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Kernel Estimates for Schrödinger Type
Operators with Unbounded Diffusion

and Potential Terms

Anna Canale, Abdelaziz Rhandi and Cristian Tacelli

Abstract. We prove that the heat kernel associated to the Schrödinger type operator
A := (1 + |x|α)∆− |x|β satisfies the estimate

k(t, x, y) ≤ c1eλ0tec2t
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for t > 0, |x|, |y| ≥ 1, where c1, c2 are positive constants and b = β−α+2
β+α−2 provided that

N > 2, α ≥ 2 and β > α− 2. We also obtain an estimate of the eigenfunctions of A.
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1. Introduction

In this paper we consider the operator

Au(x) = (1 + |x|α)∆u(x)− |x|βu(x), x ∈ RN ,

for N > 2, α ≥ 2 and β > α − 2. We propose to study the behaviour of the
associated heat kernel and associated eigenfunctions.

Recently several paper have dealt with elliptic operators with polynomially
growing diffusion coefficients (see for example [3, 4, 6, 7, 9–11,13–16]).

In [11] (resp. [3]) it is proved that the realization Ap of A in Lp(RN) for
1 < p <∞ with domain

Dp(A) =
{
u ∈ W 2,p(RN)

∣∣∣ (1 + |x|α)|D2u|, (1 + |x|α)
1
2∇u, |x|βu ∈ Lp(RN)

}
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generates a strongly continuous and analytic semigroup Tp(·) for α ∈ [0, 2] and
β > 0 (resp. α > 2 and β > α−2). This semigroup is also consistent, irreducible
and ultracontractive. For the case β = 0 we refer to [7, 13].

Since the coefficients of the operator A are locally regular it follows that
the semigroup Tp(·) admits an integral representation through a heat kernel
k(t, x, y)

Tp(t)u(x) =

∫
RN
k(t, x, y)u(y)dy, t > 0, x ∈ RN ,

for all u ∈ Lp(RN) (cf. [2, 12]).
In [11] estimates of the kernel k(t, x, y) for α ∈ [0, 2) and β > 2 were

obtained. Our contribution in this paper is to show similar upper bounds for
the case α ≥ 2 and β > α − 2. Our techniques consist in providing upper
and lower estimates for the ground state of Ap corresponding to the largest
eigenvalue λ0 and adapting the arguments used in [5].

The paper is structured as follows. In Section 2 we prove that the eigen-
function ψ(x) associated to the largest eigenvalue λ0 can be estimated from
below and above by the function

|x|−
N−1

2
−β−α

4 e−
∫ |x|
1

√
rβ

1+rα
dr for |x| ≥ 1.

In Section 3 we introduce the measure dµ = (1 + |x|α)−1dx for which the
operatorA is symmetric and generates an analytic semigroup (which is a Markov
semigroup) with kernel

kµ(t, x, y) = (1 + |x|α)k(t, x, y).

Adapting the arguments used in [5, 11], we show the following intrinsic ultra-
contractivity

kµ(t, x, y) ≤ c1e
λ0tec2t

−b
ψ(x)ψ(y), t > 0, x, y ∈ RN ,

where c1, c2 are positive constant, b = β−α+2
β+α−2 , provided that N > 2, α ≥ 2 and

β > α− 2. So one deduces the heat kernel estimate
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for t > 0, |x|, |y| ≥ 1. As an application we obtain the behaviour of all eigen-
functions of Ap at infinity. With respect to t we prove the following sharp
estimates

kµ(t, x, y) ≤ Ct−
N
2 (1 + |x|α)
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for 0 < t ≤ 1 and x, y ∈ RN . Here we use the results in [14] and weighted Nash
inequalities introduced in [1]. We end this section by giving a brief description
of how to extend the heat kernel estimates to a more general class of elliptic
operators in divergence form.

In the sequel we denote by BR ⊂ RN the open ball, centered at 0 with
radius R > 0.

2. Estimate of the ground state ψ

We begin by estimating the eigenfunction ψ corresponding to the largest eigen-
value λ0 of A. First we recall some spectral properties obtained in [3, 11].

Proposition 2.1. Assume N > 2, α ≥ 2 and β > α− 2 then

(i) the resolvent of Ap is compact in Lp(RN);

(ii) the spectrum of Ap consists of a sequence of negative real eigenvalues which
accumulates at −∞. Moreover, σ(Ap) is independent of p;

(iii) the semigroup Tp(·) is irreducible, the eigenspace corresponding to the
largest eigenvalue λ0 of Ap is one-dimensional and is spanned by strictly
positive functions ψ, which is radial, belongs to C1+ν

b (RN) ∩ C2(RN) for
any ν ∈ (0, 1) and tends to 0 when |x| → ∞.

We can now prove upper and lower estimates for ψ. We note here that
the proof of [11, Proposition 3.1] cannot be adapted to our situation. So, we
propose to use another technique to estimate ψ.

Proposition 2.2. Let λ0 < 0 be the largest eigenvalue of Ap and ψ be the
corresponding eigenfunction. If N > 2, α ≥ 2 and β > α− 2 then
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2

for any x ∈ RN \B1 and some positive constants C1, C2.

Proof. Since the eigenfunction is radial, we have to study the asymptotic be-
havior of the solution of an ordinary differential equation. We follow the idea
of the WKB method (see [17]), but since the error function is not bounded we
need to compute it directly.

Let fα,β,λ be the function

fα,β,λ(x) = |x|−
N−1

2 h−
1
4 (|x|) exp

{
−
∫ |x|
R

h
1
2 (s)ds−

∫ |x|
R

vλ(s)ds

}
,

where λ ∈ R, h(r) = rβ

1+rα
, and vλ is a smooth function to be chosen later on.

If we set
w(r) = r

N−1
2 fα,β,λ(r), (1)



380 A. Canale et al.

then
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On the other hand, taking in mind (1) we also obtain
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Comparing (2) and (4) we get
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That is
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1 + |x|α
fα,β,λ(x) = g(|x|)fα,β,λ(x).
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we obtain
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We can choose c1, . . . , ck such that

2c1 + c0 = λ, 2c1ξ + 2c2 = 0 and

[
ξ(i+ 1)ci + 2ci+1 +

∑
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]
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for i = 2, . . . , k − 1 and obtain

r2g(r) = λ+ ckξ(k + 1)
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1
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(
1
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Since ξ > 0 there exists k ∈ N such that kξ + 2− α > 0. So we have

(1 + |x|α)∆fα,β,λ(x)− |x|βfα,β,λ(x) = o(1)fα,β,λ(x) + λ
1 + |x|α

|x|2
fα,β,λ(x). (6)

We prove first the upper bound. For ψ we know that

∆ψ − |x|β

1 + |x|α
ψ − λ0

1 + |x|α
ψ = 0 . (7)

Since α− 2 ≥ 0 and λ0 < 0, for |x| large enough we have o(1) + 2λ0
1+|x|α
|x|2 < λ0.

Then, by (6), it follows that

(1 + |x|α)∆fα,β,2λ0(x)− |x|βfα,β,2λ0(x) < λ0fα,β,2λ0 .

Thus,

∆fα,β,2λ0(x)− |x|β

1 + |x|α
fα,β,2λ0(x)− λ0

1 + |x|α
fα,β,2λ0(x) < 0, (8)
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in RN \BR for some R > 0. Comparing (7) and (8), in RN \BR we have

∆(fα,β,2λ0 − Cψ) <
λ0 + |x|β

1 + |x|α
(fα,β,2λ0 − Cψ) for any constant C > 0.

Since β > 0, we have

W (x) :=
λ0 + |x|β

1 + |x|α
> 0

for |x| large enough. Since both fα,β,2λ0 and ψ tend to 0 as |x| → ∞ and since
there exists C2 such that ψ ≤ C2fα,β,2λ0 on ∂BR, we can apply the maximum
principle to the problem

∆g(x)−W (x)g(x) < 0 in RN \BR,

g(x) ≥ 0 in ∂BR,

lim
|x|→∞

g(x) = 0,

where g := fα,β,2λ0 − C−12 ψ, to obtain ψ ≤ C2fα,β,2λ0 in RN \BR. Here one has
to note that since lim|x|→∞ g(x) = 0, one can see that the classical maximum
principle on bounded domains can be applied, cf. [8, Theorem 3.5]. Then,
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since
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|x|→∞
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As regards lower bounds of ψ, we observe that, from (6), we have

∆fα,β,0(x)− |x|β

1 + |x|α
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if |x| ≥ R for some suitable R > 0. Then,

∆fα,β,0(x) >
|x|β

1 + |x|α
fα,β,0(x) +

λ0
1 + |x|α

fα,β,0(x)

Since λ0
1+|x|αψ = ∆ψ(x)− |x|β

1+|x|αψ we have

∆(fα,β,0 − ψ) >
|x|β + λ0
1 + |x|α

(fα,β,0 − ψ) .



Kernel Estimates for Schrödinger Type Operators 383

We can assume that |x|β + λ0 is positive for |x| ≥ R and, arguing as above, by
the maximum principle and using (9) we get

ψ(x) ≥ C1fα,β,0(x) ≥ C1|x|−
N−1

2
− 1

4
(β−α) exp

{
−
∫ |x|
R

√
rβ

1 + rα
dr

}

for |x| ≥ R. Since 0 < ψ ∈ C(RN), by changing the constants, the above upper
and lower estimates remain valid for 1 ≤ |x| ≤ R. This ends the proof of the
proposition.

3. Intrinsic ultracontractivity and heat kernel estimates

Let us now introduce on L2
µ := L2(RN , dµ) the bilinear form

aµ(u, v) =

∫
RN
∇u · ∇v dx+

∫
RN
V uv dµ, u, v ∈ D(aµ), (10)

where V (x) = |x|β, dµ(x) = (1 + |x|α)−1dx and D(aµ) = C∞c (RN)
‖·‖H

with H
the Hilbert space

H =
{
u ∈ L2

µ : V
1
2u ∈ L2

µ, ∇u ∈ (L2(RN))N
}

endowed with the inner product

〈u, v〉H =

∫
RN

(1 + V )uv dµ+

∫
RN
∇u · ∇v dx.

Since aµ is a closed, symmetric and accretive form, to aµ we associate the self-
adjoint operator Aµ defined by

D(Aµ) =

{
u ∈ D(aµ) : ∃ g ∈ L2

µ s.t. aµ(u, v) = −
∫
RN
gv dµ, ∀v ∈ D(aµ)

}
,

Aµu = g,

see e.g., [18, Proposition 1.24]. By general results on positive self-adjoint oper-
ators induced by nonnegative quadratic forms in Hilbert spaces (see e.g., [18,
Proposition 1.51, Theorems 1.52, 2.6, 2.13]) Aµ generates a positive analytic
semigroup (etAµ)t≥0 in L2

µ.

We need to show that the semigroup etAµ coincides with the semigroup Tp(·)
generated by Ap in Lp(RN) on Lp(RN) ∩ L2

µ.
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Lemma 3.1. We have

D(Aµ) =
{
u ∈ D(aµ) ∩W 2,2

loc (RN) : (1 + |x|α)∆u− V (x)u ∈ L2
µ

}
and Aµu = (1 + |x|α)∆u − V (x)u for u ∈ D(Aµ). Moreover, if λ > 0 and
f ∈ Lp(RN) ∩ L2

µ, then

(λ− Aµ)−1f = (λ− Ap)−1f.

Proof. The inclusion “⊂” is obtained, taking v∈C∞c (RN) in (10), by local ellip-
tic regularity. As regards the inclusion “⊃” we consider u∈D(aµ)∩W 2,2

loc (RN)
such that g := (1+|x|α)∆u−V (x)u ∈ L2

µ and consider v ∈ C∞c (RN). Integrating
by parts we obtain

aµ(u, v) = −
∫
gvdµ. (11)

By the density of C∞c (RN) in D(aµ) we have equation (11) for every v ∈ D(aµ).
This implies that u ∈ D(Aµ).

To show the coherence of the resolvent, we consider f ∈ C∞c (RN) and
let u = (λ − A)−1f . Since f ∈ L2(RN) ∩ C0(RN), by [3, Theorem 3.7] and
[3, Theorem 4.4], it follows that u ∈ D2(A). So, we have ∇u ∈ L2(RN) and
V u ∈ L2(RN). Moreover, it is clear that u ∈ L2

µ, and

‖V
1
2u‖2L2

µ
≤
∫
RN
V (x)u2dx ≤

∫
B(1)

u2dx+

∫
RN/B(1)

V 2(x)u2dx ≤ ‖u‖22 + ‖V u‖22. (12)

This yields u ∈ H. Since C∞c (RN) is dense in D2(A), see [3, Lemma 4.3],
we can find a sequence (un) ⊂ C∞c (RN) such that un converges to u in the
operator norm. Then, un converges to u in L2(RN) and hence in L2

µ. By
[3, Lemma 4.2] ∇un converges to ∇un in L2(RN) and hence in L2

µ. Finally

replacing u with un − u in (12) we have that V
1
2un converges to V

1
2u in L2

µ.
Thus we have proved that u ∈ D(aµ). Integration by parts we obtain

a(u, v) = −(λu− f, v)L2
µ
.

That is u ∈ D(Aµ) and λu− Aµu = f . Therefore, (λ− Aµ)−1f = (λ− Ap)−1f
for all f ∈ C∞c (RN) and so by density the last statement follows.

The previous Lemma implies in particular that

etAµf = Tp(t)f =

∫
RN
k(t, x, y)f(y) dy, f ∈ Lp(RN) ∩ L2

µ.

By density we obtain that the semigroup etAµ admits the integral representation
etAµf(x) =

∫
RN kµ(t, x, y)f(y)dµ(y) for all f ∈ L2

µ, where

kµ(t, x, y) = (1 + |y|α)k(t, x, y), t > 0, x, y ∈ RN .



Kernel Estimates for Schrödinger Type Operators 385

Let us now give the first application of Proposition 2.2. The proof is similar
to the one given in [11, Proposition 3.4] and is based on the semigroup law and
the symmetry of kµ(t, ·, ·) for t > 0.

Proposition 3.2. If N > 2, α ≥ 2 and β > α− 2, then

k(t, x, x) ≥Meλ0t
(
|x|

α−β
4
−N−1

2 e−
2

β−α+2
|x|

β−α+2
2

)2

(1 + |x|α)−1, t > 0,

for all x ∈ RN \B1 and some constant M > 0.

We now give the main result of this section.

Theorem 3.3. If N > 2, α ≥ 2 and β > α− 2 then

k(t, x, y) ≤ c1e
λ0t+c2t−b|x|−

N−1
2
−β−α

4 e−
√
2

β−α+2
|x|

β−α+2
2 |y|−N−1

2
−β−α

4

1 + |y|α
e−

√
2

β−α+2
|y|

β−α+2
2

for t > 0, x, y ∈ RN \B1, where c1, c2 are positive constants and b = β−α+2
β+α−2 .

Proof. Let us prove first

k(t, x, y)≤c1ec2t
−b|x|−

N−1
2
−β−α

4 e−
√
2

β−α+2
|x|

β−α+2
2 |y|−N−1

2
−β−α

4

1+|y|α
e−

√
2

β−α+2
|y|

β−α+2
2

(13)

for 0 < t ≤ 1, x, y ∈ RN \ B1. By adapting the arguments used in [5, Subsec-
tions 4.4 and 4.5], we have only to show the following estimates∫

RN
g|u|2dµ ≤ C‖g‖

L
N
2
µ

aµ(u, u), u ∈ D(aµ), g ∈ L
N
2
µ , (14)

and ∫
RN
− logψ|u|2dµ ≤ εaµ(u, u) + (C1ε

−b + C2)‖u‖2L2
µ
, u ∈ D(aµ). (15)

To prove (14) we observe that using Hölder and Sobolev inequality we obtain

∫
RN
g|u|2dµ ≤ C

(∫
RN
|g|

N
2 dµ

) 2
N
(∫

RN
|u|

2N
N−2dµ

)N−2
N

= C‖g‖
L
N
2
µ

‖u‖2L2∗
µ

≤ C‖g‖
L
N
2
µ

‖∇u‖22
≤ C‖g‖

L
N
2
µ

aµ(u, u), u ∈ D(aµ).
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To show (15), we apply the lower estimate of ψ obtained in Proposition 2.2

− logψ ≤ −
(

logC1 −
2

β−α+2

)
+

2N−2+β−α
4

log |x|+ 2

β−α+2
|x|

β−α+2
2

for |x| ≥ 1. Hence, there are positive constants C1, C2 such that

− logψ ≤ C1|x|
β−α+2

2 + C2, x ∈ RN .

Since ξ = β−α
2

+ 1 < β we have |x|ξ ≤ ε|x|β + Cε−
ξ

β−ξ = εV (x) + Cε−b for all
ε > 0. Thus,

− logψ ≤ εV + c1ε
−b + c2.

Taking into account that
∫
RN V |u|

2dµ ≤ aµ(u, u) for all u ∈ D(aµ), we ob-
tain (15). This ends the proof of (13).

It remains to prove that

k(t, x, y) ≤ Ceλ0t|x|−
N−1

2
−β−α

4 e−
√

2
β−α+2

|x|
β−α+2

2 |y|−N−1
2
−β−α

4

1 + |y|α
e−

√
2

β−α+2
|y|

β−α+2
2

for t > 1, x, y ∈ RN \B1 and some constant C > 0. To this purpose we use the
semigroup law and the symmetry of kµ(t, ·, ·) to infer that

kµ(t, x, y) =

∫
RN
kµ

(
t− 1

2
, x, z

)
kµ

(
1

2
, y, z

)
dµ(z), t >

1

2
, x, y ∈ RN .

By (13), the function kµ(1
2
, y, ·) belongs to L2

µ. Hence,

kµ(t, x, y) =

(
e(t−

1
2
)Aµkµ

(
1

2
, y, ·

))
(x), t >

1

2
, x, y ∈ RN .

Using again the semigroup law and the symmetry we deduce that

kµ(t, x, x) =

∫
RN

∣∣∣∣kµ( t2 , x, y
)∣∣∣∣2 dµ(y)

≤Meλ0(t−1)
∥∥∥∥kµ(1

2
, x, ·

)∥∥∥∥2
L2
µ

= Meλ0(t−1)kµ(1, x, x).

So, by applying (13) to kµ(1, x, x) and using the inequality

kµ(t, x, y) ≤ (kµ(t, x, x))
1
2 (kµ(t, y, y))

1
2 ,

one obtains (3).
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Remark 3.4. It follows from Proposition 3.2 that the estimates obtained for
the heat kernel k in Theorem 3.3 could be sharp in the space variables but
certainly not in the time variable as we will prove in Proposition 3.8.

Remark 3.5. In the above proof we use the Sobolev inequality

‖u‖2L2∗
µ
≤ C‖∇u‖22

which holds in D(aµ) but not in H (consider for example the case where
α > β +N and u = 1).

As a consequence of Theorem 3.3 we deduce some estimates for the eigen-
functions.

Corollary 3.6. If the assumptions of Theorem 3.3 hold, then all normalized
eigenfunctions ψj of A2 satisfy

|ψj(x)| ≤ Cj|x|
α−β
4
−N−1

2 e−
√

2
β−α+2

|x|
β−α+2

2
,

for all x ∈ RN \B1, j ∈ N and a constant Cj > 0.

Proof. Let λj be an eigenvalue of A2 and denote by ψj any normalized (i.e.
‖ψj‖L2(RN ) = 1) eigenfunction associated to λj. Then, as in the proof of Theo-
rem 3.3, we have

eλjt|ψj(x)| =
∣∣∣∣∫

RN
kµ(t, x, y)ψj(y) dµ(y)

∣∣∣∣
≤
(∫

RN
kµ(t, x, y)2dµ(y)

) 1
2

‖ψj‖L2
µ

= (kµ(2t, x, x))
1
2 ,

for t > 0 and x ∈ RN . So, the estimates follow from Theorem 3.3.

Remark 3.7. It is possible to obtain better estimates of the kernels k with
respect to the time variable t for small t. In fact if we denote by S(·) the
semigroup generated by (1 + |x|α)∆ in Cb(RN), which is given by a kernel p,
then by domination we have 0 < k(t, x, y) ≤ p(t, x, y) for t > 0 and x, y ∈ RN .
So, by [14, Theorems 2.6 and 2.14], it follows that

k(t, x, y) ≤ Ct−
N
2 (1 + |x|)2−N(1 + |y|)2−N−α, α > 4,

k(t, x, y) ≤ Ct−
N
2 (1 + |x|α)

2−N
4 (1 + |y|α)

2−N
4
−1, 2 <α ≤ 4

(16)

for 0 < t ≤ 1, x, y ∈ RN .
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Using a domination argument and [14, Proposition 2.10] we can improve
the estimate (16).

Proposition 3.8. If α ≥ 2, β > α− 2 and N > 2, then the kernel kµ satisfies

kµ(t, x, y) ≤ Ct−
N
2 (1 + |x|α)

2−N
4 (1 + |y|α)

2−N
4

for 0 < t ≤ 1 and x, y ∈ RN .

Proof. It suffices to consider the case α > 4.

By domination one sees that weighted Nash inequalities given in [14, Propo-
sition 2.10] hold for the quadratic form aµ. Hence, by [1, Corollary 2.8], the

results is proved provided that the function ϕ(x) = (1 + |x|α)
2−N

4 is a Lyapunov
function in the sense of [14, Definition 2.1]. A simple computation yields

Aϕ =

[
γ(N + α− 2)|x|α−2 + γ(γ − α)|x|α−2 |x|α

1 + |x|α

]
ϕ(x)

=

[
γ (γ +N − 2)

|x|2α−2

1 + |x|α
+ γ(α− 2 +N)

|x|α−2

1 + |x|α
− |x|β

]
ϕ(x)

≤
[
γ (γ +N − 2)

|x|2α−2

1 + |x|α
− |x|β

]
ϕ(x),

where γ := α(2−N)
4

. We note that γ < 2−N , since α > 4. Now, using the fact
that β > α− 2, we deduce that

γ (γ +N − 2)
|x|2α−2

1 + |x|α
≤ γ (γ +N − 2) |x|α−2 ≤ |x|β + κ

for some κ > 0. Thus, Aϕ ≤ κϕ. Using the same arguments as in [14,
Lemma 2.13] we obtain that ϕ is Lyapunov function for A.

As in [11] heat kernel estimates can be also obtained for a more general
class of elliptic operators.

Let us consider the operator B, defined on smooth functions u by

Bu = (1 + |x|α)
N∑

j,k=1

Dk(akjDju)−Wu,

under the following set of assumptions:
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Hypotheses 1.

1. the coefficients akj = ajk belong to Cb(RN) ∩W 1,∞
loc (RN) for any j, k =

1, . . . , N and there exists a positive constant η such that

η|ξ|2 ≤
N∑

j,k=1

akj(x)ξkξj, x, ξ ∈ RN ;

2. W ∈ L1
loc(RN) satisfies W (x) ≥ |x|β for any x ∈ RN and some β > α− 2;

3. α ≥ 2 and Djakj(x) = o(|x|β−α2 ) as |x| → ∞.

On L2
µ we define the bilinear form

bµ(u, v) =
N∑

j,k=1

∫
RN
akjDkuDjv dx+

∫
RN
Wuv dµ, u, v ∈ D(bµ),

where D(bµ) = C∞c (RN)
‖·‖H

with H the Hilbert space

H =
{
u ∈ L2

µ : W
1
2u ∈ L2

µ, ∇u ∈ (L2(RN))N
}
.

Since bµ is a symmetric, accretive and closable form, we can associate a pos-
itive strongly continuous semigroup Sµ(·) in L2

µ. The same arguments as in
the beginning of this section show that the infinitesimal generator Bµ of this
semigroup is the realization in L2

µ of the operator B with domain D(Bµ) =

{u ∈ D(bµ) ∩ W 2,2
loc (RN) : Bu ∈ L2

µ}. Let us denotes by pµ the heat kernel
associated to Sµ(·).

We will also need the bilinear form

aµ,θ(u, v) =

∫
RN
∇u · ∇v dx+ θ2

∫
RN
V uvdµ, u, v ∈ D(aµ,θ) = D(aµ).

The same arguments as in the proof of Theorem 3.3 can be used to show that the
kernel kµ,θ of the analytic semigroup associated to the form aµ,θ in L2

µ satisfies

0 < kµ,θ(t, x, y) ≤ Kθe
λ0,θtec̃θt

−b
ψθ(x)ψθ(y), t > 0, x, y ∈ RN , (17)

where c̃θ and Kθ are positive constants, λ0,θ is the largest (negative) eigenvalue
of the minimal realization of operator Aθ := (1 + |x|α)∆ − θ2|x|β in L2(RN),
and ψθ is a corresponding positive and bounded eigenfunction. Moreover, there
exist C1,θ, C2,θ > 0 such that

C1,θ ≤ |x|
β−α
4

+N−1
2 eθ

∫ |x|
1

√
rβ

1+rα
drψθ(x) ≤ C2,θ,

for any x ∈ RN \B1.
Using Theorem 3.3 and arguing as in [19] and [11, Theorem 3.9] we obtain

the following heat kernel estimate.
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Theorem 3.9. Assume that Hypotheses 1 are satisfied and let

Λ := sup
x,ξ∈RN\{0}

|ξ|−2
N∑

j,k=1

akj(x)ξkξj.

Then, for any θ ∈
(
0,Λ−

1
2

)
, we have

pµ(t, x, y) ≤Mθe
λ0,θtecθt

−b
(|x||y|)

α−β
4
−N−1

2 e−θ
√
2

β−α+2
|x|

β−α+2
2

e−θ
√

2
β−α+2

|y|
β−α+2

2

for any t > 0 and x, y ∈ RN\B1, where Mθ, cθ are positive constants, b = β−α+2
β+α−2 ,

and λ0,θ is the largest eigenvalue of the operator (1 + |x|α)∆− θ2|x|β.

Proof. For the reader’s convenience, we give the main ideas of the proof.
Proving the above estimate is equivalent to showing that

φθ(x)−1pµ(t, x, y)φθ(y)−1 ≤Mθe
λ0,θtecθt

−b
, t > 0, x, y ∈ RN , (18)

where φθ is any smooth function satisfying

φθ(x) = |x|
α−β
4
−N−1

2 e−θ
∫ |x|
1

√
rβ

1+rα
dr, x ∈ RN \B1.

If we denote by Tφθ : L2
φ2θµ
→ L2

µ the isometry defined by Tφθf = φθf , then the

left hand side of (18) is the kernel of the semigroup (T−1φθ
etBµTφθ)t≥0 in L2

φ2θµ
. It

is clear that this semigroup is associated with the form b̃µ(u, v) = bµ(φθu, φθv)

for u, v ∈ D(b̃µ) := {u ∈ L2
φ2θµ

: φθu ∈ D(bµ)}.
As in the proof of Theorem 3.3, it suffices to establish (18) for t ∈ (0, 1]. To

this purpose one has to prove, as in the proof of [11, Theorem 3.9], the following
assertions:

(i) min{u, 1} ∈ D(ãµ,θ) (resp. D(b̃µ)) for any nonnegative u ∈ D(ãµ,θ)
(resp. D(b̃µ));

(ii) the semigroup (T−1φθ
etBµTφθ)t≥0 and the semigroup (T−1φθ

etAµ,θTφθ)t≥0, asso-

ciated to the form ãµ,θ = aµ,θ(φθ·, φθ·) with domain D(ãµ,θ) = D(b̃µ), are
positive, they map L∞(RN) into itself and satisfy the estimates

‖T−1φθ
etBµTφθ‖L(L∞(RN )) ≤ eC1t, ‖T−1φθ

etAµ,θTφθ‖L(L∞(RN )) ≤ eC1t, t > 0,

for some positive constant C1;

(iii) the Log-Sobolev inequality∫
RN
u2(log u)φ2

θdµ≤εb̃µ(u, u)+‖u‖2L2
φ2
θ
µ

log ‖u‖L2
φ2
θ
µ
+cθ(1+ε−b)‖u‖2L2

φ2
θ
µ

(19)

holds true for any nonnegative u ∈ D(b̃µ) ∩ L1
φ2θµ
∩ L∞(RN), where cθ is

the constant in (18).
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So, applying (19) and combining [5, Lemma 2.1.2, Corollary 2.2.8 and Exam-
ple 2.3.4], estimate (18) follows with t ∈ (0, 1].

The proof of (i)–(iii) is similar to the one in [11, Theorem 3.9]. The proof
of (iii) is based on the estimate b̃µ(u, u) ≥ min{µ, θ−1}ãµ,θ(u, u) which holds for
any u ∈ D(b̃µ) ⊂ D(ãµ,θ), and (17).
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