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Existence of Cylindrically Symmetric
Ground States to a Nonlinear Curl-Curl
Equation with Non-Constant Coefficients

Andreas Hirsch and Wolfgang Reichel

Abstract. We consider the nonlinear curl-curl problem ∇ × ∇ × U + V(x)U = f (x, |U |2)U
in R3 related to the nonlinear Maxwell equations with Kerr-type nonlinear material laws.
We prove the existence of a symmetric ground-state type solution for a bounded, cylindri-
cally symmetric coefficient V and subcritical cylindrically symmetric nonlinearity f . The
new existence result extends the class of problems for which ground-state type solutions
are known. It is based on compactness properties of symmetric functions due to Lions
[J. Funct. Anal. 41 (1981)(2), 236–275], new rearrangement type inequalities by Brock [Proc.
Indian Acad. Sci. Math. Sci. 110 (2000), 157–204] and the recent extension of the Nehari-
manifold technique from Szulkin and Weth [Handbook of Nonconvex Analysis and Applica-
tions (2010), pp. 597–632].
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1. Introduction

We consider the system

∇ × ∇ × U + V(x)U = f (x, |U |2)U in R3 (1)

where V ∈ L∞(R3) and f : R3 × [0,∞) → [0,∞) is a non-negative Carathéodory
function growing at infinity with a power at most p−1

2 for p ∈ (1, 5). The particular
feature of (1) is the curl-curl operator. It arises in specific models for standing waves
in Maxwell’s equations with Kerr-type nonlinear material laws where f (x, |U |2)U =

Γ(x)|U |2U. For a detailed physical motivation of (1) see [2].
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We look for R3-valued weak solutions U in a cone K4,1 of functions with suitable
symmetries and U ∈ L2(R3) ∩ Lp+1(R3), ∇ × U ∈ L2(R3). The condition that 0 lies
below the spectrum of curl curl +V(x) allows us to find ground-state type critical
points of a functional J(u) = 1

2‖u‖
2 − I(u), cf. (4), restricted to the so-called Nehari-

manifold. The basic idea of applying symmetrizations to minimizing sequences on
the Nehari-manifold goes back to Stuart [18] in the context of the stationary nonlinear
Schrödinger equation. Compared to [18] the assumptions on the nonlinearity f can
be substantially weakened beyond the classical Ambrosetti-Rabinowitz condition.
This is based on three important ingredients:
• the recent extension of the Nehari-manifold method by Szulkin and Weth [19],
• the weak sequential continuity of functionals I(u) and I′(u)[u] on K4,1 due to

compactness properties of symmetric functions by Lions [12, 13],
• new rearrangement inequalities for general nonlinearities due to Brock [7].

Using the combination of these ingredients our main result Theorem 1.1 substantially
extends the known results on the existence of ground-state type solutions for (1).

Benci, Fortunato [6] and Azzollini, Benci, D’Aprile, Fortunato [1] were among
the first to consider the constant coefficient case of (1) with V ≡ 0. Their method
was based on cylindrical symmetries of the vector-fields U, cf. [9] for a different
class of symmetries. The case where f (x, |U |2)U = Γ(x) |U |p−1 U with periodic co-
efficients V and Γ has been treated in [2]. In [15] Mederski considered (1) where
f (x, |U |2)U is replaced by, e.g., Γ(x)g(U) with Γ > 0 periodic and bounded, V ≤ 0,
V ∈ L

p+1
p−1 (R3) ∩ L

q+1
q−1 (R3) and g(U)∼ |U |p−1U if |U |� 1 and g(U)∼ |U |q−1U if |U |� 1

for 1 < p < 5 < q. A remarkable feature of Mederski’s work is that (1) can be treated
without assuming special symmetries of the field U. The nonlinear curl-curl problem
on bounded domains with the boundary condition ν × U = 0 has been elaborated in
[3, 4]. For a recent survey on the nonlinear curl-curl problem cf. [5].

An important feature of [1] is the use of cylindrically symmetric ansatz functions
for U. Here we make a slightly different ansatz of the form

U(x) = u(r, z)

−x2

x1

0

 where r =

√
x2

1 + x2
2, z = x3. (2)

Moreover, we assume cylindrically symmetric coefficients, i.e., V(x) = V(r, z) and
f (x, |U |2) = f (r, z, |U |2). For U of the form (2) we see that div U = 0, and hence (1)
reduces to the scalar equation

−
1
r3

∂

∂r

(
r3∂u
∂r

)
−
∂2u
∂z2 + V(r, z)u = f (r, z, r2u2)u for (r, z) ∈ Ω B (0,∞) × R. (3)

It turns out that a suitable space to consider (3) is given by

H1
cyl(r

3drdz) B
{

v : (0,∞) × R→ R : v,
∂v
∂r
,
∂v
∂z
∈ L2

cyl(r
3drdz)

}
,
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L2
cyl(r

3drdz) B
{

v : (0,∞) × R→ R :
∫

Ω

v(r, z)2r3d(r, z) < ∞
}
,

cf. Section 2 for more details on these spaces. Weak solutions of (3) arise as critical
points of the functional

J(u) =
1
2

∫
Ω

(
|∇r,zu|2 + V(r, z)u2

)
r3d(r, z) −

∫
Ω

1
2r2 F(r, z, r2u2)r3d(r, z), (4)

u ∈ H1
cyl(r

3drdz), where F(r, z, t) B
∫ t

0
f (r, z, s) ds and ∇r,z B

(
∂
∂r ,

∂
∂z

)
. A ground state

u of (3) is defined as a weak solution of (3) in the Nehari-manifold

MB
{

v∈H1
cyl(r

3drdz)\{0}
∣∣∣∣∣∫

Ω

(
|∇r,zv|2+V(r, z)v2

)
r3d(r, z) =

∫
Ω

f (r, z, r2v2)v2r3d(r, z)
}

such that

J(u) = inf
v∈M

J(v),

see the classical papers [16, 17]. We find ground states of (3) under additional as-
sumptions on V and f . To state these assumptions we need the notion of Steiner-
symmetrization, cf. [11, Chapter 3]. The Steiner-symmetrization (also called sym-
metric-decreasing rearrangement) of a cylindrical function g = g(r, z) with respect
to z is denoted by g?. We say that g is Steiner-symmetric if g coincides with its
Steiner-symmetrization with respect to z, keeping the r-variable fixed. A function
h ∈ L∞(Ω) is reversed Steiner-symmetric if

(
ess sup h − h

)?
= ess sup h − h holds

true. In other words h is even and symmetrically increasing.
Now we can state our assumptions on f .

(i) f : Ω × [0,∞)→ R is a Carathéodory function with 0 ≤ f (r, z, s) ≤ c(1 + s
p−1

2 )
for some c > 0 and p ∈ (1, 5),

(ii) f (r, z, s) = o(1) as s→ 0 uniformly in r, z ∈ [0,∞) × R,
(iii) f (r, z, s) strictly increasing in s ∈ [0,∞),
(iv) F(r,z,s)

s → ∞ as s→ ∞ uniformly in r, z ∈ [0,∞) × R,
(v) for all r ∈ [0,∞), s ≥ 0 and σ > 0 the function

ϕσ(r, z, s) B f (r, z, (s + σ)2)(s + σ)2 − f (r, z, s2)s2

is symmetrically nonincreasing in z.
Conditions (ii)–(iv) are inspired by the work of Szulkin and Weth [19]. Namely, if
we translate (ii)–(iv) into conditions for f̃ (r, z, s) := f (r, z, r2s2)s then they become
identical to (ii)–(iv) of Theorem 20 from [19]. Condition (v) is used to prove the
rearrangement inequality of Lemma 2.10 and it is due to Brock [7].

Next we state our main result.
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Theorem 1.1. Let V ∈ L∞(Ω) be reversed Steiner-symmetric such that the map

‖·‖ : H1
cyl(r

3drdz)→ R; u 7→
(∫

Ω

(
|∇r,zu|2 + V(r, z)u2

)
r3d(r, z)

) 1
2

is an equivalent norm to ‖·‖H1
cyl(r

3drdz). Additionally, let f satsify the assumptions
(i)–(v). Then (3) has a ground state u∈H1

cyl(r
3drdz) which is symmetric about {z=0}.

Remark 1.2. (1) The assumption of norm-equivalence is for instance satisfied if
V ≥ 0 and infBc

R
V > 0 for some R > 0, where Bc

R B {(r, z) ∈ Ω : r2 + z2 > R2}.
For the reader’s convenience the proof based on Poincaré’s inequality is given in
the Appendix. Since Poincaré’s inequality is applicable for domains bounded in one
direction we can weaken infBc

R
V > 0 to infS c V > 0 for strips S = [0,∞)× [0, ρ] with

ρ > 0 or S = [r0, r1] × [0,∞) with 0 ≤ r0 < r1 < ∞.
(2) The conditions on f are satisfied if for instance f (r, z, s) = Γ(r, z)|s|

p−1
2 where

Γ ∈ L∞(Ω) is Steiner-symmetric, ess infΩ Γ > 0 and p ∈ (1, 5). This choice of f
corresponds to the equation ∇ × ∇ × U + V(r, z)U = Γ(r, z) |U |p−1 U in R3. Another
possible choice is f (r, z, s) = Γ(r, z) log(1 + s) where again Γ ∈ L∞(Ω) is Steiner-
symmetric and ess infΩ Γ > 0. This nonlinearity appeared for instance in [14] and
it does not satisfy the classical Ambrosetti-Rabinowitz condition. The piecewise
defined function

f (r, z, s) =

s
p̃−1

2 , 0 ≤ s ≤ 1
s

p(z)−1
2 , s > 1

with p̃ ∈ (1, 5), 1 < infz∈R p(z) ≤ supz∈R p(z) < 5 and p symmetrically decreasing
also satisfies the required conditions.

The paper is structured as follows: In Section 2 we give details on the varia-
tional formulation of problem (3) and prove pointwise decay estimates of Steiner-
symmetric functions in H1

cyl(r
3drdz). In Section 3 we give the proof of Theorem 1.1,

and in the Appendix we show an example for the potential V satisfying the norm-
assumption of Theorem 1.1.

2. Variational formulation, decay estimates, rearrange-
ments

Let us consider some properties of the space H1
cyl(r

3drdz). First, for U of the form (2)
we have that U ∈ H1(R3) if and only if u ∈ H1

cyl(r
3drdz). A norm on H1

cyl(r
3drdz) is

given by

‖u‖H1
cyl(r

3drdz) B

(∫
Ω

(
|∇r,zu|2 + u2

)
r3d(r, z)

) 1
2

.
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Notice that the space H1
cyl(r

3drdz) behaves like a Sobolev-space in dimension 5. Next
we show a useful embedding property. For this we need the following Sobolev and
Lebesgue spaces in dimension 3 together with their canonical norms:

H1
cyl(rdrdz) B

{
v : (0,∞) × R→ R : v,

∂v
∂r
,
∂v
∂z
∈ L2

cyl(rdrdz)
}
,

Lq
cyl(rdrdz) B

{
v : (0,∞) × R→ R :

∫
Ω

|v(r, z)|qrd(r, z) < ∞
}

for q ∈ [1,∞).

Lemma 2.1. For u ∈ H1
cyl(r

3drdz) Hardy’s inequality holds∫
Ω

u2

r2 r3d(r, z) ≤ CH

∫
Ω

(∂u
∂r

)2

+

(
∂u
∂z

)2 r3d(r, z). (5)

Moreover, if u ∈ H1
cyl(r

3drdz) then ru ∈ H1
cyl(rdrdz) and there is a constant C > 0

such that for 2 ≤ q ≤ 6

‖ru‖H1
cyl(rdrdz) , ‖ru‖Lq

cyl(rdrdz) ≤ C ‖u‖H1
cyl(r

3drdz) (6)

Proof. Hardy’s inequality (5) is given in [2, Lemma 9 (i)]. For u ∈ H1
cyl(r

3drdz) we
have ru, ∂

∂z (ru), r ∂u
∂r ∈ L2

cyl(rdrdz) and by (5) also u ∈ L2
cyl(rdrdz). Since ∂

∂r (ru) =

r ∂u
∂r + u we conclude altogether ru ∈ H1

cyl(rdrdz). By the Sobolev embedding in three
dimensions this implies ru ∈ Lq(rdrdz) for q ∈ [2, 6] and (5) yields

‖ru‖2H1
cyl(rdrdz) =

∫
Ω

(
|∇r,z(ru)|2 + r2u2

)
rd(r, z)

≤ 2
∫

Ω

(r∂u
∂z

)2

+

(
r
∂u
∂r

)2

+ u2 + r2u2

 rd(r, z)

≤ C̃ ‖u‖2H1
cyl(r

3drdz) .

(7)

This finishes the proof. �

Next we show that the functional J from the introduction as well as the functional
in the defintion of the Nehari-manifold are well-defined.

Lemma 2.2. There is a constant C > 0 such that∫
Ω

f (r, z, r2u2)u2r3d(r, z)∫
Ω

1
2r2 F(r, z, r2u2)r3d(r, z)

 ≤ C
(
‖u‖2H1

cyl(r
3drdz) + ‖u‖p+1

H1
cyl(r

3drdz)

)

for all u ∈ H1
cyl(r

3drdz).
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Proof. Clearly assumption (i) and (ii) show that for every ε > 0 there is Cε > 0 such
that 0 ≤ f (r, z, s) ≤ ε + Cε s

p−1
2 . Hence

0 ≤ f (r, z, r2u2)u2r3 ≤
(
εr2u2 + Cε |ru|p+1)

)
r, (8)

0 ≤
1

2r2 F(r, z, r2u2)r3 ≤
(
εr2u2 + C̃ε |ru|p+1

)
r. (9)

Due to (6) this implies the claim. �

In order to find critical points of J we need uniform decay estimates of Steiner-
symmetric functions in H1

cyl(r
3drdz). These estimates are given in [13] in much more

generality but for the sake of completeness we give them here together with the sim-
ple proof. We start with a well-known fact concerning radially symmetric functions
and afterwards extend the result to cylindrically symmetric functions. Let

H1
rad(Rn) B

{
u ∈ H1(Rn) : u is radially symmetric

}
.

Lemma 2.3 (see [13]). Let n ≥ 2. Then there is a constant C > 0 such that

|u(x)| ≤ C ‖∇u‖
1
2
L2(Rn) ‖u‖

1
2
L2(Rn) |x|

− n−1
2 for almost all x ∈ Rn and all u ∈ H1

rad(Rn).

Proof. By density it is sufficient to prove the estimate for u ∈ H1
rad(Rn)∩C∞c (Rn). Let

r B |x|. Then

d
dr

(
rn−1 |u|2

)
= (n − 1)rn−2 |u|2 + rn−12u

∂u
∂r
≥ −2 |u|

∣∣∣∣∣∂u
∂r

∣∣∣∣∣ rn−1.

Integrating from r to∞ and expanding the domain of integration to all of Rn yields

rn−1 |u(x)|2 ≤ C
∫
Rn
|u| |∇u| dy ≤ C ‖∇u‖L2(Rn) ‖u‖L2(Rn) . �

Now we give an extension of Lemma 2.3 to cylindrically symmetric functions
which are Steiner-symmetric in the non-radial component. We make use of the fol-
lowing notation: Let t ∈ N≥2 and s ∈ N such that n = t + s. We write points in Rn as
(x, y) with x ∈ Rt and y = (y1, . . . , ys) ∈ Rs. Furthermore, let

Kt,s B

{
u ∈ H1(Rn)

∣∣∣∣∣∣ u(·, y) is a radially symmetric function for every y ∈ Rs and
u(x, ·) is Steiner-symmetric w.r.t. yi, i = 1, . . . , s, ∀ x ∈ Rt

}
In particular, if u ∈ Kt,s then necessarily u ≥ 0. In this setting we have the following
extension of Lemma 2.3.

Lemma 2.4 (see [13]). There is a constant C > 0 such that

0 ≤ u(x, y) ≤ C ‖∇xu‖
1
2
L2(Rn) ‖u‖

1
2
L2(Rn) |x|

− t−1
2 |y1 · · · ys|

− 1
2

for almost all (x, y) ∈ Rn and all u ∈ Kt,s.
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Proof. Let u ∈ Kt,s and fix y ∈ Rs. W.l.o.g. let yi > 0 for all i = 1, . . . , s. We define

v(x) B
∫ y1

0
· · ·

∫ ys

0
u(x, z)dz for x ∈ Rt.

By Hölder’s inequality we obtain v2(x) ≤ y1 · · · ys

∫ y1

0
· · ·

∫ ys

0
u2(x, z)dz, i.e.,

‖v‖L2(Rt) ≤ (y1 · · · ys)
1
2 ‖u‖L2(Rn) . (10)

In the same manner we receive

‖∇v‖L2(Rt) ≤ (y1 · · · ys)
1
2 ‖∇xu‖L2(Rn) . (11)

Since v : Rt → R is radially symmetric we can apply Lemma 2.3 and get from (10)
and (11)

0≤v(x)≤C ‖∇v‖
1
2
L2(Rt) ‖v‖

1
2
L2(Rt) |x|

− t−1
2 ≤C(y1 · · · ys)

1
2 ‖∇xu‖

1
2
L2(Rn) ‖u‖

1
2
L2(Rn) |x|

− t−1
2 . (12)

Due to the monotonicity-property in y-direction we also have v(x) ≥ y1 · · · ysu(x, y)
and thus (12) gives the desired inequality. �

We prove three additional lemmas which are used in the next section.

Lemma 2.5. The set Kt,s is a weakly closed cone in H1(Rn).

Proof. Take a sequence (uk)k∈N ⊂ Kt,s such that uk ⇀ u ∈ H1(Rn) as k → ∞. By
the Sobolev embedding on bounded domains we deduce that a subsequence of uk

converges pointwise almost everywhere on Rn to u. Since every uk enjoys the ra-
dial symmetry in the first component and the non-increasing property in the second
variable, the pointwise convergence implies that also u enjoys these properties, i.e.,
u ∈ Kt,s. �

Lemma 2.6. The functionals

I(v) =

∫
Ω

1
2r2 F(r, z, r2v2)r3 d(r, z), I′(v)[v] =

∫
Ω

f (r, z, r2v2)v2r3 d(r, z)

are weakly sequentially continuous on the set K4,1 ⊂ H1
cyl(r

3drdz).

Remark 2.7. In the proof we use twice the following principle: if S ⊂ Rm is a set
of finite measure and wk : S → R a sequence of measurable functions such that
‖wk‖Lr(S ) ≤ C and wk → w pointwise a.e. as k → ∞ then ‖wk − w‖Lq(S ) → 0 as
k → ∞ for 1 ≤ q < r. The proof is as follows: Egorov’s theorem allows to choose
Σ ⊂ S such that wk → w uniformly on Σ and |S \ Σ| ≤ ε arbitrary small. By Hölder’s
inequality the remaining integral is estimated by

∫
S \Σ
|wk−w|q dx ≤ ε1− q

r ‖wk−w‖qLr(S ).
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Proof. Let us take a weakly convergent sequence (vk)k∈N in K4,1 such that vk ⇀ v in
H1

cyl(r
3drdz) and vk → v pointwise a.e. in Ω. By Lemma 2.5 one gets v ∈ K4,1 and

using Lemma 2.4 there exists a constant C > 0 such that

0 ≤ vk(r, z), v(r, z) ≤ Cr−
3
2 |z|−

1
2 for all k ∈ N and almost all (r, z) ∈ Ω. (13)

Our goal is now to show at least for a subsequence∫
Ω

1
r2 F(r, z, r2v2

k)r3d(r, z)→
∫

Ω

1
r2 F(r, z, r2v2)r3d(r, z) as k → ∞ (14)

and ∫
Ω

f (r, z, r2v2
k)v2

kr3d(r, z)→
∫

Ω

f (r, z, r2v2)v2r3d(r, z) as k → ∞. (15)

By (9) we find 1
r2

∣∣∣F(r, z, r2v2
k)−F(r, z, r2v2)

∣∣∣r3≤εr2(v2
k+v2)r+Cε

(
|rvk|

p+1+|rv|p+1
)
r and

hence(
|F(r, z, r2v2

k) − F(r, z, r2v2)| − εr2(v2
k + v2)

)+
r ≤ Cε

(
|rvk|

p+1 + |rv|p+1
)

r. (16)

Inspired by [12, 13] the idea is to show

rvk → rv in Lp+1(rdrdz) as k → ∞. (17)

Once (17) is established we obtain a majorant |rvk|, |rv| ≤ w ∈ Lp+1(r drdz) (cf. [20,
Lemma A.1]). Together with (16) this majorant allows to apply Lebesgue’s domi-
nated convergence theorem and yields

lim
k→∞

∫
Ω

(
|F(r, z, r2v2

k) − F(r, z, r2v2)| − εr2(v2
k + v2)

)+
r drdz = 2ε‖v‖2L2(r3drdz). (18)

If we set
ak :=

∫
Ω

∣∣∣F(r, z, r2v2
k) − F(r, z, r2v2)

∣∣∣ r drdz

and
bk := ε‖r2(v2

k + v2)‖L1(rdrdz) = ε(‖vk‖
2
L2(r3drdz) + ‖v‖2L2(r3drdz)) ≤ Cε

then

lim sup
k∈N

ak ≤ lim sup
k∈N

bk + lim sup
k∈N

(ak − bk)+

≤ Cε + lim sup
k∈N

(∫
Ω

(
|F(r, z, r2v2

k) − F(r, z, r2v2)| − εr2(v2
k + v2)

)
rdrdz

)+

≤ Cε + lim sup
k∈N

∫
Ω

(
|F(r, z, r2v2

k) − F(r, z, r2v2)| − εr2(v2
k + v2)

)+
rdrdz

≤ ε(C + 2‖v‖2L2(r3drdz)) by (18).
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Since ε > 0 was arbitrary this shows that limk→∞ ak = 0 and therefore (14) holds. The
proof of (15) is similar since

(
f (r, z, r2v2

k)r2v2
k − f (r, z, r2v2)r2v2 − εr2(v2

k + v2)
)+

r sat-
isfies an estimate just like (16) if we use (8) instead of (9).

It remains to prove (17). For this, we split Ω into four parts Ω1, . . . ,Ω4 and
show (17) on each of these parts separately. The definitions of Ω1, . . . ,Ω4 are as
follows: For R > 0 let

Ω1 B {(r, z) ∈ Ω : r < R, |z| < R}, Ω2 B {(r, z) ∈ Ω : r ≥ R, |z| ≥ R},
Ω3 B {(r, z) ∈ Ω : r < R, |z| ≥ R}, Ω4 B {(r, z) ∈ Ω : r ≥ R, |z| < R}.

Convergence on Ω1: Follows from rvk → rv in Lq(K; r drdz) for every compact
subset K ⊂ [0,∞) × R and every q ∈ [1, 6). This step works independently of the
choice of R > 0.

Convergence on Ω2: Let ε > 0. With the help of (13) we calculate∫
Ω2

|rvk − rv|p+1 rd(r, z) ≤ 2p+1
∫

Ω2

rp+1
(
|vk|

p+1 + |v|p+1
)

rd(r, z)

≤ 2p+1Cp−1
∫

Ω2

r−
p−1

2 |z|−
p−1

2
(
|vk(r, z)|2 + |v(r, z)|2

)
r3d(r, z)

≤ C1

(
‖vk‖

2
H1

cyl(r
3drdz) + ‖v‖2H1

cyl(r
3drdz)

)
R−(p−1)

≤ C2R−(p−1)

which is less or equal ε if we choose R > 0 large enough.
Convergence on Ω3: Due to symmetry in z-direction it is enough to focus on

Ω̃3 B {(r, z) ∈ Ω : r < R, z ≥ R}. Let α > 0 be arbitrary. Again by (13) we obtain

{(r, z) ∈ Ω̃3 : vk(r, z) > α} ⊂ {(r, z) ∈ Ω̃3 : r z
1
3 ≤ Cα} C S α,

where Cα =
(

C
α

) 2
3 and C is the constant from (13). The set S α has finite measure since

|S α| ≤

∫ ∞

R

∫ Cαz−
1
3

0
r3dr dz =

C4
α

4

∫ ∞

R
z−

4
3 dz =

3
4

C4
αR−

1
3 < ∞.

By the convergence principle from Remark 2.7 and since by (7) ‖rvk‖L6(rdrdz) ≤

‖vk‖H1
cyl(r

3drdz) is bounded we obtain
∫

S α
rp−1|vk − v|p+1r3d(r, z) → 0 as k → ∞ for

1≤ p < 5. It remains to prove the convergence on Ω̃3\S α. For allmost all (r, z)∈Ω̃3\S α

we have that v(r, z) = limk→∞ vk(r, z) ≤ α. Hence,∫
Ω̃3\S α

rp−1|vk − v|p+1r3d(r, z) ≤ Rp−1(2α)p−1
∫

Ω

|vk − v|2r3d(r, z) ≤ Cαp−1.
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In summary, since α > 0 is arbitrary this shows (17) on Ω3.
Convergence on Ω4: Again it is enough to focus on Ω̃4 B {(r, z) ∈ Ω : r ≥ R,

0 ≤ z < R}. Fix z ∈ (0,R). Let us first show that∫
{r≥R}

rp−1|vk(r, z) − v(r, z)|p+1r3dr → 0 as k → ∞. (19)

Since vk(r, ·) is nonincreasing in its last component we deduce∫ ∞

0
rqvq

k(r, z)r dr ≤
1
z

∫ z

0

∫ ∞

0
rqvq

k(r, ζ)r drdζ ≤
1
z

∫
Ω

rqvq
k(r, ζ)rd(r, ζ) ≤

C
z

(20)

for all q ∈ [2, 6] by (7). Thus for q ∈ [2, 6] the sequence ‖ · vk(·, z)‖Lq((0,∞),rdr) is
uniformly bounded in k ∈ N. Moreover, (13) implies vk(r, z) ≤ C(z)r−

3
2 uniformly in

k ∈ N. Hence for R̃ > R∫ ∞

R̃
rp−1|vk(r, z) − v(r, z)|p+1r3dr ≤ (2C(z))p−1

∫ ∞

R̃
r−

p−1
2 |vk(r, z) − v(r, z)|2r3dr

≤ (2C(z))p−1R̃
1−p

2
C
z

by (20).

The last term can be made arbitrarily small provided R̃ is chosen big enough. To
finish the proof of (19) it remains to prove

∫ R̃

R
rp−1|vk(r, z) − v(r, z)|p+1r3dr → 0 as

k → ∞. Since for almost all z ∈ (0,R) we have vk(·, z) → v(·, z) pointwise almost
everywhere on (R, R̃) as well as the boundedness of ‖ · vk(·, z)‖L6((0,∞),rdr) by (20) we
can apply the convergence principle from the remark above and deduce∫ R̃

R
rp−1|vk(r, z) − v(r, z)|p+1r3dr → 0 as k → ∞.

Hence (19) is accomplished for almost all z ∈ (0,R).
Defining ϕk(z) B

∫
{r≥R}

rp−1|vk(r, z) − v(r, z)|p+1r3dr we have ϕk → 0 as k → ∞
pointwise a.e. in [0,R). The sequence (ϕk)k∈N is bounded in L1([0,R), dz) since by (6)∫ R

0

∫
{r≥R}

rp−1|vk(r, z) − v(r, z)|p+1r3drdz ≤ C
∫

Ω

rp−1
(
|vk|

p+1 + |v|p+1
)

r3d(r, z) ≤ C̃.

Moreover, for p ∈ (1, 3], the sequence (ϕk)k∈N is bounded in W1,1([0,R), dz) since∥∥∥∥∥∂ϕk

∂z

∥∥∥∥∥2

L1([0,R],dz)
≤

(∫ R

0

∫ ∞

R
(p + 1)rp−1|vk − v|p

∣∣∣∣∣∂vk

∂z
−
∂v
∂z

∣∣∣∣∣ r3drdz
)2

≤

(∫
Ω

(p + 1)rp−1|vk − v|p
∣∣∣∣∣∂vk

∂z
−
∂v
∂z

∣∣∣∣∣ r3d(r, z)
)2
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and consequently
∥∥∥∂ϕk
∂z

∥∥∥2

L1([0,R],dz)
≤ C

∫
Ω

r2p−2|vk − v|2pr3d(r, z)
∫

Ω

∣∣∣∂vk
∂z −

∂v
∂z

∣∣∣2 r3d(r, z) =

C‖r(vk − v)‖2p
L2p(rdrdz)

∫
Ω

∣∣∣∂vk
∂z −

∂v
∂z

∣∣∣2 r3d(r, z) ≤ C. Hence, by the compact embedding

W1,1([0,R), dz) ↪→ L1([0,R), dz) we conclude that at least a subsequence of (ϕk)k∈N

is converging in L1([0,R), dz) to a limit function, which must be 0 since we have
already asserted the pointwise a.e. convergence to 0 on [0,R). This shows (17) on Ω4

for p ∈ (1, 3]. For p ∈ (3, 5) we make use of Hölder’s interpolation, namely,

‖rvk − rv‖p+1

Lp+1
cyl (Ω4,rdrdz)

≤ ‖rvk − rv‖4θL4
cyl(Ω4,rdrdz) ‖rvk − rv‖6(1−θ)

L6
cyl(Ω4,rdrdz)

≤ C̃ ‖rvk − rv‖4θL4
cyl(Ω4,rdrdz) → 0

as k → ∞, where θ ∈ (0, 1) is chosen such that p + 1 = 4θ + 6(1 − θ), i.e., θ =
5−p

2 .
The combination of convergences on Ω1, . . . ,Ω4 finally proves (17). �

For our last lemma we need the notion of cylindrical C∞c -functions which we
introduce now.

Definition 2.8. A function u = u(r, z) belongs to C∞c ([0,∞) × R) if and only if
u ∈ C∞([0,∞) × R), supp u is compact in [0,∞) × R and ∂ ju

∂r j (0, z) = 0 for all odd
integers j ∈ 2N − 1.

Remark 2.9. Since u ∈ C∞c ([0,∞) × R) is equivalent to ũ ∈ C∞c (R5) with ũ(x) :=
u(|(x1, . . . , x4)|, x5) we see that C∞c ([0,∞) × R) is dense in H1

cyl(r
3drdz).

Lemma 2.10. For u ∈ H1
cyl(r

3drdz) we have ‖u?‖ ≤ ‖u‖ where ? denotes Steiner-
symmetrization with respect to z and ‖ · ‖ is the equivalent norm from Theorem 1.1.
Moreover

I(u) ≤ I(u?) and I′(u)[u] ≤ I′(u?)[u?].

Proof. We begin by recalling several classical rearrangement inequalities from
[10, 11]. Recall first the Pólya-Szegö inequality∫

Rn
|∇ f ~|2dx ≤

∫
Rn
|∇ f |2dx (21)

for f ∈ H1(Rn) and ~ denoting Schwarz-symmetrization (also called symmetrically
decreasing rearrangement). Furthermore we have for 0 ≤ f , g ∈ L2(Rn) the classical
rearrangement inequality ∫

R

f gdx ≤
∫
R

f ~g~dx (22)

and the nonexpansivity of rearrangement∫
Rn
| f ~ − g~|2dx ≤

∫
Rn
| f − g|2 dx. (23)



430 A. Hirsch and W. Reichel

From (21) we immediately receive for u ∈ H1
cyl(r

3drdz) that∫
R

|∇zu?|2dz ≤
∫
R

|∇zu|2dz. (24)

Next we want to establish a similar inequality for ∇ru. We do this first for u ∈
C∞c ([0,∞) × R). With the help of (23) we find that∫

R

∣∣∣∣∣u?(r + t, z) − u?(r, z)
t

∣∣∣∣∣2 dz ≤
∫
R

∣∣∣∣∣u(r + t, z) − u(r, z)
t

∣∣∣∣∣2 dz

for almost all r, t ∈ [0,∞). Sending t → 0 and using Fatou’s lemma on the left side
of the inequality yields ∫

R

|∇ru?|2dz ≤
∫
R

|∇ru|2dz (25)

for u ∈ C∞c ([0,∞) × R) and almost all r ∈ [0,∞). Since Steiner Symmetrization
is continuous in H1 (see [8, Theorem 1]) we obtain by approximation that (25) is
indeed valid for all u ∈ H1

cyl(r
3drdz). Together with (24) we obtain

∫
R
|∇r,zu?|2dz ≤∫

R
|∇r,zu|2dz for almost all r ≥ 0 and integration leads to∫

R

∫ ∞

0
|∇r,zu?|2r3drdz ≤

∫
R

∫ ∞

0
|∇r,zu|2r3drdz. (26)

Fixing r ∈ [0,∞) and applying (22) to f (·) = ess sup V − V(r, ·) and g(·) = u2(r, ·)
gives ∫

R

(
ess sup V − V(r, ·)

)
u2(r, ·)dz ≤

∫
R

(
ess sup V − V(r, ·)

)? (
u2)?(r, ·)dz

=

∫
R

(
ess sup V − V(r, ·)

) (
u?

)2 (r, ·)dz.

Using ‖u(r, ·)‖L2(R) = ‖u?(r, ·)‖L2(R) this results in∫
R

∫ ∞

0
V(r, z)

(
u?

)2 r3drdz ≤
∫
R

∫ ∞

0
V(r, z)u2r3drdz. (27)

The combination of (26) and (27) yields the claimed inequality ‖u?‖2 ≤ ‖u‖2.

Assumption (v) on f allows to apply [7, Theorem 5.1] and to deduce

I′(u)[u] =

∫
Ω

f (r, z, r2u2)u2r3d(r, z) ≤
∫

Ω

f (r, z, r2u?2)u?2r3d(r, z) = I′(u?)[u?].
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Moroever, using (v) with s = 0 shows that for all r ∈ [0,∞), σ ≥ 0 the function
z 7→ f (r, z, σ2) is symmetrically nonincreasing in z and hence

Φσ(r, z, s) := F(r, z, r2(s + σ)2) − F(r, z, r2s2) =

∫ r2(s+σ)2

r2 s2
f (r, z, t) dt

is symmetrically nonincreasing in z. Applying once more [7, Theorem 5.1] yields

I(u) =

∫
Ω

1
2r2 F(r, z, r2u2)r3d(r, z) ≤

∫
Ω

1
2r2 F(r, z, r2u?2)r3d(r, z) = I(u?).

This finishes the proof of the lemma. �

3. Proof of Theorem 1.1

Recall from Lemma 2.6 the definition I(u) B
∫

Ω

1
2r2 F(r, z, r2u2)r3d(r, z) for u ∈

H1
cyl(r

3drdz). We show that the assumptions (i)–(iii) of [19, Theorem 12] are sat-
isfied. Let ε > 0. The growth assumptions (i) and (ii) on f imply that for every ε > 0
there exists Cε > 0 such that the global estimate 0 ≤ f (r, z, s) ≤ ε + Cε |s|

p−1
2 holds.

Together with (6) we obtain

|I′(u)[v]| =
∣∣∣∣∣∫

Ω

f (r, z, r2u2)uvr3d(r, z)
∣∣∣∣∣

≤ ε

∫
Ω

|ru||rv|rd(r, z) + Cε

∫
Ω

|ru|p|rv|rd(r, z)

≤ εC ‖u‖H1
cyl(r

3drdz) ‖v‖H1
cyl(r

3drdz) + C̃ε ‖u‖
p
H1

cyl(r
3drdz)

‖v‖H1
cyl(r

3drdz)

Taking the supremum over all v ∈ H1
cyl(r

3drdz) with ‖v‖H1
cyl(r

3drdz) = 1 we see that

I′(u) = o(‖u‖) as u→ 0. (28)

Moreover, due to assumption (iii) on f the map

s 7→
I′(su)[u]

s
=

∫
Ω

f (r, z, s2r2u2)u2r3d(r, z) (29)

is strictly increasing for all u , 0 and s > 0. Next we claim that

I(su)
s2 → ∞ as s→ ∞

 uniformly for u on weakly compact

subsets W of H1
cyl(r

3drdz) \ {0}.
(30)

Suppose not. Then there are (uk)k∈N ⊂ W and sk → ∞ as k → ∞ such that I(skuk)
s2

k
is

bounded as k → ∞. But along a subsequence we have uk ⇀ u , 0 and uk(x)→ u(x)
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pointwise almost everywhere. Let Ω] := {(r, z) ∈ Ω : u(r, z) , 0}. Then |Ω]| > 0 and
on Ω] we have |skuk(r, z)| → ∞ as k → ∞. Fatou’s lemma and assumption (iv) on F
imply

I(skuk)
s2

k

=

∫
Ω

F(r, z, s2
kr2u2

k)

2s2
kr2

r3d(r, z) ≥
∫

Ω]

F(r, z, s2
kr2u2

k)

2s2
kr2u2

k

u2
kr3d(r, z)→ ∞ as k → ∞,

a contradiction. In summary, (28)–(30) imply that (i)–(iii) of [19, Theorem 12] are
satisfied.

Now we take a sequence (uk)k∈N ⊂ M such that J(uk) → infM J as k → ∞.
Since ‖∇r,z |uk| ‖L2 = ‖∇r,zuk‖L2 we can assume that uk ≥ 0 for all k ∈ N. Then
[19, Theorem 12] guarantees that for every k there is a unique tk > 0 such that
vk := tku?k ∈ M. We show next that tk ≤ 1 for all k ∈ N. Assume tk > 1. Then∫

Ω

f (r, z, r2u?2
k )u?2

k r3d(r, z) <
∫

Ω

f (r, z, t2
kr2u?2

k )u?2
k r3d(r, z) by assumption (iii)

= ‖u?k ‖
2 since tku?k ∈ M

≤ ‖uk‖
2 by Lemma 2.10

=

∫
Ω

f (r, z, r2u2
k)u2

kr3d(r, z) since uk ∈ M.

This contradicts the inequality I′(uk)[uk] ≤ I′(u?k )[u?k ] from Lemma 2.10 and thus
tk ≤ 1 for all k ∈ N.

Next notice that for fixed (r, z, s) ∈ [0,∞) × R × [0,∞) and t ∈ (0, 1] one has

d
dt

(
t2 f (r, z, s2)s2 − F(r, z, t2s2)

)
= 2ts2

(
f (r, z, s2) − f (r, z, t2s2)

)
> 0

since f is strictly increasing in its last variable by assumption (iii). This shows that
the map t 7→ t2 f (r, z, s2)s2 − F(r, z, t2s2) is strictly increasing for t ∈ [0, 1]. From this
monotonicity and the inequality I(tkuk) ≤ I(tku?k ) from Lemma 2.10 we conclude

2J(vk) =

∫
Ω

(
t2
k |∇r,zu?k |

2 + V(r, z)t2
ku?2

k −
1
r2 F(r, z, r2t2

ku?2
k )

)
r3d(r, z)

≤

∫
Ω

(
t2
k |∇r,zuk|

2 + V(r, z)t2
ku2

k −
1
r2 F(r, z, r2t2

ku2
k)
)

r3d(r, z)

=

∫
Ω

1
r2

(
f (r, z, r2u2

k)t2
kr2u2

k − F(r, z, r2t2
ku2

k)
)

r3d(r, z) (31)

≤

∫
Ω

1
r2

(
f (r, z, r2u2

k)r2u2
k − F(r, z, r2u2

k)
)

r3d(r, z)

= 2J(uk).

So (vk)k∈N ⊂ M is also a minimizing sequence for J which belongs to K4,1. The
boundedness of (vk)k∈N is established in Proposition 14 in [19]. Hence, we find
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v∞ ∈ H1
cyl(r

3drdz) such that vk ⇀ v∞ in H1
cyl(r

3drdz) along a subsequence as k → ∞.
In addition, v∞ ∈ K4,1 due to Lemma 2.5 and v∞ , 0 by [19, Proposition 14] where
instead of the weak sequential continuity of I on all of H1

cyl(r
3drdz) we use it only

on K4,1 as stated in Lemma 2.6.

Let us show that v∞ ∈ M. Since v∞ , 0 we can choose t∞ > 0 such that
t∞v∞ ∈ M. In the same manner as before for the sequence tk we can show that
t∞ ≤ 1. Assume t∞ < 1. Then as in (31) and using the weak sequential continuity
on K4,1 as shown in Lemma 2.6 we find

2J(t∞v∞) <
∫

Ω

1
r2

(
f (r, z, r2v2

∞)r2v2
∞ − F(r, z, r2v2

∞)
)

r3d(r, z)

= lim
k→∞

∫
Ω

1
r2

(
f (r, z, r2v2

k)r2v2
k − F(r, z, r2v2

k)
)

r3d(r, z)

= 2 inf
M

J

≤ 2J(t∞v∞)

which is a contradiction. So t∞ = 1 and thus v∞ ∈ M. Then by the weak lower semi-
continuity of ‖·‖ and once again the weak sequential continuity of I we conclude

J(v∞) ≤ lim inf
k→∞

J(vk) = inf
M

J ≤ J(v∞).

Hence, v∞ ∈ K4,1 is a minimizer of J on M, i.e., a ground state of (3) which is Steiner
symmetric in z with respect to {z = 0}.

Appendix

Here we prove that the condition V ≥ 0 and infBc
R

V > 0 for some R > 0 implies

that on H1
cyl(r

3drdz) the expression
(∫

Ω

(
|∇r,zu|2 + V(r, z)u2

)
r3d(r, z)

) 1
2 is an equivalent

norm. Suppose not. Then there is a sequence (uk)k∈N such that ‖uk‖L2(r3drdz) = 1 and∫
Ω

(
|∇r,zuk|

2 + V(r, z)u2
k

)
r3d(r, z)→ 0 as k → ∞. In particular,∫

Ω

|∇r,zuk|
2r3d(r, z)→ 0 and

∫
Bc

R

u2
kr3d(r, z)→ 0 as k → ∞. (32)

Let χ denote a smooth cut-off function such that χ(r, z) = 1 for 0 ≤
√

r2 + z2 < R and
χ(r, z) = 0 for

√
r2 + z2 ≥ R + 1. Then vk B χuk ∈ H1

0,cyl(BR+1, r3drdz) and

|∇r,zvk|
2 = χ2|∇r,zuk|

2 + |∇r,zχ|
2u2

k + 2ukχ∇r,zuk · ∇r,zχ.
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Hence, by (32)∫
Ω

|∇r,zvk|
2r3d(r, z) ≤ 2

∫
Ω

χ2|∇r,zuk|
2r3d(r, z) + 2

∫
Ω

u2
k |∇r,zχ|

2r3d(r, z)

≤ 2
∫

Ω

|∇r,zuk|
2r3d(r, z) + 2‖∇r,zχ‖

2
∞

∫
BR+1\BR

u2
kr3d(r, z)→ 0

(33)

as k → ∞. In particular,
∫

BR+1
|∇r,zvk|

2r3d(r, z) → 0. By Poincaré’s inequality, (32)
and ‖uk‖L2(r3drdz) = 1 we see

CP

∫
BR+1

|∇r,zvk|
2r3d(r, z) ≥

∫
BR+1

v2
kr3d(r, z) ≥

∫
BR

u2
kr3d(r, z) = 1 − o(1),

contradicting (33). �
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