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Existence of Cylindrically Symmetric
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Equation with Non-Constant Coeflicients
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Abstract. We consider the nonlinear curl-curl problem VX V x U + V(x)U = f(x,|U YU
in R3 related to the nonlinear Maxwell equations with Kerr-type nonlinear material laws.
We prove the existence of a symmetric ground-state type solution for a bounded, cylindri-
cally symmetric coefficient V and subcritical cylindrically symmetric nonlinearity f. The
new existence result extends the class of problems for which ground-state type solutions
are known. It is based on compactness properties of symmetric functions due to Lions
[J. Funct. Anal. 41 (1981)(2), 236-275], new rearrangement type inequalities by Brock [Proc.
Indian Acad. Sci. Math. Sci. 110 (2000), 157-204] and the recent extension of the Nehari-
manifold technique from Szulkin and Weth [Handbook of Nonconvex Analysis and Applica-
tions (2010), pp. 597-632].
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1. Introduction

We consider the system
VXxVxU+VxU = f(x,JlUHU inR? (1)

where V € L*(R*) and f : R x [0,00) — [0, o) is a non-negative Carathéodory
function growing at infinity with a power at most pT_l for p € (1,5). The particular
feature of (1) is the curl-curl operator. It arises in specific models for standing waves
in Maxwell’s equations with Kerr-type nonlinear material laws where f(x,|U|*)U =
['(x)|U*U. For a detailed physical motivation of (1) see [2].
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We look for R*-valued weak solutions U in a cone Kj ; of functions with suitable
symmetries and U € L>(R*) N LP*1(R?), V x U € L*(R%). The condition that 0 lies
below the spectrum of curl curl +V(x) allows us to find ground-state type critical
points of a functional J(u) = %Ilull2 — I(u), ct. (4), restricted to the so-called Nehari-
manifold. The basic idea of applying symmetrizations to minimizing sequences on
the Nehari-manifold goes back to Stuart [18] in the context of the stationary nonlinear
Schrédinger equation. Compared to [18] the assumptions on the nonlinearity f can
be substantially weakened beyond the classical Ambrosetti-Rabinowitz condition.
This is based on three important ingredients:

e the recent extension of the Nehari-manifold method by Szulkin and Weth [19],

o the weak sequential continuity of functionals /(#) and I’(u)[u] on K4; due to
compactness properties of symmetric functions by Lions [12,13],

e new rearrangement inequalities for general nonlinearities due to Brock [7].

Using the combination of these ingredients our main result Theorem 1.1 substantially
extends the known results on the existence of ground-state type solutions for (1).

Benci, Fortunato [6] and Azzollini, Benci, D’ Aprile, Fortunato [1] were among
the first to consider the constant coefficient case of (1) with V = 0. Their method
was based on cylindrical symmetries of the vector-fields U, cf. [9] for a different
class of symmetries. The case where f(x,|U AU = T(x)|UP~' U with periodic co-
efficients V and I' has been treated in [2]. In [15] Mederski considered (1) where
f(x, [UPU is replaced by, e.g., I'(x)g(U) with I' > 0 periodic and bounded, V < 0,
VeLFP (R N LA [R?) and g(U) ~|UP-'U if |U|>> 1 and g(U)~ UK\ U if [U] < 1
for 1 < p <5 < ¢g. A remarkable feature of Mederski’s work is that (1) can be treated
without assuming special symmetries of the field U. The nonlinear curl-curl problem
on bounded domains with the boundary condition v X U = 0 has been elaborated in
[3,4]. For arecent survey on the nonlinear curl-curl problem cf. [5].

An important feature of [1] is the use of cylindrically symmetric ansatz functions
for U. Here we make a slightly different ansatz of the form

U =ur2)| x ] where r = \[x] + X3, 2 = x3. )
0

Moreover, we assume cylindrically symmetric coefficients, i.e., V(x) = V(r,z) and
fx, |[UP) = f(r,z,|UP). For U of the form (2) we see that div U = 0, and hence (1)
reduces to the scalar equation

10 (;0u\ &u

N, - — = 22 = .
r38r(r (9r) 022 +V(r,2u = f(r,z,r'u’)u for (r,z) € Q:=(0,00) xR. (3)

It turns out that a suitable space to consider (3) is given by

ov 0
Hey(rdrdz) = {V: (0,00) xR > R:v, 8—: a—z € Lgyl(r3drdz)},
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Lgyl(r3drdz) = {V: (0,00) xR > R: f

Q

v(r,2)?rd(r,2) < oo},

cf. Section 2 for more details on these spaces. Weak solutions of (3) arise as critical
points of the functional

J(u):% f (1V,cul? + V(. 2?) Pd(r.2) - f #F(r,z, rPut)rd(r,z), (4
Q Q

ue Hclyl(r3drdz), where F(r,z,1) == foz f(r,z,s)dsand V,, == ((%, a%)' A ground state

u of (3) is defined as a weak solution of (3) in the Nehari-manifold

M= {v € Héyl(r3drdz)\{0}

f(lV,,Zv|2+ V(r, z)vz) rd(r, z) :ff(r, Z VWA, z)}
Q Q

such that

J(u) = 555 J(v),

see the classical papers [16, 17]. We find ground states of (3) under additional as-
sumptions on V and f. To state these assumptions we need the notion of Steiner-
symmetrization, cf. [11, Chapter 3]. The Steiner-symmetrization (also called sym-
metric-decreasing rearrangement) of a cylindrical function g = g(r, z) with respect
to z is denoted by g*. We say that g is Steiner-symmetric if g coincides with its
Steiner-symmetrization with respect to z, keeping the r-variable fixed. A function
h € L¥(Q) is reversed Steiner-symmetric if (ess suph — h)* = ess suph — h holds
true. In other words 4 is even and symmetrically increasing.

Now we can state our assumptions on f.
(1) f:Qx][0,00) = Ris a Carathéodory function with 0 < f(r,z,s) < c(1 + s%)
for some ¢ > 0 and p € (1,5),
(i) f(r,z,s) = o(1)as s — O uniformly in r, z € [0, 00) X R,
(ii1) f(r,z, s) strictly increasing in s € [0, 00),
@iv) @ — o0 as § — oo uniformly in 7, z € [0, 00) X R,
(v) forall r € [0, 00), s > 0 and o > 0O the function

QOO—(I’, e S) = f(ra <, (S + 0-)2)(S + 0-)2 - f(ra <, SZ)SZ

is symmetrically nonincreasing in z.
Conditions (ii)—(iv) are inspired by the work of Szulkin and Weth [19]. Namely, if
we translate (i1)—(iv) into conditions for f (r,z,5) := f(r,z,r*s?)s then they become
identical to (ii)—(iv) of Theorem 20 from [19]. Condition (v) is used to prove the
rearrangement inequality of Lemma 2.10 and it is due to Brock [7].

Next we state our main result.
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Theorem 1.1. Let V € L*(Q) be reversed Steiner-symmetric such that the map

%
Il : Héyl(;ﬁdrdz) >R, umr (f (|V,,Zu|2 + V(r, Z)MZ) rd(r, z))
Q

is an equivalent norm to |||y (drdz) Additionally, let f satsify the assumptions
cy g

(i)-(v). Then (3) has a ground state ueHclyl(r3drdz) which is symmetric about {z=0}.

Remark 1.2. (1) The assumption of norm-equivalence is for instance satisfied if
V > 0 and infg V > O for some R > 0, where B = {(r,2) € Q : r* + 72 > R?).
For the reader’s convenience the proof based on Poincaré’s inequality is given in
the Appendix. Since Poincaré’s inequality is applicable for domains bounded in one
direction we can weaken inf B, V> 0 to infgc V > O for strips S = [0, o0) X [0, p] with
p>0o0rS =[ry,r]x[0,00)with0 < ry < r; < c0.

(2) The conditions on f are satisfied if for instance f(r, z, s) = I'(r, z)lsll%l where
I' € L*(Q) is Steiner-symmetric, ess infoI' > 0 and p € (1,5). This choice of f
corresponds to the equation VXV x U + V(r,2)U = I'(r,2) |U "' U in R3. Another
possible choice is f(r,z,s) = I['(r,z)log(1 + s) where again I' € L*(Q) is Steiner-
symmetric and ess info I' > 0. This nonlinearity appeared for instance in [14] and
it does not satisfy the classical Ambrosetti-Rabinowitz condition. The piecewise
defined function

-1
s, 0<s<l1
p2)-1

sz, s>1

f(r,z,s) ={

with p € (1,5),1 < inf g p(z) < sup, p(z) < 5 and p symmetrically decreasing
also satisfies the required conditions.

The paper is structured as follows: In Section 2 we give details on the varia-
tional formulation of problem (3) and prove pointwise decay estimates of Steiner-
symmetric functions in Hclyl(r3drdz). In Section 3 we give the proof of Theorem 1.1,
and in the Appendix we show an example for the potential V satisfying the norm-
assumption of Theorem 1.1.

2. Variational formulation, decay estimates, rearrange-
ments

Let us consider some properties of the space Hclyl(r3drdz). First, for U of the form (2)
we have that U € H'(R%) if and only if u € H Clyl(r3drdz). A norm on H Clyl(r3drdz) is
given by

1

2
. 2 2\ .3
el 05 aray = ( f (1V,.cul® + )rd(r,z)) :
Q
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Notice that the space H_ ! 1(r3dra’z) behaves like a Sobolev-space in dimension 5. Next
we show a useful embeddlng property. For this we need the following Sobolev and
Lebesgue spaces in dimension 3 together with their canonical norms:

ov Ov

yl(rdrdz) —{v (0,0) xR >R :v, EPr

€ Lcyl(rdrdz)}
L‘C]yl(rdrdz) = {v: (0,0) xR > R: f [v(r,2)|%rd(r,z) < 00} for g € [1, o).
Q

Lemma 2.1. Foruc H Clyl(r3drdz) Hardy’s inequality holds

2 2
fg %ﬁd(r,z)scf, fg ((%) +(g’;)) Pd(r, 7). (5)

Moreover, if u € H, ! l(i’3drdz) then ru € H_ ! (rdrdz) and there is a constant C > 0
such that for2 < g < 6

||m||Hl (rdrdz) » ||””||L‘1 (rdrdz) S C||M||H1 [(Pdrdz) (6)

Proof. Hardy’s inequality (5) is given in [2, Lemma 9 (i)]. For u € H_ ! l(1’3drdz) we
have ru, 2 (ru) rit e Lgyl(rdrdz) and by (5) also u € L? (rdrdz). Since £ (ru) =
o +uwe conclude altogether ru € H! l(ra,’ra,’z) By the Sobolev embeddlng in three

d1mens10ns this implies ru € Li(rdrdz) for g € [2,6] and (5) yields

2,22
||ru||H1 (rdrds) f(lV,’z(ru)l +ru )rd(r, 2)
Q

L) (5 v ”
<2 r—| +|r—| +u" +ru|rd(r,z2)
0z or

= C ||M”Hl (Pdrdz)

This finishes the proof. O

Next we show that the functional J from the introduction as well as the functional
in the defintion of the Nehari-manifold are well-defined.

Lemma 2.2. There is a constant C > 0 such that

f [z, Pyl rd(r, 2)
° !

2
< C (10 gty + I )

f 212F(r z, rut)rd(r, z)

forallu e H;yl(r3drdz).
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Proof. Clearly assumption (i) and (i1) show that for every € > 0 there is C, > 0 such
that 0 < f(r,z,5) < €+ C.s'T > . Hence

0 < f(r,z, Pud)u*r’ < (6r2u2 + Celrul”“)) r, (8)
1 ~
0< FF(r, Ut < (erzu2 + CEIrul"“) . )
Due to (6) this implies the claim. O

In order to find critical points of J we need uniform decay estimates of Steiner-
symmetric functions in H gyl(r3drdz). These estimates are given in [13] in much more
generality but for the sake of completeness we give them here together with the sim-
ple proof. We start with a well-known fact concerning radially symmetric functions
and afterwards extend the result to cylindrically symmetric functions. Let

H.,(R") = {u e H'(R") : u is radially symmetric}.
Lemma 2.3 (see [13]). Let n > 2. Then there is a constant C > 0 such that

u()l < Cl|Vull;

L@ ||u||Lz(R,l X" T for almost all x € R" and all u € H! (R").

Proof. By density it is sufficient to prove the estimate for u € H rla JRONCZRY). Let

= |x|. Then
d “10.2) _ ne1s OU Ou -
dr(r” |u|)—(n D2 |uf? + 7 2uar> 2||ar

Integrating from r to co and expanding the domain of integration to all of R" yields

-1 2
r |M(X)| <C |I/l| |V1/l| dy <C ”VU”LZ(Rn) ”I/l”LZ(Rn) . O
Rﬂ
Now we give an extension of Lemma 2.3 to cylindrically symmetric functions
which are Steiner-symmetric in the non-radial component. We make use of the fol-
lowing notation: Let # € N, and s € N such that n = ¢ + 5. We write points in R" as
(x,y) withx e R"and y = (yy,...,Yy,) € R*. Furthermore, let

K, = {u e H'(R")

u(-,y) is a radially symmetric function for every y € R* and}

u(x, -) is Steiner-symmetric w.r.t. y;,i = 1,...,s, Yx € R’

In particular, if u € K, then necessarily # > 0. In this setting we have the following
extension of Lemma 2.3.

Lemma 2.4 (see [13]). There is a constant C > 0 such that

_1
2

_i=l
0 < u(x,y) < CII sl il gy 1 Ty -3
for almost all (x,y) € R" and all u € K, .
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Proof. Letu € K, and fixy € R*. Wlo.g.lety; >0foralli=1,...,s. We define

V1 Vs
v(x) = f e f u(x,z)dz forx e R'.
0 0

By Holder’s inequality we obtain v(x) < y; - - - y; Oyl e foy‘r u*(x,z)dz, i.e.,

1
VIl 2@y < 1+ ys) 2 llull2gny - (10)

In the same manner we receive

1
IVVll2@y < 01 6)? [Vstll 2y - (11)

Since v: R — R is radially symmetric we can apply Lemma 2.3 and get from (10)
and (11)

1 1 1 1 1 1 =l
0<v() SCIVVI gy VI g ™= SCO 302 IVt g Ml X7 (12)

Due to the monotonicity-property in y-direction we also have v(x) > y; - - - yu(x,y)
and thus (12) gives the desired inequality. O

We prove three additional lemmas which are used in the next section.
Lemma 2.5. The set K, is a weakly closed cone in H'(R").

Proof. Take a sequence (uy)ieny C K; 5 such that uy — u € H '(R") as k — oco. By
the Sobolev embedding on bounded domains we deduce that a subsequence of i
converges pointwise almost everywhere on R” to u. Since every u; enjoys the ra-
dial symmetry in the first component and the non-increasing property in the second
variable, the pointwise convergence implies that also u enjoys these properties, i.e.,
uek;. O

Lemma 2.6. The functionals

I(v) = f %F(r, P d(r,z), T = ff(r, VW d(r,7)
Q2r Q

are weakly sequentially continuous on the set K4 C Hclyl(r3drdz).

Remark 2.7. In the proof we use twice the following principle: if S € R™ is a set
of finite measure and w; : § — R a sequence of measurable functions such that
Iwillrsy < C and wy, — w pointwise a.e. as k — oo then |[wy — W) — 0 as
k — oo for 1 < g < r. The proof is as follows: Egorov’s theorem allows to choose
X C S such that wy, — w uniformly on X and |S \ XZ| < € arbitrary small. By Holder’s
inequality the remaining integral is estimated by fS\z Wi —w|?dx < =7 [lwi — W||Z,(S).
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Proof. Let us take a weakly convergent sequence (Vi)ren in K4 ; such that vy — vin
Hclyl(r3drdz) and v, — v pointwise a.e. in 2. By Lemma 2.5 one gets v € K4 and
using Lemma 2.4 there exists a constant C > 0 such that

0 <v(r,2),v(rz) < Cr_%lzl_% for all kK € N and almost all (r, z) € Q. (13)

Our goal is now to show at least for a subsequence

1 1
f —F(r,z, r2vi)r3d(r, 7) > f —F(rz, rvHrd(r,z) ask — oo (14)
ofl ol
and

ff(r, Z, rzv,f)viﬂd(r, z) — ff(r, 2, rVWRd(r 7)) ask — oo. (15)
Q Q

By (9) we find r%|F(r, Z, rzv,%)—F(r, zZ, rzvz)|r3 < erz(v,%+v2)r+C€(|rvk|”Jrl +|rv|”+1)r and
hence

(lF(r, Z, rzvi) - F(r,z, r2v2)| - erz(vi + vz))+ r<C, (lrvklerl + |rv|p+1) r. (16)
Inspired by [12, 13] the idea is to show
rvi — rvin LP* Y (rdrdz)  as k — co. (17)

Once (17) is established we obtain a majorant |rvy], |rv] < w € LP*(rdrdz) (cf. [20,
Lemma A.1]). Together with (16) this majorant allows to apply Lebesgue’s domi-
nated convergence theorem and yields

. +
lim f (1IF(r. 2. ™) = F(r.z. V)| = (07 + ) rdrdz = 2€lls 50 (18)
-0 o
If we set
ag = f |F(r, Z, rzv,f) - F(r,z, r2v2)| rdrdz
Q
and
. 2,2, 2 2 2
bk = 6”}" (Vk +v )”Ll(rdrdz) = 6(||vk”L2(r3drdz) + ||v||L2(r3drdz)) < Ce
then
lim sup a; < limsup by, + lim sup(a — by)*
keN keN keN
+
< Ce + limsup (f (IF(r, 2z, ,»2\;,%) — F(r,z, 1) - 67'2(\/]% + v2)) rdrdz)
keN Q

< Ce + limsup f <|F(r, zZ, rzv,%) — F(r,z, )| - erz(v,% + vz))+ rdrdz
keN Q

< €(C + 2IMPoggy) Y (18).
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Since € > 0 was arbitrary this shows that lim;_,, a; = 0 and therefore (14) holds. The

+
proof of (15) is similar since ( f(rz, vy — f(r,z, Pv)riv: — err(v; + vz)) r sat-
isfies an estimate just like (16) if we use (8) instead of (9).

It remains to prove (17). For this, we split Q into four parts €, ...,€, and
show (17) on each of these parts separately. The definitions of Q,...,Q, are as
follows: For R > 0 let

Qi={rn)eQ:r<RlzI <R}, Q={rzeQ:r=R,|z =R}
Q ={n)eQ:r<Rld2R}, Q:={(neQ:r2R,zd<R}
Convergence on £;: Follows from rv; — rv in LY(K; r drdz) for every compact

subset K C [0,00) X R and every g € [1,6). This step works independently of the
choice of R > 0.

Convergence on €,: Let € > 0. With the help of (13) we calculate

f [rvie = P rd(r, 7) < 27! f pPt! (lvkll’Jrl + |v|”+1) rd(r,7)
Q

Q

~ Ll pd
< orior-l f T g (|vk(r, 217 + v(r, Z)|2) rd(r,z)
Q
2 2 —-(p-1
< Cl (”Vk||Hcly1(’3drdZ) + ||v||HC1y1(r3drdz))R
< CzR_(p_l)

which is less or equal g if we choose R > 0 large enough.

Convergence on 23: Due to symmetry in z-direction it is enough to focus on
Qs ={(rn)eQ:r<R,z>R).Leta >0be arbitrary. Again by (13) we obtain

(n) ey :w(n)>al C{(ny) €Qy:rz <Co} = S,

Wi

where C, = (g)

00 Caz_% C4 o . 3 |
1S ol < f f rdr dz = Taf 7 3dz = ZCiR_? < 00,
R 0 R

By the convergence principle from Remark 2.7 and since by (7) [|rvillzsara: <

and C is the constant from (13). The set S, has finite measure since

IVellg1 (3araz) is bounded we obtain fs P v — vPHP3d(r,z) — 0ask — oo for
cy. @ - -
1 <p < 5. It remains to prove the convergence on 3\S . For allmost all (r, z) € Q3\S ,

we have that v(r, z) = limy_, v(7, 7) < @. Hence,

f P =P Rd(r, 2) < R Qa)P! f lvi = v*rd(r,z) < CaP".
a

~3\50 Q
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In summary, since a > 0 is arbitrary this shows (17) on €3.
Convergence on Q,: Again it is enough to focus on Q, = {(,2) € Q : r > R,
0 <z < R}. Fix z € (0, R). Let us first show that
f P, 2) = v, )P Pdr - 0 as k — . (19)
{r=R}
Since vi(r, -) is nonincreasing in its last component we deduce

foo rivi(r,2)rdr < lfz fw rivi(r,Ordrdd < lj‘r"vZ(r, Ord(r,0) < ¢ (20)
0 < Jo Jo 7 Ja Z

for all ¢ € [2,6] by (7). Thus for g € [2,6] the sequence || - vi(-, 2)llLa((0.00).rar) 18
uniformly bounded in k € N. Moreover, (13) implies vi(r,z) < C (Z)I’_% uniformly in
k € N. Hence for R > R

f P vi(r, 2) = v )P Pdr < (2C(Z))”‘1f FT i(r,2) = v(r, PP dr
2

T ™

T
ISH

< (2C))" 'R by (20).

The last term can be made arbitrarily small provided R is chosen big enough. To
finish the proof of (19) it remains to prove fRR P Wi, 2) = v(r, 2P rdr — 0 as
k — oo. Since for almost all z € (0, R) we have vi(-,z) — v(:,z) pointwise almost
everywhere on (R, R) as well as the boundedness of || - v(-, 2)|| 15((0.00).rdr) DY (20) we
can apply the convergence principle from the remark above and deduce

R
f P Wi, 2) = v, DIP ' Pdr - 0 as k — oo,
R

Hence (19) is accomplished for almost all z € (0, R).
Defining ¢i(z) = f{r>R} P~ Y(r, z) — v(r, 2)IP"' r*dr we have ¢, — 0 as k — oo
pointwise a.e. in [0, R). The sequence (¢ ),y 15 bounded in L'([0, R), dz) since by (6)

R
f f P ve(r,2) = v(r P P drdz < Cfrp_] (! + ) Pd(r2) < C.
{r>=R} Q

Moreover, for p € (1, 3], the sequence (¢r),c 1s bounded in WHL([0, R), dz) since

2
"390" (f f (p+ Dr* v =P % % 3drdz)
LY([O,R],d?)
2
< (f(p+ DrP v, = vfP % - ? 3a’(r,z))
Z
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9

and consequently || ||L1([OR] dz) < fQ 202y —vPPRd(r, z)fQ AT ‘9V rd(r,z) =
v 3

Cllr(vi — v)|| Lr(rdrds) Jo | o2~ ()z r’d(r,z) < C. Hence, by the compact embedding

W0, R), dz) — L'([0,R),dz) we conclude that at least a subsequence of (@)
is converging in L'([0, R),dz) to a limit function, which must be 0 since we have
already asserted the pointwise a.e. convergence to O on [0, R). This shows (17) on Q4
for p € (1, 3]. For p € (3,5) we make use of Holder’s interpolation, namely,

6(1-6)

lrve = r V”Lgyl(m,rdrdz)

llrvie = rvll” < llrvie = Il

LP“(Q rdrdz) L4 (Q ,rdrdz)

< Cllrvi = m||* -0

L4 (Qa4,rdrdz)
as k — oo, where 6 € (0, 1) is chosen such that p + 1 =46+ 6(1 — 6), i.e., 0 = 5_7”.
The combination of convergences on €2y, ...,y finally proves (17). O

For our last lemma we need the notion of cylindrical C°-functions which we
introduce now.

Definition 2.8. A function u = u(r,z) belongs to C ([0, ) X R) if and only if
u € C([0,00) X R), suppu is compact in [0, c0) X R and ‘9/”(0 z) = 0 for all odd
integers j € 2N — 1.

Remark 2.9. Since u € C2([0, ) X R) is equivalent to i € C(R’) with ii(x) :=
u(|(x1, . - ., x3)|, xs) we see that C2([0, o) X R) is dense in Hclyl(r3drdz).

Lemma 2.10. For u € Hclyl(r3drdz) we have ||u*|| < ||u|| where x denotes Steiner-
symmetrization with respect to z and || - || is the equivalent norm from Theorem 1.1.
Moreover

Iw) <Iw*) and I'Wwlu] <I'W)[u*].

Proof. We begin by recalling several classical rearrangement inequalities from
[10,11]. Recall first the P6lya-Szego inequality

f|Vf®|2dx§f|Vf|2dx (21)
R" R"

for f € H'(R") and ® denoting Schwarz-symmetrization (also called symmetrically
decreasing rearrangement). Furthermore we have for 0 < f, g € L?(R") the classical

rearrangement inequality
f fedx < f 12g%dx (22)
R R

and the nonexpansivity of rearrangement

f 1f® — g®Pdx < f f — g dx. 23)
Rn Rn
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From (21) we immediately receive for u € Hclyl(r3drdz) that

f \V.u*Pdz < f V. ul*dz. (24)
R R

Next we want to establish a similar inequality for V,u. We do this first for u €
C> ([0, ) x R). With the help of (23) we find that

2
f dzsf
R R

for almost all r,¢ € [0, 00). Sending + — 0 and using Fatou’s lemma on the left side
of the inequality yields

u(r +t,z) — u(r,z) |
t

u*(r+tz) —u*(r,z)
t

dz

f IV, u*?dz < f \V,ul’dz (25)
R R

for u € C([0,00) X R) and almost all » € [0, c0). Since Steiner Symmetrization
is continuous in H' (see [8, Theorem 1]) we obtain by approximation that (25) is
indeed valid for all u € Hgyl(r3drdz). Together with (24) we obtain fR IV,..u*?dz <

fR |V.,..u|>dz for almost all r > 0 and integration leads to

f f \V,.u*rdrdz < f f IV,.ul*r*drdz. (26)
R JO R JO

Fixing r € [0, 00) and applying (22) to f(-) = esssupV — V(r,-) and g(-) = u*(r,")
gives

f(ess supV = V(r,-)) u*(r,)dz < f(ess supV - V(r,))* (uz)*(r, dz
R R
= f(ess supV = V(r,)) (M*)2 (r, )dz.
R

Using [[u(r, )ll;2r) = lu* (7, )ll2w) this results in

ffoo V(r,z) (u*)2 Pdrdz < ffm V(r, 2)u*rdrdz. 27)
R JO R Jo

The combination of (26) and (27) yields the claimed inequality ||u*]|> < |Jul]*.
Assumption (v) on f allows to apply [7, Theorem 5.1] and to deduce

I'(u)[u] :ff(r, z, Pudutrid(r, ) Sff(r, 2, P rd(r,z) = I'(w™)[u*].
Q Q
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Moroever, using (v) with s = 0 shows that for all r € [0, c0), o0 > 0 the function
7+ f(r,z,0?) is symmetrically nonincreasing in z and hence
r2(s+0)?
O, (r,z,8) := F(r,z, r2(s + 0')2) —F(r,z, r2s2) = f f(r,z,t)dt

252

is symmetrically nonincreasing in z. Applying once more [7, Theorem 5.1] yields

I(w) = f 212F(r 7, rPut)rd(r,z) < f 212F(r 7, rPurHrd(r, z) = Iw*).

This finishes the proof of the lemma. O

3. Proof of Theorem 1.1

Recall from Lemma 2.6 the definition I(u) := fQ s> F(r,z, Pur)rid(r,z) for u €
Hclyl(r3drdz). We show that the assumptions (i)—(iii) of [19, Theorem 12] are sat-
isfied. Let € > 0. The growth assumptions (i) and (ii) on f imply that for every € > 0
there exists C. > 0 such that the global estimate 0 < f(r,z,5) < € + Cglslg holds.
Together with (6) we obtain

' (w)v]l =

ff(r, z rPu’ )uvr%d(r 2)
Q

sgflrullrvlrd(r,z)+Ceflrul”lrvlrd(r,z)
Q Q

~ P
<e&C ||u”H".yl(r3drdz) ||V||H({yl(r3drdz) + C. ”u”ijl(ﬁdrdz) ”V”Hcl)_l(ﬁdrdz)
Taking the supremum over all v € H! l(r3drdz) with [[v|| H! (Pdrd) = = 1 we see that
I'(u) = o(||lull) asu— 0. (28)

Moreover, due to assumption (iii) on f the map

I'(S”)[u] ff(r 7, s Ut rd(r, z) 29

is strictly increasing for all # # 0 and s > 0. Next we claim that

uniformly for u on weakly compact
subsets W of H1 l(r3drdz) \ {0}.

I(su)
2

— 0 ass—>c><>{ 30)

Suppose not. Then there are (u)ar € W and s; — oo as k — oo such that 18

bounded as k — co. But along a subsequence we have u; — u # 0 and u;(x) —>ku(x)
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pointwise almost everywhere. Let QF :={(r,2) € Q : u(r,z) # 0}. Then |Q¥ > 0 and
on QF we have |suu(r, z)] = oo as k — oo. Fatou’s lemma and assumption (iv) on F

imply

Isu F(r,Z,Szrzuz) F(I’,Z,Sru)
(kzk) =f 2k K rd(r,z) > % ird(r,z) > 0 ask — oo,
57 o 2577 o 25

a contradiction. In summary, (28)—(30) imply that (i)—(iii) of [19, Theorem 12] are
satisfied.

Now we take a sequence (u;)irey C M such that J(uy) — infy J as k — oo.
Since ||V, luklll;z = ||V,.ull;2 we can assume that u; > O for all k € N. Then
[19, Theorem 12] guarantees that for every k there is a unique #; > 0 such that
Vi i= tuy € M. We show next that #; < 1 for all k € N. Assume # > 1. Then

ff(r o ruHu?rd(r, z) < ff(r, o u*r’d(r,z) by assumption (iii)
Q

= llugII? since tuy € M
< JJoagl? by Lemma 2.10
ff(r 7 uk 3d(r 2) since u; € M.

This contradicts the inequality I'(u)[ux] < I'(u)[u;] from Lemma 2.10 and thus
t, <1 forall k € N.
Next notice that for fixed (r, z, s) € [0, 0) X R X [0, o) and ¢ € (0, 1] one has

jt(t frz, D8 = F(r,2,£57) = 25 (f(r,2, 87 = f(r,2,5%)) > 0

since f is strictly increasing in its last variable by assumption (iii). This shows that
the map t — 2£(r, z, s*)s* — F(r, z, 1*s?) is strictly increasing for ¢ € [0, 1]. From this
monotonicity and the inequality I(fxu;) < I(f;u) from Lemma 2.10 we conclude

1
2J(v) = f (t,%lV,,zu,’;l2 + V(r, z)t,%u,’:z — ﬁF(r, Z,r t,%u,jz)) rd(r,z)
Q

1
< f (t,%IV,,zukl2 + V(r, )tiu; — ﬁF(r, 7, rtiu; )r3d(r, 2)
Q

= f 1 (f(r, o U u; — F(r,z, Pt )r3d(r, 2) (31)
ar

Sflz(f(rz,r — F(r,z,r’u ) rd(r,z)
ar

= 2J(uy).

So (vi)kew € M 1is also a minimizing sequence for J which belongs to K, ;. The
boundedness of (v;)ien is established in Proposition 14 in [19]. Hence, we find
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Veo € Hclyl(r3drdz) such that vy — v, in Hgyl(r3dra’z) along a subsequence as k — oo.
In addition, v, € K4 due to Lemma 2.5 and v, # 0 by [19, Proposition 14] where
instead of the weak sequential continuity of / on all of H gyl(r3drdz) we use it only
on K, ; as stated in Lemma 2.6.

Let us show that v, € M. Since v,, # 0 we can choose 7, > 0 such that
IoVeo € M. In the same manner as before for the sequence #, we can show that
fo < 1. Assume t,, < 1. Then as in (31) and using the weak sequential continuity
on K, as shown in Lemma 2.6 we find

1
2J(toVeo) < f = (f(r, VAV — F(r,z, rzvzo)) rd(r,z)
ol

) 1
= lim —
k= Jo r‘2
=2infJ

M
< 2J(toVoo)

(f(r, Z rzvi)rzvi —F(r,z, rzvi ) r3d(r, 2)

which is a contradiction. So ., = 1 and thus v, € M. Then by the weak lower semi-
continuity of ||| and once again the weak sequential continuity of / we conclude

J(Ve) < liin inf J(v) = irA}IfJ < J(Veo)-

Hence, v, € K4 1s a minimizer of J on M, i.e., a ground state of (3) which is Steiner
symmetric in z with respect to {z = 0}.

Appendix

Here we prove that the condition V > 0 and infp. V > 0 for some R > 0 implies
1

that on Hclyl(r3drdz) the expression ( fQ (IV,,Zul2 + V(r, z)uz) rd(r, z))2 is an equivalent

norm. Suppose not. Then there is a sequence (uy)rerr such that ||ugl[;234r4;) = 1 and

fg (lVr,Zukl2 + V(r, z)u,%) rd(r,z) — 0 as k — oo. In particular,

f IV,.u*r*d(r,z) = 0 and f urid(r,z) —» 0 ask — co. (32)
Q B¢

R

Let y denote a smooth cut-off function such that y(r,z) = 1 for 0 < Vr2 + z2 < Rand
x(r,z2) =0for Vr2+z2 > R+ 1. Then v == yuy € H(l)’cyl(BRH, r*drdz) and

2 2 2 2.2
|Vr,zvk| =X |Vr,zuk| + |Vr,2X| Uy + 2ukXVr,Zuk ' Vr,Z)('
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Hence, by (32)

f IV, vl rd(r,z) <2 f XV, rd(r,z) +2 f ur |V, xIPrid(r, 2)
Q Q Q
(33)
<2 |V rd(r,2) + 2|V, oxl wirid(r,z) — 0
Q

Br+1\Br

as k — oo. In particular, fBR 1 IV,..w[*r*d(r,z) — 0. By Poincaré’s inequality, (32)
and [lugll;234rar) = 1 We see

Cp f IV, vl rd(r, z) > f vir'd(r,z) > f wrd(r,z) = 1 -o(1),

Bg+1 Bg+1 Br

contradicting (33). ad

Acknowledgement. We gratefully acknowledge financial support by the Deutsche
Forschungsgemeinschaft (DFG) through CRC 1173.

References

[1] Azzollini, A., Benci, V., D’Aprile, T. and Fortunato, D., Existence of
static solutions of the semilinear Maxwell equations. Ric. Mat. 55 (2006)(2),
123 — 137.

[2] Bartsch, T., Dohnal, T., Plum, M. and Reichel, W., Ground states of a
nonlinear curl-curl problem in cylindrically symmetric media. NoDEA Nonlinear
Diff. Equ. Appl. 23 (2016)(5), Art. 52, 34 pp.

[3] Bartsch, T. and Mederski, J., Ground and bound state solutions of semilinear
time-harmonic Maxwell equations in a bounded domains. Arch. Ration. Mech.
Anal. 215 (2015)(1), 283 — 306.

[4] Bartsch, T. and Mederski, J., Nonlinear time-harmonic Maxwell equations in
an anisotropic bounded medium. J. Funct. Anal. 272 (2017)(10), 4304 — 4333.

[5] Bartsch, T. and Mederski, J., Nonlinear time-harmonic Maxwell equations in
domains. J. Fized Point Theory Appl. 19 (2017)(1), 959 — 986.

[6] Benci, V. and Fortunato, D., Towards a unified field theory for classical elec-
trodynamics. Arch. Ration. Mech. Anal. 173 (2004)(3), 379 — 414.

[7] Brock, F., Continuous rearrangement and symmetry of solutions of elliptic
problems. Proc. Indian Acad. Sci. Math. Sci. 110 (2000), 157 — 204.

[8] Burchard, A., Steiner symmetrization is continuous in W'“. Geom. Funct. Anal.
7 (1997)(5), 823 — 860.

[9] D’Aprile, T. and Siciliano, G., Magnetostatic solutions for a semilinear pertur-
bation of the Maxwell equations. Adv. Diff. Equ. 16 (2011)(5-6), 435 — 466.



Existence of Cylindrically Symmetric Ground States 435

[10] Lieb, E. H., Existence and uniqueness of the minimizing solution of Choquard’s
nonlinear equation. Stud. Appl. Math. 57 (1976/77), 93 — 105.

[11] Lieb, E. H. and Loss, M,: Analysis. Grad. Stud. Math. 14. Providence (RI):
Amer. Math. Soc. 2001.

[12] Lions, P.-L., Minimization problems in L'(R®). J. Funct. Anal. 41 (1981)(2),
236 — 275.

[13] Lions, P.-L.: Symétrie et compacité dans les espaces de Sobolev (in French).
J. Funct. Anal. 49 (1982)(3), 315 — 334.

[14] Liu, S., On superlinear problems without the Ambrosetti and Rabinowitz con-
dition. Nonlinear Anal. 73 (2010)(3), 788 — 795.

[15] Mederski, J., Ground states of time-harmonic semilinear Maxwell equations
in R® with vanishing permittivity. Arch. Ration. Mech. Anal. 218 (2015)(2),
825 — 861.

[16] Nehari, Z., On a class of nonlinear second-order differential equations. Trans.
Amer. Math. Soc. 95 (1960)(1), 101 — 123.

[17] Nehari, Z., Characteristic values associated with a class of nonlinear second-
order differential equations. Acta Math. 105 (1961)(3), 141 — 175.

[18] Stuart, C. A., A variational approach to bifurcation in L” on an unbounded
symmetrical domain. Math. Ann. 263 (1983)(1), 51 — 59.

[19] Szulkin, A. and Weth, T., The method of Nehari manifold. In: Handbook of
Nonconvex Analysis and Applications (Eds.: D. Y. Gao et al.): Somerville (MA):
Internat. Press 2010, pp. 597 — 632.

[20] Willem, M., Minimax Theorems. Progr. Nonlinear Diff. Equ. Appl. 24. Boston:
Birkhauser 1996.

Received June 17, 2016; revised Feburary 7, 2017



