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Abstract. In this paper we present some new results regarding the solvability of
nonlinear Hammerstein integral equations in a special cone of continuous functions.
The proofs are based on a certain fixed point theorem of Leggett and Williams type.
We give an application of the abstract result to prove the existence of nontrivial
solutions of a periodic boundary value problem. We also investigate, via a version
of Krasnosel′skĭı’s theorem for the sum of two operators, the solvability of perturbed
Hammerstein integral equations in the space of continuous functions of bounded varia-
tion in the sense of Jordan. As an application of these results, we study the solvability
of a boundary value problem subject to integral boundary conditions of Riemann–
Stieltjes type. Some examples are presented in order to illustrate the obtained results.
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1. Introduction

Numerous problems of various branches of science lead to the necessity of inves-
tigating the solvability of nonlinear Hammerstein integral equations. It is for
this reason the theory of nonlinear integral equations has become an important
part of nonlinear functional analysis and has attracted the interest of many
mathematicians.

In the first part of the paper we study the existence of eigenvalues of Ham-
merstein integral equations of the form

λx(t) =

∫
Ω

k(t, s)f(s, x(s))ds, t ∈ Ω, (1.1)
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where Ω is an open and bounded subset of Rn, k is allowed to change sign and f
is non-negative.

A number of tools have been utilized to study the solvability of (1.1); for
example, variational methods have been employed in the case of symmetric ker-
nels by Faraci [11] and Faraci and Moroz [12], topological methods have been
used by Lan [24–26], Lan and Webb [27] and Ma [31] and a combination of topo-
logical and iterative techniques has been utilized by Franco and co-authors [13].
In particular, Lan [24] proved the existence of a positive eigenfunction under
non-negativity assumptions on the kernel k. The results of [24] were comple-
mented by Infante [17], who proved, under weaker assumptions regarding the
sign of the kernel k, the existence of eigenfunctions within a cone of functions
that are allowed to change sign, namely

K =

{
x ∈ C(Ω) : min

t∈Ω0

x(t) ≥ c ‖x‖∞
}
, (1.2)

where Ω0 ⊆ Ω is a closed set of positive Lebesgue measure. This type of cone
has been introduced by Infante and Webb in [19]. Let us note that the functions
in (1.2) are positive on the subset Ω0 but are allowed to change sign elsewhere.

A key assumption in [17] is the positivity of the kernel k on Ω0 × Ω. Here
we drop this condition and utilize instead the cone

C =

{
x ∈ C(Ω) :

∫
Ω0

x(t)dt ≥ c ‖x‖∞
}
. (1.3)

Let us note that we do not require the functions in C to be positive in Ω0, but
only to have a positive average in this subset. In Section 3 we use a recent
Leggett–Williams type theorem due to Bugajewski and Kasprzak [8] in order
to prove the existence of eigenfunctions for (1.1) in the cone (1.3). Let us note
that we do not require symmetry for our kernels.

Motivated by the works of Graef, Kong and Wang [14] and Webb [41], we
apply our results to study the periodic boundary value problem (BVP)

x′′(t) + ω2x(t) = λf(t, x(t)), t ∈ [0, 1], (1.4)

x(0) = x(1), x′(0) = x′(1). (1.5)

Our approach, in comparison with the ones used in the papers [14,41], has
the advantage of working for all admissible values of the parameter ω, that is,
for all ω > 0 such that ω 6= 2nπ, n ∈ N (in other words, we are able to prove
the existence of solutions to the periodic BVP (1.4), (1.5) even in the case when
the corresponding Green’s function takes negative values – see Theorem 3.5).
It also enables us to pinpoint the localization of the solution by means of the
supremum and the integral norm. Let us add that if ω ∈ (0, π] our result ensures
the existence of positive solutions to (1.4), (1.5) for some λ > 0.
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Note that, although we impose strictly weaker conditions on the function f
than the authors of [14,41], our result – Theorem 3.5 – is in a sense “incompa-
rable” with the existence results obtained in [14, 41] (for the discussion of the
relation of Theorem 3.5 and the theorems from [14, 41] we refer the reader to
Remark 3.6 in Section 3.1).

In the second part of the paper (see Section 4), by means of some version of
Krasnosel′skĭı’s theorem for the sum of two operators, we study the existence of
solutions of the following perturbed nonlinear Hammerstein integral equation

x(t) = α[x]v(t) + β[x]w(t) + λ

∫ 1

0

k(t, s)f(s, x(s))ds, t ∈ [0, 1], (1.6)

in the space CBV [0, 1] consisting of continuous functions of bounded variation
in the sense of Jordan; here λ ∈ R, α, β ∈ CBV ∗[0, 1] and v, w ∈ CBV [0, 1]. Let
us add that the approach via Krasnosel′skĭı’s fixed point theorem relies heavily
on the ideas and techniques concerning the compactness of nonlinear integral
operators in the space of functions of bounded variation developed in [7]. (It
may seem surprising, but sufficient conditions guaranteeing the compactness of
Hammerstein integral operators in the space BV [0, 1] of functions of bounded
variation, were not described until very recently – for more details see [7].)

The motivation to seek solutions of bounded variation is connected with
their numerous applications (see e.g. [1, 35,40]). Such functions can be used to
describe some real world phenomena; for example, functions of bounded varia-
tion appear in mathematical biology or economics (see [4,15]). Furthermore, it
turns out that by a suitable choice of the space of functions of bounded variation
it is possible, for example, to obtain solutions to certain nonlinear Hammerstein
integral equations which are constant on each interval of continuity (for more
details see [5]).

The necessity of studying the integral equation (1.6) in the space CBV [0, 1]
comes, for example, from the fact that it naturally arises, when dealing with
BVPs

x′′(t) = −λf(t, x(t)), t ∈ [0, 1], (1.7)

with non-local boundary conditions (BCs) of the form

x(0) =

∫ 1

0

A(s)dx(s) and x(1) =

∫ 1

0

B(s)dx(s), (1.8)

or

x(0) =

∫ 1

0

x(s)dA(s) and x(1) =

∫ 1

0

x(s)dB(s); (1.9)

let us add that the integrals occurring in (1.8) and (1.9) are understood in the
Riemann–Stieltjes sense.
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In the context of ODEs the study of non-local BCs can be traced back to
Picone [38], who investigated multi-point BCs. For an introduction to non-local
problems we refer to the reviews [10,32,36,39,44] as well as the papers [9,20–22].

The existence of positive solutions (and their multiplicity) to the BVP (1.7),
(1.9) was studied, for example, in [18,20,42,43]. In this paper (see Section 4.1),
using a different approach from the one used in the above-mentioned articles, we
establish existence type results for the BVPs with non-local integral conditions
(1.7), (1.8) and (1.7), (1.9). Furthermore, we provide some examples of multi-
point BVPs to which our results apply (see Examples 4.18 and 4.19).

2. Preliminaries

The aim of this Section is to fix the notation and to recall some basic definitions
and facts which will be used in the sequel.

Notation. The closed ball in a normed space X with center at x and radius
r ∈ (0,+∞) will be denoted by BX(x, r). For simplicity, instead of BR(x, r) we
will simply write [x− r, x+ r]. The symbol θ will stand for the zero element of
the normed space X.

If Ω is an open and bounded subset of Rn, then by C(Ω) we will denote the
Banach space of all continuous real-valued functions defined on Ω, endowed with
the supremum norm ‖·‖∞. In the particular case when Ω is an open interval,

that is Ω = (a, b), we will write C[a, b] instead of C((a, b)) or C([a, b]). Moreover,
by BV [a, b] we will denote the Banach space of all real-valued functions defined
on [a, b] of bounded variation (in the sense of Jordan), endowed with the norm
‖f‖BV := |f(a)| + var[a,b] f , and by CBV [a, b] its closed subspace consisting of
continuous functions; here the symbol var[a,b] f denotes the (Jordan) variation
of the function f : [a, b]→ R, that is,

var
[a,b]

f = sup
π

n∑
i=1

|f(ti)− f(ti−1)|,

where the supremum is taken over all finite partitions π : a = t0 < t1 < · · · <
tn = b of the interval [a, b]. If no confusion concerning the interval over which we
compute the variation can arise, instead of var[a,b]f we will simply write varf .
Let us also recall that BV -functions are bounded and ‖f‖∞ ≤ ‖f‖BV for every
f ∈BV [0, 1]. As usual, by CBV ∗[a, b] we will denote the dual space of CBV [a, b],
that is, the space of all continuous linear functionals α : CBV [a, b]→ R. For a
thorough treatment of functions of bounded variation of various kinds we refer
the reader to [2].

Although throughout the paper we will use the same symbol “
∫

” to denote
both the Lebesgue and the Riemann–Stieltjes integral, it should always be clear
from the context which integral we use. The Lebesgue measure in Rn will be
denoted by µ.
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2.1. Partially ordered structures. Now, we are going to recall some defini-
tions concerning partially ordered structures.

Definition 2.1 (cf. [29, p. 249]). Let X be a real normed space. A non-
empty closed and convex set CX ⊆ X is called a (positive) cone if the following
conditions are satisfied:

(a) if x ∈ CX and λ ≥ 0, then λx ∈ CX ;

(b) if x ∈ CX and −x ∈ CX , then x = θ.

Notation. If CX is a cone in a normed space X, then by CX(θ, r) we will denote
the intersection of CX and BX(θ, r), that is, CX(θ, r) := CX ∩BX(θ, r).

Remark 2.2. A cone CX in a normed space X induces a partial order � given
by the following formula

x � y if and only if y − x ∈ CX . (2.1)

Let us note that the relation � is compatible with the linear structure of the
normed space X, that is, if x � y, then x + z � y + z and λx � λy for all
x, y, z ∈ X and all λ ≥ 0.

In the sequel, considering an ordered normed space with a cone, we will
always assume that the partial order is defined by the formula (2.1).

Definition 2.3 (cf. [29, p. 249]). A real Banach space endowed with the partial
order induced by a cone is called an ordered Banach space.

2.2. Fixed point theorems. Let us begin with recalling the following exten-
sion of the Leggett–Williams theorem.

Theorem 2.4 ([8, Theorem 4]). Let (X, ‖·‖) be an ordered Banach space with
a cone CX and suppose F : CX(θ, r)→ CX , where r > 0, is a compact mapping.
Moreover, assume that a continuous seminorm

·: X → [0,+∞), together with
positive numbers m,M and δ satisfy the conditions :

(i) ‖x‖ ≤M
x if x ∈ CX ;

(ii) m ≤ rM−1 and
x= m for some x ∈ CX(θ, r);

(iii)
F (x)

≥ δ if x ∈ CX(θ, r) and
x= m.

Then there exist λ0 > 0 and x0 ∈ CX(θ, r) \ {θ} such that F (x0) = λ0x0 andx0

= m.

In the sequel, we will also use the following version of the well-known
Krasnosel′skĭı’s fixed-point theorem for the sum of two operators. In compari-
son with the original result, the nonlinear contraction has been replaced by a
bounded linear operator with spectral radius less than one (for a quite general
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version of Krasnosel′skĭı’s fixed-point theorem encompassing almost 30 previ-
ously known generalizations of that theorem we refer the reader to [37]). For
completeness, let us recall that the spectral radius of a bounded linear operator

A is given by the formula r(A) := limn→∞ ‖An‖
1
n (see, for example, [28, p. 109]).

Theorem 2.5. Let M be a non-empty closed and convex subset of a Banach
space X, and let F1 : X → X, F2 : M → X be two mappings such that :

(i) F1 is a bounded linear operator such that r(F1) < 1;

(ii) F2 is compact, that is, F2 is continuous and F2(M) is contained in a
compact subset of X;

(iii) if x = F1(x) + F2(y) for some y ∈M , then x ∈M .

Then F1 + F2 has a fixed point in M .

The proof of Theorem 2.5 is standard, and hence it will be omitted.

Remark 2.6. The condition (iii) of Theorem 2.5, which guarantees that a cer-
tain nonlinear operator maps the set M into itself, is often the most difficult
condition among the three one has to verify. However, if M := BX(θ, r) and the
assumption (ii) of Theorem 2.5 is strengthened to: “F2 is continuous and F2(M)
is contained in a compact subset of BX

(
θ, r
‖(I−F1)−1‖

)
,” where ‖(I − F1)−1‖ de-

notes the operator norm of the continuous inverse of I − F1 which exists due
to (i), then the condition (iii) of Theorem 2.5 holds. Indeed, if x = F1(x)+F2(y),
then (I−F1)(x) = F2(y), and thus ‖x‖ = ‖(I − F1)−1 ◦ F2(y)‖ ≤ ‖(I − F1)−1‖·
‖F2(y)‖ ≤ r. Hence, x ∈M .

Remark 2.7. Let us also add that a Krasnosel′skĭı–Schaefer type result similar
to Theorem 2.5 can be found in [3], where the mapping F2, defined on the
whole Banach space X, is required to be completely continuous (that is, F2 is
continuous and maps bounded sets into relatively compact ones) rather than
compact (see [3, Theorem 4.2]).

3. Existence results via a Leggett-Williams type theorem

In this Section we are going to study the existence of continuous solutions to
Hammerstein integral equations with kernels which may change sign. Let Ω be
an open and bounded subset of Rn and let us consider the following Hammer-
stein integral equation

λx(t) =

∫
Ω

k(t, s)f(s, x(s))ds, t ∈ Ω, (3.1)

where k : Ω× Ω→ R, f : Ω× R→ [0,+∞) and λ 6= 0.
Before we proceed to the main part of this Section, let us recall a Leggett–

Williams type theorem for Hammerstein integral equations with non-negative
kernels.
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Theorem 3.1 (see [8, Theorem 12] and [29, Theorem 2]). Let Ω be an open
and bounded subset of Rn, and let the functions k : Ω × Ω → [0,+∞) and
f : Ω × [0, r] → [0,+∞) be continuous for some r > 0. Moreover, suppose
that there exist positive numbers δ1, δ2,m, and a closed set Ω0 ⊆ Ω of positive
Lebesgue measure such that :

(i)
∫

Ω0
k(t, s)dt ≥ δ1 for each s ∈ Ω0;

(ii)
∫

Ω0
k(t, s)dt ≥ δ2k(u, s) for each (u, s) ∈ Ω× Ω;

(iii) f(t, x) > 0 if mµ(Ω0)−
1
p ≤ x ≤ r and t ∈ Ω0, where p ∈ [1,+∞);

(iv) 0 < m ≤ rδ2µ(Ω0)−
1
q , where q ∈ (1,+∞] is such that p−1 + q−1 = 1.

Then there exists a positive parameter λ > 0 such that the Hammerstein integral
equation (3.1) admits a continuous and positive solution x : Ω→ [0, r] such that(∫

Ω0

[x(t)]pdt

) 1
p

= m. (3.2)

Remark 3.2. Assume that k : Ω×Ω→ [0,+∞) is continuous. Let us observe
that if we define the mapping Φ: Ω→ [0,+∞) by the formula

Φ(s) = δ−1
2

∫
Ω0

k(t, s)dt, s ∈ Ω, (3.3)

then the assumptions (i) and (ii) of Theorem 3.1 may be restated as follows:

(i) Φ(s) ≥ δ1δ
−1
2 for each s ∈ Ω0;

(ii) k(u, s) ≤ Φ(s) for each (u, s) ∈ Ω× Ω.

On the other hand, if there exists a mapping Φ: Ω→ [0,+∞) which satisfies
the above properties (i), (ii) (with the equality sign in (3.3) replaced by the “less
than or equal to” sign), then

δ2k(u, s) ≤ δ2Φ(s) ≤
∫

Ω0

k(t, s)dt for (u, s) ∈ Ω× Ω

and ∫
Ω0

k(t, s)dt ≥ δ2Φ(s) ≥ δ1 for s ∈ Ω0.

This shows that in this case the kernel k satisfies the assumptions (i) and (ii)
of Theorem 3.1. We will use the above observation in the main result of this
Section.

Now, we will prove an extension of Theorem 3.1 for kernels that may change
sign. Clearly, since the kernels are allowed to take negative values, one cannot
expect, in general, to prove the existence of positive solutions. However, we
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will still be able to pinpoint the localization of the solutions by means of the
supremum norm and the integral semi-norm (cf. formula (3.2)).

Let us assume that for some r > 0 there exists a set Ω0 ⊆ Ω with positive
Lebesgue measure, together with constants ϑ ∈ (0, 1), η1, η2,m, c ∈ (0,+∞) and
p ∈ [1,+∞) such that the functions f : Ω×[−r, r]→ [0,+∞) and k : Ω×Ω→ R
satisfy the following conditions:

(A1) f satisfies the Carathéodory conditions, that is,

(i) for every u ∈ [−r, r] the function t 7→ f(t, u) is Lebesgue measurable;

(ii) for a.e. t ∈ Ω the function u 7→ f(t, u) is continuous;

(iii) there exists a Lebesgue measurable function gr : Ω → [0,+∞) such
that for a.e. t ∈ Ω we have f(t, u) ≤ gr(t) for all u ∈ [−r, r];

(A2) for a.e. t ∈ Ω0 we have inf
{
f(t, u) : ϑmµ(Ω0)−

1
p ≤ |u| ≤ r

}
≥ η1;

(A3) k is Lebesgue measurable on Ω × Ω, and for every τ ∈ Ω the function
s 7→ k(τ, s) is Lebesgue measurable1 on Ω and

lim
t→τ

∫
Ω

|k(t, s)− k(τ, s)|gr(s)ds = 0;

(A4) there exists a Lebesgue measurable function Φ: Ω→ [0,+∞) such that

(i) Φ(t) ≥ η2 for a.e. t ∈ Ω0;

(ii) for every t ∈ Ω we have |k(t, s)| ≤ Φ(s) for a.e. s ∈ Ω;

(iii) cΦ(s) ≤
∫

Ω0
k(t, s)dt for a.e. s ∈ Ω;

(A5)
∫

Ω
Φ(s)gr(s)ds < +∞;

(A6) 0 < m ≤ rcµ(Ω0)−
1
q , where q ∈ (1,+∞] is such that p−1 + q−1 = 1.

Theorem 3.3. Suppose that the above assumptions hold. Then there exists a
parameter λ > 0 such that the Hammerstein integral equation (3.1) admits a
continuous solution x : Ω→ [−r, r] such that(∫

Ω0

|x(t)|pdt
) 1

p

= m.

Proof. Let us set

C :=

{
x ∈ C(Ω) :

∫
Ω0

x(t)dt ≥ c ‖x‖∞
}

and x=

(∫
Ω0

|x(t)|pdt
) 1

p

for x ∈ C(Ω).

1The fact that s 7→ k(τ, s) is Lebesgue measurable for every τ ∈ Ω, in general, does not
follow from the Lebesgue measurability of k on Ω×Ω; the latter condition implies only that
almost all vertical sections are Lebesgue measurable (cf. [30, Section 6.3]).
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Clearly, C is a cone in C(Ω), and moreover, it is easy to check that the assump-

tion (i) of Theorem 2.4 holds with M = c−1µ(Ω0)
1
q (cf. [16, Theorem 13.17]).

Let F be the mapping defined on C(θ, r) by

F (x)(t) =

∫
Ω

k(t, s)f(s, x(s))ds, t ∈ Ω. (3.4)

It can be shown that F is a compact mapping from C(θ, r) into C(Ω) (cf. [34,
Proposition 3.1, p. 164]). Furthermore, if x ∈ C(θ, r), then given any u ∈ Ω we
have

c|F (x)(u)| ≤
∫

Ω

c|k(u, s)|f(s, x(s))ds

≤
∫

Ω

cΦ(s)f(s, x(s))ds

≤
∫

Ω

(∫
Ω0

k(t, s)dt

)
f(s, x(s))ds

=

∫
Ω0

(∫
Ω

k(t, s)f(s, x(s))ds

)
dt

=

∫
Ω0

F (x)(t)dt,

which shows that F (C(θ, r)) ⊆ C.

Observe that from the assumptions imposed on k it follows that c ≤ µ(Ω0),

and hence if we define x(t) = mµ(Ω0)−
1
p for t ∈ Ω, we see that

|x(t)| = mµ(Ω0)−
1
p ≤ crµ(Ω0)−1≤ r and c ‖x‖∞ = cmµ(Ω0)−

1
p ≤
∫

Ω0

x(t)dt.

Thus, we have x ∈ C(θ, r) and
x= m.

Finally, we shall show that the assumption (iii) of Theorem 2.4 holds. As-
sume that x ∈ C(θ, r) is such that

x= m. Let us set

Ω1 =
{
t ∈ Ω0 : ϑmµ(Ω0)−

1
p ≤ |x(t)| ≤ r

}
.

Then we have mp =
∫

Ω0
|x(t)|pdt =

∫
Ω1
|x(t)|pdt +

∫
Ω0\Ω1

|x(t)|pdt ≤ rpµ(Ω1) +
ϑpmp

µ(Ω0)
·µ(Ω0\Ω1) ≤ rpµ(Ω1)+ϑpmp. Thus, we obtain µ(Ω1) ≥ mp(1−ϑp)r−p > 0.
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Hence, we haveF (x)
=

(∫
Ω0

|F (x)(t)|pdt
) 1

p

≥ µ(Ω0)−
1
q

∫
Ω0

|F (x)(t)|dt

≥ µ(Ω0)−
1
q

∫
Ω0

F (x)(t)dt

= µ(Ω0)−
1
q

∫
Ω

(∫
Ω0

k(t, s)dt

)
f(s, x(s))ds

≥ cµ(Ω0)−
1
q

∫
Ω0

Φ(s)f(s, x(s))ds

≥ cη1µ(Ω0)−
1
q

∫
Ω1

Φ(s)ds

≥ cη1η2µ(Ω0)−
1
qmp(1− ϑp)r−p =: δ > 0.

To end the proof it suffices to apply Theorem 2.4.

Remark 3.4. Let us note that in the simplest, yet very common, case when
the functions f : Ω× [−r, r]→ [0,+∞) and k : Ω× Ω→ R are continuous, the
assumptions (A1)–(A6) are implied by the following set of conditions:

“There exists a closed set Ω0 ⊆ Ω with positive Lebesgue measure, together
with constants m ∈ (0,+∞) and p ∈ [1,+∞) such that:

(B1) f(t, u) > 0 for t ∈ Ω0 and mµ(Ω0)−
1
p ≤ |u| ≤ r;

(B2) mins∈Ω

∫
Ω0
k(t, s)dt > 0;

(B3) 0 < m ≤ rµ(Ω0)−
1
q ‖k‖−1

∞ mins∈Ω

∫
Ω0
k(t, s)dt.”

Indeed, (A1), (A3) and (A6) trivially hold; (A1)(iii) and (A3) with gr(t) = ‖f‖∞
for t ∈ Ω, whereas (A6) with c := ‖k‖−1

∞ mins∈Ω

∫
Ω0
k(t, s)dt. To see that the

assumptions (A4), (A5) also hold it suffices to set

Φ(s) =
‖k‖∞

∫
Ω0
k(t, s)dt

mins∈Ω

∫
Ω0
k(t, s)dt

for s ∈ Ω.

3.1. Periodic BVPs. In this short Section, we would like to show how to
apply Leggett–Williams type theorems to proving the existence of solutions to
BVPs. Therefore, let us consider the following periodic BVP

x′′(t) + ω2x(t) = λf(t, x(t)), t ∈ [0, 1], (3.5)

x(0) = x(1), x′(0) = x′(1), (3.6)

where λ 6= 0 and ω is a positive constant such that ω 6= 2nπ for n ≥ 1. For
simplicity, we assume that f : [0, 1] × R → [0,+∞) is continuous. It can be
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checked that each continuous solution of the following nonlinear Hammerstein
integral equation

x(t) = λ

∫ 1

0

k(t, s)f(s, x(s))ds, t ∈ [0, 1], (3.7)

where

k(t, s) =


cos[ω(1

2
− t+ s)]

2ω sin(1
2
ω)

, if 0 ≤ s ≤ t ≤ 1,

cos[ω(1
2
− s+ t)]

2ω sin(1
2
ω)

, if 0 ≤ t < s ≤ 1,

is a solution2 to the BVP (3.5), (3.6).
Furthermore, let us note that if, for example, ω = 3

2
π, then k(t, t) = − 1

3π
<

0 for t ∈ [0, 1]. This means that to study the existence of solutions of the
BVP (3.5), (3.6) with ω = 3

2
π we cannot apply results for mappings in cones

which require k to be non-negative on a rectangle of the form [a, b]× [0, 1] such
as, for example, Theorem 3.1 or the results in [41].

Theorem 3.5. Let ω be a positive constant such that ω 6= 2nπ for n ≥ 1.
Moreover, let r≥1 and let the continuous function f: [0, 1]× [−r, r]→ [0,+∞)
be such that f(t, u)> 0 if 0≤ t≤ 1 and 2ω−1|sin(1

2
ω)| ≤ |u| ≤ r. Then for every

p ∈ [1,+∞) there exists a positive parameter λ := λ(ω, p) that the BVP (3.5),

(3.6) has a solution x : [0, 1]→ [−r, r] with
(∫ 1

0
|x(t)|p dt

) 1
p =2ω−1|sin(1

2
ω)|.

Proof. Since
∫ 1

0
k(t, s)dt = ω−2 for every s ∈ [0, 1], the proof of Theorem 3.5

is a direct consequence of Theorem 3.3 if one sets: Ω = Ω0 = [0, 1] and
m = 2ω−1|sin(1

2
ω)| (cf. Remark 3.4).

Remark 3.6. The existence of solutions to the BVP (3.5), (3.6) was also studied
in, for example, [14,41] (more general periodic BVPs were investigated in [33]),
where, under some growth conditions on the function f , it was shown that the
BVP (3.5), (3.6) admits a positive solution, provided λ = 1 and ω ∈ (0, π].

Let us note that for such values of ω also our result ensures the existence
of positive solutions to the BVP (3.5), (3.6) (this follows from the fact that
k(t, s) ≥ 0 for (t, s) ∈ [0, 1]× [0, 1], if ω ∈ (0, π]).

However, our result and the results obtained in [14,41] are in a sense “incom-
parable” (even in the case ω ∈ (0, π]), since on the one hand our assumptions
imposed on the function f are less restrictive than those introduced in the
above-mentioned articles (for example, we do not require f to satisfy certain

2Let us recall that by a solution to the BVP (3.5), (3.6) we understand a real-valued twice
continuously differentiable function defined on [0, 1] which satisfies both the equation (3.5)
and the periodic BCs (3.6).
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growth conditions at zero and at infinity), but on the other hand we are able
to prove the existence of solutions to the BVP (3.5), (3.6) for some positive
parameter λ, whereas in [14,41] λ = 1.

What is worth mentioning is that the fact that Theorem 3.5 ensures the ex-
istence of non-zero solutions to the BVP (3.5), (3.6) only for some λ > 0 is some-
thing that cannot be avoided and is not a consequence of the approach, but is,
one might say, “forced” by the additional constraints imposed on the sought
solution and the problem itself. To better understand this phenomenon let us
consider the BVP (3.5), (3.6) with f(t, u) = u2, ω = π and λ = 1. It is easy
to see that the integral operator F corresponding to the considered BVP in the
integral form (3.7) (cf. formula (3.4)) is a contraction with respect to the supre-
mum norm (with Lipschitz constant r

π
) on the closed ball BC[0,1](θ, r), where

r ∈ (0, π), and therefore it has at most one fixed point in this ball. However,
we know that F (θ) = θ, which means that there are no solutions to the BVP in
question with the supremum norm not exceeding r other than the zero solution.

4. Existence results via Krasnosel′skĭı’s theorem

The aim of this Section is to prove the existence of CBV -solutions to the fol-
lowing perturbed nonlinear Hammerstein integral equation

x(t) = α[x]v(t) + β[x]w(t) + λ

∫ 1

0

k(t, s)f(s, x(s))ds, t ∈ [0, 1], (4.1)

where λ ∈ R, using Krasnosel′skĭı’s fixed-point theorem. As in Section 3, we
are also going to provide applications of our result to some BVPs.

Before we proceed further, let us make the following assumptions on the
functionals α, β ∈ CBV ∗[0, 1] and the functions v, w ∈ CBV [0, 1]:

(A7) α[e] = β[e] = 0; here e denotes the constant function given by e(t) = 1
for t ∈ [0, 1];

(A8)
∣∣α[v]− β[v]

∣∣ < 1;

(A9) v(t) + w(t) = 1 for every t ∈ [0, 1].

Furthermore, let us assume that the nonlinearity f : [0, 1] × R → R and the
kernel k : [0, 1]× [0, 1]→ R satisfy the following conditions:

(A10) f satisfies the Carathéodory conditions, that is,

(i) for every u ∈ R the function t 7→ f(t, u) is Lebesgue measurable;

(ii) for a.e. t ∈ [0, 1] the function u 7→ f(t, u) is continuous;

(iii) there exist a non-decreasing function ψ : [0,+∞) → [0,+∞) and
an Lp-function φ : [0, 1] → [0,+∞) with p ∈ (1,+∞] such that
|f(t, u)| ≤ φ(t)ψ(|u|) for t ∈ [0, 1] and u ∈ R;

(A11) limr→+∞
ψ(r)
r

= 0;



Solvability of Integral Equations with Applications to BVPs 405

(A12) for every t ∈ [0, 1] the function s 7→ k(t, s) is an Lq-function; here
q ∈ [1,+∞) is such that p−1 + q−1 = 1;

(A13) there exists an Lq-function m : [0, 1]→ [0,+∞) such that var[0,1] k(·, s) ≤
m(s) for a.e. s ∈ [0, 1];

(A14) for every τ ∈ [0, 1] we have limt→τ
∫ 1

0
|k(t, s)− k(τ, s)|φ(s)ds = 0.

Remark 4.1. If the kernel k satisfies (A13), then in (A12) we do not need to
assume that the function s 7→ k(t, s) is an Lq-function for every t ∈ [0, 1]; it is
enough to assume that all the vertical sections are Lebesgue measurable and only
one of them is integrable with qth power (cf. [7, Remark 7] or [6, Remark 7.3]).

Remark 4.2. Let us note that the assumptions (A12)–(A14) hold if, for example,
the kernel k : [0, 1]×[0, 1]→ R is continuous and satisfies the following condition:

(B4) there is an Lq-function m : [0, 1]→ [0,+∞) such that |k(t, s)− k(τ, s)| ≤
m(s)|t− τ | for all s, t, τ ∈ [0, 1].

We set
F1(x)(t) = α[x]v(t) + β[x]w(t), t ∈ [0, 1] (4.2)

and

F2(x)(t) =

∫ 1

0

k(t, s)f(s, x(s))ds, t ∈ [0, 1], (4.3)

so that (4.1) with λ = 1 takes the following operator form

x = F1(x) + F2(x).

In order to show that the set of fixed points of F1 + F2 is non-empty (which
would obviously imply that the Hammerstein integral equation (4.1) with λ = 1
has a solution) we are going to apply Theorem 2.5, and therefore we begin with
proving that the operators F1 and F2 have the required properties.

Lemma 4.3. Suppose that the assumptions (A7) and (A9) hold. Then the map
F1 : CBV [0, 1]→ CBV [0, 1] given by (4.2) is a bounded linear operator with

‖F1‖ ≤ ‖α‖+ ‖α− β‖ · ‖w‖BV

and∥∥F n+2
1

∥∥ ≤ ∥∥α− β∥∥ · ∣∣α[v]− β[v]
∣∣n · ∥∥α[v]v + β[v]w

∥∥
BV

for n ≥ 0.3 (4.4)

In particular, r(F1) ≤
∣∣α[v]− β[v]

∣∣.
Proof. The proof of Lemma 4.3 is straightforward (although tedious) and hence
it will be omitted.

3If n = 0, then, by definition, we take
∣∣α[v]− β[v]

∣∣n = 1, even if
∣∣α[v]− β[v]

∣∣ = 0.
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Remark 4.4. Let us note that in order to prove the estimate for ‖F1‖ one does
not have to use the assumption (A7). This assumption is used in showing (4.4).

Lemma 4.5. If the assumptions (A10) and (A12)–(A14) hold, then the mapping
F2 : BV [0, 1]→ CBV [0, 1] given by (4.3) is completely continuous.

Proof. First, we shall show that for every x ∈ BV [0, 1] the function F2(x) is
well-defined. So let us fix x ∈ BV [0, 1]. Then for every s ∈ [0, 1] we have
|f(s, x(s))| ≤ φ(s)ψ(‖x‖BV ). Therefore, the function s 7→ k(t, s)f(s, x(s)) is
Lebesgue integrable for every t ∈ [0, 1]; Lebesgue measurability of the above
function follows from the Carathéodory conditions imposed on f and the fact
that x is Lebesgue measurable (cf. [2, Theorem 1.5]).

Now, we are going to prove that F2 maps the space BV [0, 1] into CBV [0, 1].
Fix x ∈ BV [0, 1]. If 0 = t0 < · · · < tn = 1 is an arbitrary finite partition of the
interval [0, 1], then, in view of the assumption (A13), we infer that

n∑
i=1

|k(ti, s)− k(ti−1, s)| ≤ m(s) for a.e. s ∈ [0, 1], (4.5)

and so

n∑
i=1

|F2(x)(ti)− F2(x)(ti−1)| ≤
∫ 1

0

n∑
i=1

|k(ti, s)− k(ti−1, s)|φ(s)ψ(‖x‖BV )ds

≤ ψ(‖x‖BV )

∫ 1

0

m(s)φ(s)ds.

Thus, var[0,1] F2(x) ≤ ψ(‖x‖BV )
∫ 1

0
m(s)φ(s)ds. This shows that F2(x) belongs

to BV [0, 1]. Continuity of the function F2(x) is a simple consequence of the
assumption (A14). Hence, F2(x) ∈ CBV [0, 1], which proves our claim.

Finally, we will show that F2 is completely continuous. Suppose that
(xn)n∈N is an arbitrary sequence of BV -functions which is convergent to some
x ∈ BV [0, 1] with respect to the BV -norm4. In particular, (xn)n∈N is bounded,
which means that supn∈N ‖xn‖BV ≤ R1 and ‖x‖BV ≤ R1 for some R1 > 0.
Using the fact that the estimate (4.5) is true for an arbitrary finite partition of
the interval [0, 1], we see that

‖F2(xn)− F2(x)‖BV ≤
∫ 1

0

(
m(s) + |k(0, s)|

)
|f(s, xn(s))− f(s, x(s))|ds

for n∈N. Since all integrands on the right-hand side of the above formula can be
majorized by the Lebesgue integrable function s 7→2(m(s)+|k(0, s)|)φ(s)ψ(R1),

4Let us recall that if a sequence of BV -functions is convergent to a function x ∈ BV [0, 1]
with respect to the BV -norm, then it is uniformly convergent to x on the whole interval [0, 1].
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which, clearly, does not depend on n, by the Lebesgue dominated convergence
theorem, we infer that ‖F2(xn)−F2(x)‖BV → 0 as n→ +∞. This shows that F2

is continuous.
To prove that F2 maps bounded subsets of BV [0, 1] into relatively compact

subsets of CBV [0, 1], we will use similar techniques to those used in [7]. Fix
R2 > 0 and let (xn)n∈N be an arbitrary sequence of BV -functions such that
‖xn‖BV ≤ R2 for n ∈ N. By Helly’s selection theorem there exists a subsequence
(xnk

)k∈N of (xn)n∈N and a function x ∈ BV [0, 1] such that xnk
→ x pointwise

on [0, 1] and ‖x‖BV ≤ R2 (see [2, Theorem 1.11] or [30, Theorem 1.4.5]). From
the first part of the proof it follows that y := F2(x) ∈ CBV [0, 1]. Reasoning
similar to that used in the proof of the continuity of F2 shows that F2(xnk

)→ y
in CBV [0, 1] as k → +∞, which means that the sequence (F2(xn))n∈N has a
convergent subsequence. Therefore, F2 is completely continuous.

Now, we are ready to prove the first main result of this Section.

Theorem 4.6. Under the assumptions (A7)–(A14), the perturbed nonlinear
Hammerstein integral equation (4.1) with λ = 1 has a CBV -solution.

Proof. First, let us observe that by the assumption (A11) it is possible to find
a positive number r such that

ψ(r) ≤ rc−1

(
1 +

∫ 1

0

(
m(s) + |k(0, s)|

)
φ(s)ds

)−1

,

where

c := 1 + ‖α‖+ ‖α− β‖ · ‖w‖BV +
‖α− β‖ ·

∥∥α[v]v + β[v]w
∥∥
BV

1−
∣∣α[v]− β[v]

∣∣ . (4.6)

Set M := BCBV (θ, r) and consider the mappings F1 : CBV [0, 1] → CBV [0, 1]
and F2 : M → CBV [0, 1] given by the formulas (4.2) and (4.3), respectively.
From Lemmas 4.3 and 4.5 it follows that F1 and F2 satisfy the assumptions (ii)
and (i) of Theorem 2.5. Moreover, for every x ∈M , we have

‖F2(x)‖BV ≤ ψ(r) ·
∫ 1

0

(
m(s) + |k(0, s)|

)
φ(s)ds

(cf. the proof of Lemma 4.5). This, together with the fact that∥∥(I − F1)−1
∥∥ =

∥∥∥∥ ∞∑
n=0

F n
1

∥∥∥∥ ≤ ∞∑
n=0

‖F n
1 ‖ = c

(cf. Lemma 4.3), yields

‖F2(x)‖BV ≤
r

‖(I − F1)−1‖
for x ∈M.

To end the proof it suffices to apply Remark 2.6 and Theorem 2.5.
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Remark 4.7. From the proof of Theorem 4.6 it follows that the condition (A11)
can be replaced by a weaker (but at the same time more technical) condition:

(B5) there exists r > 0 such that ψ(r) ≤ rc−1
(
1+
∫ 1

0
(m(s)+|k(0, s)|)φ(s)ds

)−1
,

where c is given by (4.6).

Corollary 4.8. Suppose that the assumptions (A7)–(A10) and (A12)–(A14) hold.
Then there exists λ0 > 0 such that the perturbed nonlinear Hammerstein integral
equation (4.1) has a CBV -solution for every λ ∈ R such that |λ| ≤ λ0.

Proof. Let

λ0 :=
1

c(ψ(1) + 1)

(
1 +

∫ 1

0

(
m(s) + |k(0, s)|

)
φ(s)ds

)−1

,

where the number c is given by (4.6). The claim follows from Remark 4.7 and
Theorem 4.6 if we replace f and ψ with λf and |λ|ψ.

It turns out that if we strengthen the condition (A8), then (A7) is not
required. Indeed, by a similar argument to the proof of Theorem 4.6, in view of
the classical Krasnosel′skĭı’s theorem (see, for example, [23,37]) and Lemma 4.3
(cf. also Remark 4.4), one can establish the following result.

Theorem 4.9. Suppose that the assumptions (A9)–(A14) hold. If, additionally,
the functionals α, β ∈ CBV ∗[0, 1] satisfy the following condition:

(B6) ‖α‖+ ‖α− β‖ · ‖w‖BV < 1,

then the perturbed nonlinear Hammerstein integral equation (4.1) with λ = 1
has a CBV -solution.

Corollary 4.10. Suppose that the conditions (A9), (A10), (A12)–(A14) and (B6)
hold. Then there exists λ0 > 0 such that the perturbed nonlinear Hammerstein
integral equation (4.1) has a CBV -solution for every λ ∈ R such that |λ| ≤ λ0.

4.1. BVPs with non-local BCs. In this Section, as an application of the
abstract results for the perturbed nonlinear Hammerstein integral equation,
we are going to study the existence of solutions to the following second-order
differential equation

x′′(t) = −λf(t, x(t)), t ∈ [0, 1], (4.7)

with the non-local BCs of the form

x(0) =

∫ 1

0

A(s)dx(s) and x(1) =

∫ 1

0

B(s)dx(s). (4.8)

For simplicity, as in Section 3.1, we assume that the function f : [0, 1]×R→ R
is continuous.
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Before we proceed to the main theorems of this Section, we will discuss a
class of functions for which the BCs (4.8) are well-posed and we will prove a
result concerning continuous linear functionals on CBV [0, 1].

Let us introduce the following notation. Given a number ε > 0, we say that
a bounded function A : [a, b] → R, where −∞ < a < b < +∞, belongs to the
family Ωε[a, b], if there exists δ > 0 such that osc[t,s]A≤ ε, whenever t, s∈ [a, b]
are such that 0≤s−t≤δ; here the symbol osc[t,s]A denotes the oscillation of the
function A over the interval [t, s], that is, osc[t,s]A :=supt≤τ≤σ≤s|A(σ)−A(τ)|. Let
us denote by Ω[0, 1] the set of all bounded functions A : [0, 1]→ R such that for
every ε > 0 there is a ∈ (0, 1) such that A|[0,a] ∈ Ωε[0, a] and A|[a,1] ∈ BV [a, 1].

For simplicity, let us also set Ω̂[0, 1] := Ω[0, 1] ∪ C[0, 1] ∪BV [0, 1].

Example 4.11. An example of a bounded function A : [0, 1]→ R which belongs

to Ω̂[0, 1] but is neither continuous nor of bounded variation on the interval [0, 1]
is given by the following formula

A(t) =

{
1
n
, if t ∈ ( 1

n+1
, 1
n
), n ∈ N,

0, otherwise.

Lemma 4.12. If x ∈ CBV [0, 1] and A ∈ Ω̂[0, 1], then the Riemann–Stieltjes

integral
∫ 1

0
A(s)dx(s) exists.

Proof. In view of [30, Theorems 1.5.5 and 1.5.6] it is clear that we may assume
that A ∈ Ω[0, 1]. We may also assume that ‖A‖∞ > 0 and var[0,1] x > 0. Then,
given ε>0 there exists a∈(0, 1) such that A|[0,a]∈Ωη[0, a] and A|[a,1]∈BV [a, 1],
where η :=ε(3 var[0,1] x)−1. Let δ=min{δ1, δ2}, where δ1∈(0, 1) is chosen accor-
ding to the definition of the family Ωη[0, a] and δ2∈(0, 1) is such a number that

var
[t,s]

x ≤ min

{
ε

6 ‖A‖∞
,

ε

3(1 + var[a,1] A)

}
,

whenever t, s ∈ [0, 1] are such that 0 ≤ s− t ≤ δ2; the number δ2 exists by the
continuity of the function t 7→ var[0,t] x (cf. [30, Theorem 1.3.4]).

If 0 = t0 < t1 < · · · < tn = 1 is an arbitrary finite partition of the interval
[0, 1] such that max1≤i≤n|ti − ti−1| ≤ δ, then5

n∑
i=1

osc
[ti−1,ti]

A · var
[ti−1,ti]

x

=

j∑
i=1

osc
[ti−1,ti]

A · var
[ti−1,ti]

x+ osc
[tj ,tj+1]

A · var
[tj ,tj+1]

x+
n∑

i=j+2

osc
[ti−1,ti]

A · var
[ti−1,ti]

x,

5If the upper summation limit is smaller than the lower one, then, by definition, the sum
is equal to zero.



410 D. Bugajewska et al.

where the index j ∈ {0, . . . , n− 1} is chosen in such a way that tj ≤ a < tj+1.
Thus

n∑
i=1

osc
[ti−1,ti]

A · var
[ti−1,ti]

x ≤
ε var[0,a] x

3 var[0,1] x
+

2ε ‖A‖∞
6 ‖A‖∞

+
ε var[a,1]A

3(1 + var[a,1]A)
≤ ε,

since osc[ti−1,ti] A ≤ var[ti−1,ti] A (see [30, Formula (1.3.4)]). This shows that the
condition (B) of [30, Theorem 1.5.2] is satisfied, and therefore the Riemann–

Stieltjes integral
∫ 1

0
A(s)dx(s) exists.

From Lemma 4.12 and the properties of the Riemann–Stieltjes integral we
have the following straightforward consequence.

Corollary 4.13. If A ∈ Ω̂[0, 1], then the formula x 7→
∫ 1

0
A(s)dx(s) defines a

continuous linear functional on CBV [0, 1].

Remark 4.14. Clearly, Lemma 4.12 and Corollary 4.13 would also be true,
if in the definition of the class Ω[0, 1] we assumed that A|[a,1] ∈ Ωε[a, 1] and
A|[0,a] ∈ BV [0, a].

Now, let us return to the BVP (4.7), (4.8). It can be shown that if A,B ∈
Ω̂[0, 1] and the function f : [0, 1] × R → R is continuous, then the BVP (4.7),
(4.8) is equivalent to the following perturbed nonlinear Hammerstein integral
equation

x(t)=

∫ 1

0

(1−t)A(s)dx(s)+

∫ 1

0

tB(s)dx(s)+λ

∫ 1

0

k(t, s)f(s, x(s))ds, (4.9)

t ∈ [0, 1], where the kernel k has the following form

k(t, s) =

{
s(1− t), if 0 ≤ s ≤ t ≤ 1,

t(1− s), if 0 ≤ t < s ≤ 1,
(4.10)

that is, each twice continuously differentiable function x : [0, 1] → R which
satisfies (4.7), (4.8) is a CBV -solution to (4.9), and vice-versa.

Remark 4.15. It is easy to see that the kernel k given by (4.10) is continuous
and satisfies the condition (B4) with the function m : [0, 1]→ [0,+∞) given by
m(s) = 1.

Theorem 4.16. Let f : [0, 1]×R→ R be a continuous function. Moreover, let

the functions A,B ∈ Ω̂[0, 1] be such that∣∣∣∣∫ 1

0

[A(s)−B(s)]ds

∣∣∣∣ < 1.

Then there exists a number λ0 > 0 such that for any λ ∈ R satisfying |λ| ≤ λ0

the BVP (4.7), (4.8) has a solution.
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Proof. Since f is continuous (and thus locally bounded), ψ : [0,+∞)→ [0,+∞)
given by

ψ(r) := sup
{
|f(t, u)| : t ∈ [0, 1] and u ∈ [−r, r]

}
for r ≥ 0

is well-defined and non-decreasing. Moreover, k given by (4.10) is continuous
and satisfies the condition (B4) with m(s) = 1 (see Remark 4.15). Therefore, the
proof of Theorem 4.16 is a direct consequence of Corollary 4.8, Corollary 4.13
and Remark 4.2 if one sets φ(t) = 1, v(t) = 1 − t and w(t) = t for t ∈ [0, 1] as
well as

α[x] =

∫ 1

0

A(s)dx(s) and β[x] =

∫ 1

0

B(s)dx(s) for x ∈ CBV [0, 1].

Similar approach to the above one can also be used to study the existence
of solutions to BVPs with non-local BCs slightly different from (4.8), namely
to BVPs of the following form

x′′(t) = −λf(t, x(t)), t ∈ [0, 1],

x(0) =

∫ 1

0

x(s)dA(s), x(1) =

∫ 1

0

x(s)dB(s),
(4.11)

where f : [0, 1] × R → R is continuous and A,B ∈ BV [0, 1]. Let us note that
since we are interested in classical twice continuously differentiable solutions of
the BVP (4.11), the integral BCs are well-posed.

Let us also add that such problems have been investigated via the fixed
point index theory approach by, for example, Webb and Infante in [43].

The BVP (4.11) is clearly equivalent with the perturbed nonlinear Ham-
merstein integral equation

x(t)=

∫ 1

0

(1−t)x(s)dA(s)+

∫ 1

0

tx(s)dB(s)+λ

∫ 1

0

k(t, s)f(s, x(s))ds, (4.12)

t ∈ [0, 1], where k : [0, 1]× [0, 1]→ R is given by (4.10), which means, as before,
that each twice continuously differentiable function x : [0, 1]→ R which satisfies
the BVP (4.11) is a CBV -solution to (4.12), and vice-versa.

In the case of the BVP (4.11) we have the following existence result.

Theorem 4.17. Let f : [0, 1]×R→ R be a continuous function. Moreover, let
the functions A,B ∈ BV [0, 1] be such that var[0,1]A+ var[0,1](A−B) < 1. Then
there exists a number λ0 > 0 such that for any λ ∈ R satisfying |λ| ≤ λ0 the
BVP (4.11) has a solution.

Proof. Let the continuous functionals α and β on the space CBV [0, 1] be given
by

α[x] =

∫ 1

0

x(s)dA(s) and β[x] =

∫ 1

0

x(s)dB(s) for x ∈ CBV [0, 1].
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Then, in view of [30, Theorem 1.6.1], we have

‖α‖ = sup
‖x‖BV =1

∣∣α[x]
∣∣ ≤ var

[0,1]
A · sup

‖x‖BV =1

‖x‖∞ ≤ var
[0,1]

A

and ‖α− β‖ ≤ var[0,1](A−B).
To end the proof it suffices to apply Corollary 4.10 with v(t) = 1 − t and

w(t) = t as well as m(s) = 1, φ(t) = 1 and

ψ(r) := sup
{
|f(t, u)| : t ∈ [0, 1] and u ∈ [−r, r]

}
for r ≥ 0

(cf. the proof of Theorem 4.16).

Finally, we will devote the last part of this Section to illustrating the above
existence results by two examples.

Example 4.18. Let us consider the BVP

x′′(t) = −λf(t, x(t)), t ∈ [0, 1], (4.13)

x(0) =
1

5
x(a) +

1

5
x(c), x(1) =

1

5
x(b) +

1

5
x(c), (4.14)

where 0 < a < b < c < 1 and f : [0, 1] × R → R is a continuous function. It is
easy to see that the BVP (4.13), (4.14) is equivalent with the BVP (4.11) with
A = 1

5
χ[a,1] + 1

5
χ[c,1] and B = 1

5
χ[b,1] + 1

5
χ[c,1].

Since var[0,1]A + var[0,1](A − B) = 4
5
< 1, from Theorem 4.17 it follows

that there is λ0 > 0 such that for every λ ∈ R with |λ| ≤ λ0 the BVP (4.13),
(4.14) admits at least one solution. Of course, if the function t 7→ f(t, 0) is not
identically equal to zero on [0, 1], the solution is non-zero.

On the other hand, transforming the BVP (4.13), (4.14) into an equivalent
BVP with integral conditions of the form

x(0) =

∫ 1

0

Â(s)dx(s) and x(1) =

∫ 1

0

B̂(s)dx(s) (4.15)

with some functions Â, B̂ ∈ Ω̂[0, 1] (and then applying Theorem 4.16), in gen-
eral, seems to be a more difficult task, since the functionals α[x] = 1

5
x(a)+ 1

5
x(c)

and β[x] = 1
5
x(b) + 1

5
x(c) and the functionals generated by the right-hand sides

of the BCs (4.15) have different properties; for example, α[e] = β[e] = 2
5
> 0,

whereas6 ∫ 1

0

Â(s)de(s) =

∫ 1

0

B̂(s)de(s) = 0.

6Let us recall that by e we denote the constant function given by e(t) = 1 for t ∈ [0, 1].
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However, in some cases it can be done. For example, it can be checked
that the BVP (4.13), (4.14) where the function f is given by f(t, u) = 0 for
(t, u) ∈ [0, 1]× R and the following BVP

x′′(t) = 0, t ∈ [0, 1],

x(0) =

∫ 1

0

dx(s), x(1) =

∫ 1

0

dx(s),

have only zero solution. This, in particular, means that those BVPs are equiv-
alent.

Now, let us pass to the second example.

Example 4.19. Let us consider the BVP

x′′(t) = −λf(t, x(t)), t ∈ [0, 1], (4.16)

x(0) = 2x(a)− 2x(c), x(1) = 2x(b)− 2x(c), (4.17)

where 0 < a < b < c < 1 and f : [0, 1] × R → R is a continuous function. The
BVP (4.16), (4.17) is equivalent with (4.7), (4.8), where A = 2χ[c,1] − 2χ[a,1]

and B = 2χ[c,1] − 2χ[b,1] (cf. Example 4.18 and [30, Theorem 1.6.7]). Of course,

A,B ∈ Ω̂[0, 1], and moreover∣∣∣∣∫ 1

0

[A(s)−B(s)]ds

∣∣∣∣ = 2|a− b|.

So if, for example, a = 1
5
, b = 3

5
and c = 4

5
, then 2|a − b| = 4

5
< 1, and hence

from Theorem 4.16 it follows that there exists λ0 > 0 such that for every λ ∈ R
with |λ| ≤ λ0 the BVP (4.16), (4.17) has at least one solution.

Now, we would like to show that in general it is not possible to transform
the BVP (4.16), (4.17) into an equivalent BVP of the form (4.11) to which one
could apply Theorem 4.17.

Suppose that the function f is given by f(t, u) = 2 for (t, u) ∈ [0, 1] × R
and that the BVP (4.16), (4.17) can be equivalently rewritten as the following
BVP with non-local integral BCs

x′′(t) = −2λ, t ∈ [0, 1], (4.18)

x(0) =

∫ 1

0

x(s)dÂ(s), x(1) =

∫ 1

0

x(s)dB̂(s), (4.19)

for some Â, B̂ ∈ BV [0, 1]. Let us note that one of such equivalent reformulations

of the BVP (4.16), (4.17) can be obtained using the functions Â = 2χ[a,1]−2χ[c,1]

and B̂ = 2χ[b,1] − 2χ[c,1].
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It can be checked that for every λ ∈ R the BVP (4.16), (4.17) with the
above-defined function f and a = 1

5
, b = 3

5
, c = 4

5
has a unique solution

xλ : [0, 1]→ R given by xλ(t) = −λt2 + 9
5
λt− 24

25
λ. Since the BVPs (4.16), (4.17)

and (4.18), (4.19) are equivalent, we infer that for every λ ∈ R we have

24

25
|λ| = |xλ(0)| =

∣∣∣∣∫ 1

0

xλ(s)dÂ(s)

∣∣∣∣ ≤ ‖xλ‖∞ · var
[0,1]

Â =
24

25
|λ| · var

[0,1]
Â.

In particular, var[0,1] Â ≥ 1, which shows that var[0,1] Â + var[0,1](Â − B̂) ≥ 1
and means that the assumptions of Theorem 4.17 cannot be satisfied.

Remark 4.20. In connection with Example 4.19 a natural question arises
whether instead of transforming the BVP (4.16), (4.17) into an equivalent BVP
of the form (4.11) and trying to apply Theorem 4.17, it would not be better
to use directly Corollary 4.10 with the functionals α, β ∈ CBV ∗[0, 1] given by
α[x] = 2x(a)− 2x(c) and β[x] = 2x(b)− 2x(c).

It turns out that (in general) it would be not, since, as we will show below,
the norm of the functional α is at least 2, and thus the condition (B6) cannot
be satisfied.

Let x ∈ CBV [0, 1] be a continuous piecewise linear function whose graph
is a polygonal line spanned by the points (0, 0), (a, 0), (c, 1) and (1, 1). Then
‖x‖BV = 1 and

∣∣α[x]
∣∣ = 2, which proves that ‖α‖ ≥ 2.

Remark 4.21. The existence of (positive) solutions (and their multiplicity)
to BVPs with non-local BCs of the form (4.11) was also studied, for example,
in [18,20,42,43]. The main tool used in those papers was the fixed point index
theory in the space of continuous functions, and hence additional assumptions
on the nonlinearity f , such as sub- or superlinearity, were required.

For completeness, let us also add that if we use the functions Â =
2χ[a,1] − 2χ[c,1] and B̂ = 2χ[b,1] − 2χ[c,1] to transform the BVP (4.16), (4.17)
from Example 4.19 into an equivalent BVP with non-local integral conditions,
and additionally we assume that a = 1

5
, b = 3

5
, c = 4

5
, then we cannot apply the

existence result from [43], since the assumption (C6) from the aforementioned
article is not satisfied.
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