scale T is
defined to be the unique solution of the initial value problem{

x∆(t) = f(t)x(t) for t ∈ Tκ

x(s) = 1

for some fixed s ∈ T.
If f ∈ R(T,R) and g ∈ Crd(T,R), then the unique solution of the dynamic

equation {
x∆(t) = f(t)x(t) + g(t) for t ∈ Tκ

x(s) = α
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is given by

x(t) = ef (t, s)α +

∫ t

s

ef (t, σ(η))g(η)∆η for t ∈ T.

On the other hand, for f ∈ R(T,R) and g ∈ Crd(T,R), the unique solution of
the dynamic equation{

x∆(t) = −f(t)xσ(t) + g(t) for t ∈ Tκ

x(s) = α

is

x(t) = e⊖f (t, s)α +

∫ t

s

e⊖f (t, η)g(η)∆η for t ∈ T.

For h∈ R+, set Ch :={z∈C : z ̸=− 1
h
}, Zh :={z∈C : −π

h
< Im(z)≤ π

h
}, and

C0 :=Z0 := C. For h∈ R+
0 , we define the cylinder transformation ξh : Ch→Zh by

ξh(z) :=

{
z, h = 0,
1
h
Log(1 + hz), h > 0

for z ∈ Ch,

then the exponential function can also be written in the form

ef (t, s) := exp

{∫ t

s

ξµ(η)
(
f(η)

)
∆η

}
for s, t ∈ T.

Table 2 illustrates the explicit forms of the exponential function on some well-
known time scales.

T R hZ (h > 0) qZ (q > 1)

ef (t, s) exp

{∫ t

s

f(η) dη

} t
h
−1∏

η= s
h

(
1 + hf(hη)

) logq(t)−1∏
η=logq(s)

(
1 + (q − 1)qηf(qη)

)
Table 2: The exponential function

The exponential function ef (·, s) is strictly positive on [s,∞)T whenever
f ∈ R+([s,∞)T,R), while ef (·, s) alternates in sign at right-scattered points of
the interval [s,∞)T provided that f ∈ R−([s,∞)T,R) For h ∈ R+

0 , let z, w ∈ Ch,
the circle plus ⊕h and the circle minus ⊖h are defined by z⊕hw := z+w+hzw
and z ⊖h w := z−w

1+hw
, respectively. For f, g ∈ R(T,R) and r, s, t ∈ T, the

exponential function satisfies the properties ef (t, s)ef (s, r) = ef (t, r), ef (t, s) =
1

ef (s,t)
= e⊖µf (s, t), ef (t, s)eg(t, s) = ef⊕µg(t, s),

ef (t,s)

eg(t,s)
= ef⊖µg(t, s). Throughout

the paper, we will abbreviate the operations ⊕µ and ⊖µ simply by ⊕ and ⊖,
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respectively. It is also known that R+(T,R) is a subgroup of R(T,R), i.e.,
0 ∈ R+(T,R), f, g ∈ R+(T,R) implies f⊕µg ∈ R+(T,R) and ⊖µf ∈ R+(T,R),
where ⊖µf := 0⊖µ f on T.

The readers are referred to [13] for further interesting details in the time
scale theory.
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