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Multivariate Wave-Packet Transforms
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Abstract. This paper presents a study for square-integrability of classical multivari-
ate wave-packets in L2(Rd) via group representation theory. The abstract notions
of multivariate wave-packet groups and multivariate wave-packet representations will
be introduced and as the main result, we prove an admissibility condition on closed
subgroups of GL(d,R), which guarantees the square integrability of classical multi-
variate wave-packet representations on L2(Rd). Finally, we present application of our
results in the case of different admissible subgroups.
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1. Introduction

The mathematical theory of covariant and coherent states transforms is one
of the main building blocks of theoretical physics, modern high frequency ap-
proximation techniques and time-frequency (resp. time-scale) analysis [4, 30,
31, 34, 35]. Over the last decades, abstract and computational aspects of co-
variant and coherent states transforms have achieved significant popularity in
mathematical and theoretical physics, scientific computing, and computational
engineering, see [6] and references therein. In a nutshell, coherent state trans-
forms are obtained by a given coherent function systems. Then admissibility
conditions on the coherent system imply analyzing of functions with respect to
the system by the inner product evaluation [22]. Such coherent structures are
classically originated from representation theory of locally compact groups, see
[18,22,29,32] and references therein. Commonly used coherent states transforms
in theoretical physics, are wavelet transform [11, 30], Gabor transform [20, 21],
wave-packet transform [13,16,17].
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The mathematical theory of Gabor analysis is based on the coherent state
generated by modulations and translations of a given window function. Wavelet
analysis is a time-scale analysis which is based on the continuous affine group
as the group of dilations and translations. Wave packet analysis which is also
well-known as Gabor-wavelet analysis is a shrewd extensions of the two most
prominent coherent states analysis, namely Gabor and wavelet analysis [28,
39, 40]. The mathematical theory of wave-packet analysis on the real line is
originated from classical dilations, translations, and modulations of a given
window function. The structure of discrete wave-packet systems over the real
line has been studied for higher dimensions by several authors, see [7].

The following paper consists of nature of multivariate wave-packet trans-
forms over L2(Rd). We aim to introduce the notion of multivariate wave-packet
transform over the Hilbert function space L2(Rd) associated to closed subgroups
of the general linear group GL(d,R). We shall address analytic aspects of mul-
tivariate wave-packet transforms over L2(Rd) using classical tools in coherent
state analysis. This article contains 6 sections. Section 2 is devoted to fix nota-
tions and a summary of classical Fourier analysis on Rd and harmonic analysis
on projective representations and square integrable representations over locally
compact groups. In section 3 we present a brief study of harmonic analysis
over the matrix Lie group GL(d,R). Then we introduce the abstract notion
of multivariate wave-packet groups associated to closed subgroups of GL(d,R).
We shall also show that the group structure of multivariate wave-packet groups
canonically determines an irreducible projective (unitary) group representation
of the group, which is called multivariate wave-packet representation. We then
present an admissibility criterion on closed subgroups of GL(d,R) to guarantee
the square integrablity of the associated multivariate wave-packet representa-
tion on L2(Rd). As an application of our results we study analytic aspects of
multivariate wave-packet transforms associated to closed subgroups of GL(d,R).
It is also shown that, if H is a compact subgroup of GL(d,R), for all non-zero
window functions we can continuously reconstruct any L2-function from multi-
variate wave-packet coefficients. Finally, we will illustrate application of these
techniques in the case of well-known compact subgroups of GL(d,R).

2. Preliminaries and notations

Let G be a locally compact group and H be a Hilbert space. Let U(H) be
the multiplicative group of all unitary operators on H. A projective group
representation of G on H is a mapping Γ : G→ U(H) which satisfies

Γ(gg′) = z(g, g′)Γ(g)Γ(g′) for all g, g′ ∈ G

where z(g, g′) are unimodular numbers. The projective group representation Γ
is called irreducible on H, if {0} and H are the only closed Γ-invariant
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subspaces of H.
A projective group representation (Γ,H) is called left square integrable if

there exists a non-zero vector ζ ∈ H such that∫
G

|〈ζ,Γ(g)ζ〉|2dmG(g) <∞,

for some left Haar measuremG ofG. Similarly, it is called right square integrable
if there exists a non-zero vector ζ ∈ H such that∫

G

|〈ζ,Γ(g)ζ〉|2dnG(g) <∞,

for some right Haar measure nG of G.

Since Rd is an LCA (locally compact Abelian) group, according to the

Schur’s Lemma, all irreducible representations of Rd are one-dimensional. Thus

any irreducible unitary representation (π,Hπ) of Rd satisfies Hπ = C and hence

there exists a continuous homomorphism ω of Rd into the circle group T, such

that for each x = (x1, . . . , xd) ∈ Rd and z ∈ C we have π(x)(z) = ω(x)z. Such

homomorphisms are called characters of Rd and the set of all such characters

of Rd is denoted by R̂d. If R̂d equipped with the topology of compact conver-

gence on Rd which coincides with the w∗-topology that R̂d inherits as a subset

of L∞(Rd), then R̂d with respect to the product of characters is an LCA group

which is called the dual (character) group of Rd. The character group R̂d, that

is the multiplicative group of all continuous additive homomorphisms of Rd

into the circle group T, can be parametrizes by Rd via the following duality

notation R̂d with Rd via

ω(x) = 〈x, ω〉 = e2πiω
T ·x

for each ω ∈ R̂d. The linear map FRd : L1(Rd) → C(R̂d) defined by f 7→
FRd(f) = f̂ via

FRd(f)(ω) = f̂(ω) =

∫
Rd

f(s)ω(s)dmRd(s),

is called the Fourier transform on Rd. It is a norm-decreasing ∗-homomorphism
from L1(Rd) into C0(R̂d) with a uniformly dense range in C0(R̂d). If a Haar

measure mRd on Rd is given and fixed then there is a Haar measure mR̂d on R̂d,
which is called the normalized Plancherel measure associated to mRd , such that
the Fourier transform (2) is an isometric transform on L1(Rd) ∩ L2(Rd) and
hence it can be extended uniquely to a unitary isomorphism from L2(Rd) onto
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L2(R̂d), see [10, 25]. Then each f ∈ L1(Rd) with f̂ ∈ L1(R̂d) satisfies the
following Fourier inversion formula

f(s) =

∫
R̂d

f̂(ω)ω(s)dmR̂d(ω) for a.e. s ∈ Rd.

For x ∈ Rd and f ∈ L2(Rd), the translation of f by x is defined by Txf(y) =
f(y−x) for y ∈ Rd. The translation Tx : L2(Rd)→ L2(Rd) is a unitary operator.

For ω ∈ R̂d and f ∈ L2(Rd), the modulation of f by ω is defined by Mωf(y) =
ω(y)f(y) for s ∈ Rd. The modulation operator Mω : L2(Rd) → L2(Rd) is
unitary as well. The modulation and translation operators are connected via
the Fourier transform by

M̂ωf = T−ωf̂ , T̂kf = Mkf̂ ,

for all f ∈ L2(Rd), ω ∈ R̂d, and k ∈ Rd, see [10,24,37].

From now on and in this article, for a fixed Haar (Lebesgue) measure mRd

on Rd, by µRd×R̂d or µRd×R̂d we mean the induced product measure on Rd×R̂d =

Rd×R̂d, that is dµRd×R̂d(x, ω) = dmRd(x)dmR̂d(ω), where mR̂d is the normalized

Plancherel measure associated to mRd .

For λ = (x, ω) ∈ Rd × R̂d = Rd × R̂d, the time-frequency shift operator
π(λ) : L2(Rd)→ L2(Rd) is defined by π(λ) = MωTx. Then, it is well-known as
the Moyal’s formula, that∫

Rd×R̂d

|〈f, π(λ)g〉L2(Rd)|2dµRd×R̂d(λ) = ‖f‖2L2(Rd)‖g‖
2
L2(Rd), (1)

for all f, g ∈ L2(Rd), see [11,23] and classical references therein.

3. Harmonic analysis over general linear groups

Throughout this section we briefly present basics of harmonic analysis over
the multiplicative matrix group GL(d,R), for a complete picture of this ma-
trix group we referee the readers to [26, 27, 33] and the comprehensive list of
references references therein.

For d ≥ 1, the real general linear group GL(d,R), is the multiplicative group
consists of all d× d invertible matrices with real entries, that is

GL(d,R) := {A ∈Md×d(R) : det(A) 6= 0}.

It is a d2-dimensional real Lie group. It is non-compact but unimodular. A
Haar integral (measure) of GL(d,R) is given by∫

GL(d,R)
φ(A)dσGL(d,R)(A) =

∫
Md×d(R)

φ(A)| det(A)|−ddA,
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for all φ ∈ Cc(GL(d,R)), where dA is the Lebesgue measure over the linear
vector space of all d× d matrices with real entries.

Proposition 3.1. Let d ≥ 1 and mRd be the Lebesgue measure on Rd. Let mR̂d

be the normalized Plancherel measure associated to mRd and A ∈ GL(d,R).
Then

1. dmRd(Ax) = | det(A)|dmRd(x).

2. dµRd×R̂d(A · λ) = dµRd×R̂d(λ), where A · λ := (Ax,A−1ω) for λ = (x, ω) ∈
Rd × R̂d.

Proof. 1. It is a straightforward consequence of the structure of the Lebesgue
measure.

2. Based on our notations, and using 1., we can write

dµRd×R̂d(A · λ) = dµRd×R̂d(Ax,A−1ω)

= dmRd(Ax)dmR̂d(A−1ω)

= | det(A)| · | det(A−1)|dmRd(x)dmR̂d(ω)

= dmRd(x)dmR̂d(ω)

= dµRd×R̂d(λ).

For A ∈ GL(d,R), the dilation operator DA : L2(Rd)→ L2(Rd) is given by

DAf(t) := | detA|−
1
2f(A−1 · t),

for all f ∈ L2(Rd) and t ∈ Rd.
The following observations state basic properties of dilation operators.

Proposition 3.2. Let d ≥ 1, A,B ∈ GL(d,R), and f ∈ L2(Rd). Then

1. DA : L2(Rd)→ L2(Rd) is a unitary linear operator.

2. DAB = DADB.

3. D̂Af = DA−1 f̂ .

4. A 7→ DA is a unitary representation of GL(d,R) on the Hilbert function
space L2(Rd).

Next proposition summarizes commuting relations of basic operators in mul-
tivariate wave packet analysis.

Proposition 3.3. Let d ≥ 1 and H be a subgroup of the general linear group
GL(d,R). Then,

1. For (A, x) ∈ H× Rd we have DATx = TAxDA.

2. For (A, ω) ∈ H× R̂d we have DAMω = MA−1ωDA.

3. For (x, ω) ∈ Rd × R̂d we have TxMω = ω(x)MωTx.
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4. Multivariate wave-packet representations

In this section we present the abstract structure of multivariate wave-packet
groups associated to closed subgroups of GL(d,R). Then we introduce the
associated multivariate multivariate wave-packet representation. We shall also
study classical properties of these representations.

For a closed subgroup H of the general linear group GL(d,R), the underlying
manifold

W(H) := H× Rd × R̂d = H× Rd × Rd,

equipped with operations given by

(A, x, ω) o (A′, x′, ω′) = (AA′, A′
−1
x+ x′, A′ω + ω′),

and
(A, x, ω)−1 := (A−1,−Ax,−A−1ω),

is a group with the identity element (1, 0, 0).
We call the group W(H) as multivariate wave-packet group associated to

the subgroup H over Rd.

Remark 4.1. (i) The groups H and Rd × R̂d can be considered as closed sub-
groups of W(H).

(ii) Let H be a closed subgroup of GL(d,R) and K be a closed subgroup
of H. Then W(K) is a closed subgroup of W(H).

Then we present the following theorem concerning basic properties of the
group W(H).

Theorem 4.2. Let H be a closed subgroup of the general linear group GL(d,R)
with the modular function ∆H and mH (resp. nH) be a left (resp. right) Haar
measure for H. Then

1. W(H) is a locally compact group with a left Haar measure given by

dmW(H)(A, λ) := dmH(A)dµRd×R̂d(λ),

and a right Haar measure given by

dnW(H)(A, λ) := dnH(A)dµRd×R̂d(λ).

2. The modular function ∆W(H) : W(H)→ (0,∞) is given by ∆W(H)(A, λ) :=
∆H(A). In particular, the multivariate wave-packet group W(H) is uni-
modular if and only if H is unimodular.

3. The closed subgroup H is normal in W(H) if and only if H = {I}.
4. The closed subgroup Rd × R̂d is a normal Abelian subgroup of W(H).
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Proof. 1. It is easy to see that the mapping τ : H×Rd× R̂d → Rd× R̂d given by
(A, λ) → A · λ is continuous. This automatically implies that the multivariate
wave-packet group W(H) is a locally compact group. Let F ∈ Cc(W(H)) and
g = (A, λ) ∈W(H). Since the Lebesgue measure µRd×R̂d is translation invariant
and also mH is a left Haar measure on H, we have∫

W(H)

F (g · g′)dmW(H)(g
′)

=

∫
H

∫
Rd×R̂d

F ((A, λ) o (A′, λ′))dmH(A′)dµRd×R̂d(λ′)

=

∫
H

∫
Rd×R̂d

F ((AA′, A′−1 · λ+ λ′))dmH(A′)dµRd×R̂d(λ′)

=

∫
H

(∫
Rd×R̂d

F ((AA′, A′−1 · λ+ λ′))dmRd×R̂d(λ′)

)
dmH(A′)

=

∫
H

(∫
Rd×R̂d

F (AA′, λ′)dµRd×R̂d(λ′)

)
dmH(A′)

=

∫
Rd×R̂d

(∫
H
F (AA′, λ′)dmH(A′)

)
dµRd×R̂d(λ′)

=

∫
Rd×R̂d

(∫
H
F (A′, λ′)dmH(A′)

)
dµRd×R̂d(λ′)

=

∫
H

∫
Rd×R̂d

F (A′, λ′)dmH(A′)dµRd×R̂d(λ′)

=

∫
W(H)

F (g′)dmW(H)(g
′),

which implies that dmW(H)(A, λ) := dmH(A)dµRd×R̂d(λ) is a left Haar measure

for W(H). Similarly, using Proposition 3.1, Fubini’s theorem and also since the
Lebesgue measure µRd×R̂d is translation invariant, we get∫

W(H)

F (g′ · g)dnW(H)(g
′)

=

∫
H

∫
Rd×R̂d

F ((A′, λ′) o (A, λ))dnH(A′)dµRd×R̂d(λ′)

=

∫
H

∫
Rd×R̂d

F (A′A,A−1 · λ′ + λ)dnH(A′)dµRd×R̂d(λ′)

=

∫
H

(∫
Rd×R̂d

F (A′A,A−1 · λ′ + λ)dµRd×R̂d(λ′)

)
dnH(A′)

=

∫
H

(∫
Rd×R̂d

F (A′A, λ′ + λ)dµRd×R̂d(A · λ′)
)

dnH(A′)

=

∫
H

(∫
Rd×R̂d

F (A′A, λ′ + λ)dµRd×R̂d(λ′)

)
dnH(A′)
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=

∫
H

(∫
Rd×R̂d

F (A′A, λ′)dµRd×R̂d(λ′)

)
dnH(A′)

=

∫
Rd×R̂d

(∫
H
F (A′A, λ′)dnH(A′)

)
dµRd×R̂d(λ′)

=

∫
Rd×R̂d

(∫
H
F (A′, λ′)dnH(A′)

)
dµRd×R̂d(λ′)

=

∫
H

∫
Rd×R̂d

F (A′, λ′)dnH(A′)dµRd×R̂d(λ′)

=

∫
W(H)

F (g′)dnW(H)(g
′),

implying that dnW(H)(A, λ) := dnH(A)dµRd×R̂d(λ) is a right Haar measure

for W(H).
2. Let F ∈ Cc(W(H)) be a non-zero and positive function. Also, let

(A, λ) ∈W(H). Then we can write

∆W(H)(A, λ)−1 ·
∫
W(H)

F (A′, λ′)dmW(H)(A
′, λ′)

=

∫
W(H)

F ((A′, λ′) o (A, λ))dmW(H)(A
′, λ′)

=

∫
H

∫
Rd×R̂d

F (A′, λ′) o (A, λ)dmH(A′)dµRd×R̂d(λ′)

=

∫
H

∫
Rd×R̂d

F (A′A,A−1 · λ′ + λ)dmH(A′)dµRd×R̂d(λ′)

=

∫
H

∫
Rd×R̂d

F (A′A, λ′ + λ)dmH(A′)dµRd×R̂d(A · λ′)

=

∫
H

∫
Rd×R̂d

F (A′A, λ+ λ′)dmH(A′)dµRd×R̂d(λ′)

=

∫
H

∫
Rd×R̂d

F (A′A, λ′)dmH(A′)dµRd×R̂d(λ′)

=

∫
Rd×R̂d

(∫
H
F (A′A, λ′)dmH(A′)

)
dµRd×R̂d(λ′)

= ∆H(A)−1 ·
∫
Rd×R̂d

(∫
H
F (A′, λ′)dmH(A′)

)
dµRd×R̂d(λ′)

= ∆H(A)−1 ·
∫
W(H)

F (A′, λ′)dmW(H)(A
′, λ′),

implying that ∆W(H)(A, λ) = ∆H(A) for all (A, λ) ∈W(H).

3. and 4. are straightforward from structure of the group W(H).
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Remark 4.3. From now on, once the left (resp. right) Haar measure mH
(resp. nH) over H is fixed, we call the associated left (resp. right) Haar mea-
sure on W(H), which is constructed via Theorem 4.2, as left (resp. right) Haar
measure induced by mH (resp. nH).

For (A, λ) = (A, x, ω) ∈W(H), define the linear operator

ΓH(A, λ) : L2(Rd)→ L2(Rd) by ΓH(A, λ) := DAπ(λ) = DATxMω. (2)

Thus for f ∈ L2(Rd) and t ∈ Rd we get

[ΓH(A, x, ω)f ](t) = DATxMωf(t)

= | detA|−
1
2TxMωf(A−1t)

= | detA|−
1
2Mωf(A−1t− x)

= | detA|−
1
2ω(x)ω(A−1t)f(A−1t− x).

Remark 4.4. Let H be a closed subgroup of the general linear group GL(d,R).

The restriction of ΓH to the closed subgroup Rd×R̂d is unitarily equivalent to
the projective Schrödinger representation of the group Rd×R̂d on L2(Rd) (see
[23] and references therein) and similarly restriction of ΓH to the closed subgroup
H × Rd is unitarily equivalent to the quasi-regular representation of the group
HoRd on L2(Rd), see [2] and references therein.

The following theorem shows that (A, λ) 7→ ΓH(A, λ) given by (2), defines
an irreducible projective group representation of the multivariate wave-packet
group W(H) on the Hilbert space L2(Rd).

Theorem 4.5. Let H be a closed subgroup of the general linear group GL(d,R)
and W(H) be the multivariate wave-packet group associated to H. Then ΓH :
W(H)→U(L2(Rd)) given by (A, λ) 7→ΓH(A, λ) is an irreducible projective group
representation of the locally compact group W(H) on the Hilbert space L2(Rd).

Proof. It is evident to check that ΓH(1, 0, 0) = I. Then the operator ΓH(A, x, ω)
is a unitary operator on L2(Rd) for all (A, x, ω) ∈ W(H), because it is the
composition of three unitary operators, namely DA, Tx and Mω. Now let
(A, x, ω), (A′, x′, ω′) ∈W(H). Then we have

DAA′TA′−1x+x′MA′ω+ω′ = DA(DA′TA′−1x)Tx′MA′ωMω′

= DA(TxDA′)Tx′MA′ωMω′

= DATkDA′(Tx′MA′ω)Mω′

= ω(A′x′)DATxDA′(MA′ωTx′)Mω′

= ω(A′x′)DATx(DA′MA′ω)Tx′Mω′

= ω(A′x′)DATx(MωDA′)Tx′Mω′

= ω(A′x′)(DATxMω)(DA′Tx′Mω′).
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Thus invoking the group law of the wave packet group W(H), we get

ΓH ((A, x, ω) o (A′, x′, ω′)) = ΓH(AA′, A′
−1
x+ x′, A′ω + ω′)

= DAA′TA′−1x+x′MA′ω+ω′

= ω(A′x′)(DATxMω)(DA′Tx′Mω′)

= ω(A′x′)ΓH(A, x, ω)ΓH(A′, x′, ω′),

which implies that ΓH : W(H)→U(L2(Rd)) is a unitary projective group repre-
sentation of the locally compact group W(H) on the Hilbert space L2(Rd). Using

Remark 4.4 and since the projective Schrödinger representation of Rd × R̂d is
irreducible on L2(Rd), we deduce that ΓH is a unitary irreducible projective
group representation of the locally compact group W(H) on the Hilbert space
L2(Rd) as well.

5. Multivariate wave-packet transforms

Throughout this section, we still assume that H is a closed subgroup of the
multiplicative matrix group GL(d,R).

Let ψ ∈ L2(Rd) be a window function. The multivariate wave-packet trans-
form of f ∈ L2(Rd) with respect to the window function ψ is given by the voice
transform associated to the multivariate wave-packet representation, that is

Vψf(A, x, ω) := 〈f,ΓH(A, x, ω)ψ〉L2(Rd) = 〈f,DATxMωψ〉L2(Rd), (3)

for (A, x, ω) ∈ H× Rd × R̂d.

Remark 5.1. (i) The restriction of the multivariate wave-packet transform

to the closed subgroup Rd × R̂d is the continuous Gabor (short-time Fourier)
transform over L2(Rd), see [21] and references therein.

(ii) Let H be a closed subgroup of the general linear group GL(d,R). Then
the restriction of the multivariate wave-packet transform to the closed subgroup
H × Rd is the wavelet transform induced by the action of the multiplicative
group H, see [2].

The following theorem can be considered as a constructive criterion on
the subgroup H, which guarantees the square integrability of the associated
multivariate wave-packet representation ΓH on L2(Rd).

Theorem 5.2. Let H be a closed subgroup of the multiplicative matrix group
GL(d,R) and W(H) be the associated multivariate wave-packet group. Then, the
multivariate wave-packet representation ΓH is left (resp. right) square integrable
over W(H) if and only if H is compact. In this case, all non-zero functions in
L2(Rd) are square integrable over W(H) with respect to ΓH.
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Proof. Let mH be a left Haar measure for H. Then by Theorem 4.2, the pos-
itive Radon measure mW(H) given by dmW(H)(A, λ) = dmH(A)dµRd×R̂d(λ) is a

left Haar measure for W(H). Now, suppose that the multivariate wave-packet
representation ΓH be left square integrable over W(H). Then there exists a
non-zero function ψ ∈ L2(Rd) such that∫

W(H)

|〈ψ,ΓH(g)ψ〉L2(Rd)|2dmW(H)(g) <∞.

Using Fubini’s theorem and also the Moyal’s formula (1), we get∫
W(H)

|〈ψ,ΓH(g)ψ〉L2(Rd)|2dmW(H)(g)

=

∫
H

∫
Rd×R̂d

|〈ψ,ΓH(A, λ)ψ〉L2(Rd)|2dmH(A)dµRd×R̂d(λ)

=

∫
H

(∫
Rd×R̂d

|〈ψ,ΓH(A, λ)ψ〉L2(Rd)|2dµRd×R̂d(λ)

)
dmH(A)

=

∫
H

(∫
Rd×R̂d

|〈ψ,DAπ(λ)ψ〉L2(Rd)|2dµRd×R̂d(λ)

)
dmH(A)

=

∫
H

(∫
Rd×R̂d

|〈D∗Aψ, π(λ)ψ〉L2(Rd)|2dµRd×R̂d(λ)

)
dmH(A)

=

∫
H

(
‖D∗Aψ‖2L2(Rd)‖ψ‖

2
L2(Rd)

)
dmH(A)

= ‖ψ‖2L2(Rd)

(∫
H
‖D∗Aψ‖2L2(Rd)dmH(A)

)
.

Since dilation operators are unitary on L2(Rd), we deduce that

‖ψ‖4L2(Rd)

(∫
H

dmH

)
= ‖ψ‖2L2(Rd)

(∫
H
‖ψ‖2L2(Rd)dmH(A)

)
= ‖ψ‖2L2(Rd)

(∫
H
‖D∗Aψ‖2L2(Rd)dmH(A)

)
=

∫
W(H)

|〈ψ,ΓH(g)ψ〉L2(Rd)|2dmW(H)(g) <∞.

Thus mH(H) < ∞ and hence H is compact. Conversely, let H be a compact
subgroup of GL(d,R) with the normalized Haar measure σH, that is the unique
positive Radon measure σH which is both left and right Haar measure of H with
σH(H) = 1. Then, each non-zero function ψ ∈ L2(Rd) satisfies∫

W(H)

|〈ψ,ΓH(A, λ)ψ〉L2(Rd)|2dσH(A)dµRd×R̂d(λ) = ‖ψ‖4L2(Rd), (4)
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which implies the square integrabilty of the multivariate wave-packet represen-
tation ΓH over W(H).

As a consequence of Theorem 5.2, we deduce the following orthogonality
relation concerning the multivariate wave-packet transforms.

Corollary 5.3. Let H be a compact subgroup of the multiplicative matrix group
GL(d,R) with the normalized (probability) Haar measure σH and W(H) be the
multivariate wave-packet group associated to H with the induced Haar mea-
sure mW(H) by σH. Also, let ψ, ϕ ∈ L2(Rd) be non-zero window functions and
f, g ∈ L2(Rd). Then

〈Vψf,Vϕg〉L2(W(H),mW(H)) = 〈ϕ, ψ〉L2(Rd)〈f, g〉L2(Rd). (5)

Proof. The same argument used in Theorem 5.2 implies that

‖Vψf‖2L2(W(H),mW(H))
= ‖ψ‖2L2(Rd)‖f‖

2
L2(Rd). (6)

Then (6) and also twice applying the polarization identity guarantees (5).

Next result is an inversion (reconstruction) formula for the multivariate
wave-packet transform defined by (3).

Theorem 5.4. Let H be a compact subgroup of the multiplicative matrix group
GL(d,R) with the normalized Haar measure σH and W(H) be the multivariate
wave-packet group associated to H with the induced Haar measure mW(H) by σH.
Also, let ψ ∈ L2(Rd) be a non-zero window function. Then each f ∈ L2(Rd) can
be recovered continuously in the weak sense of the Hilbert space L2(Rd), from
multivariate wave-packet coefficients generated by ψ, via

f = ‖ψ‖−2
L2(Rd)

∫
H

∫
Rd×R̂d

Vψf(A, λ)ΓH(A, λ)ψ dσH(A)dµRd×R̂d(λ). (7)

Proof. Let ψ ∈ L2(Rd) be a non-zero window function. For f ∈ L2(Rd), define

f(ψ) :=

∫
H

∫
Rd

∫
R̂d

Vψf(A, λ)ΓH(A, λ)ψ dσH(A)dµRd×R̂d(λ),

in the weak sense of the Hilbert space L2(Rd). Using (5), for all g ∈ L2(Rd)



Multivariate Wave-Packet Transforms 493

we have

〈f(ψ), g〉L2(Rd) =

∫
H

∫
Rd×R̂d

Vψf(A, λ)〈ΓH(A, λ)ψ, g〉L2(Rd) dσH(A)dµRd×R̂d(λ)

=

∫
H

∫
Rd×R̂d

Vψf(A, λ)〈g,ΓH(A, λ)ψ〉L2(Rd) dσH(A)dµRd×R̂d(λ)

=

∫
H

∫
Rd×R̂d

Vψf(A, λ)Vψg(A, λ) dσH(A)dµRd×R̂d(λ)

= 〈Vψf,Vψg〉L2(W(H),mW(H))

= ‖ψ‖2L2(Rd)〈f, g〉L2(Rd).

Then f(ψ) ∈ L2(Rd) and f(ψ) = ‖ψ‖2
L2(Rd)

f in L2(Rd), which equivalently implies

the reconstruction formula (7) in the weak sens of the Hilbert space L2(Rd).

Then we can present the following reproducing property for the multivariate
wave-packet representations.

Corollary 5.5. Let H be a compact subgroup of the multiplicative matrix group

GL(d,R) with the normalized Haar measure σH and W(H) be the multivari-
ate wave-packet group associated to H with the induced Haar measure mW(H)

by σH. Let ψ ∈ L2(Rd) be a non-zero window function and Hψ be range of the
multivariate transform Vψ : L2(Rd)→ L2(W(H),mW(H)). Then

1. Hψ is a closed subspace of L2(W(H),mW(H)).

2. Hψ is the unique reproducing kernel Hilbert space (RKHS) over W(H)
associated to the positive definite kernel Kψ : W(H) ×W(H) → C given
by

Kψ[(A, λ), (A′, λ′)] := 〈DAπ(λ)ψ,DA′π(λ′)ψ〉L2(Rd),

for all (A, λ), (A′, λ′) ∈W(H).

Next corollary summarizes our recent results in terms of continuous frame
theory [5, 38].

Corollary 5.6. Let H be a compact subgroup of the multiplicative matrix group
GL(d,R) and ψ ∈ L2(Rd) be a non-zero window function. Then the multivariate
wave-packet system

A(H, ψ) := {ΓH(A, λ)ψ : (A, λ) ∈W(H)},

is a continuous tight frame for the Hilbert space L2(Rd).
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6. Analysis of multivariate wave-packet representations
over compact subgroups of GL(d,R)

Throughout this section, we study analytic aspects of compact subgroups of the
multiplicative matrix group GL(d,R) in the framework of multivariate wave-
packet analysis.

As it is proved in Theorem 5.2, just compact subgroups of the matrix group
GL(d,R) are interesting from the L2-theory and reproducing property of mul-
tivariate wave-packet representations. Roughly speaking, compact subgroups
of GL(d,R) are highly important in the framework of multivariate covariant
transforms and coherent state analysis over the Hilbert space L2(Rd), since
they guarantee that the multivariate coherent state and voice transforms over
L2(Rd) satisfy resolution of the identity formulas which are valid in the sense
of the Hilbert function space L2(Rd).

6.1. Wave packet transforms on R. Let d = 1. Then GL(d,R) = R \ {0}.
It is easy to check that the only compact subgroups of the multiplicative group
R \ {0} are {+1} and {−1,+1}. Thus in this case, the classical wave-packet
theory does not reproduce really a different analysis rather than the Gabor
analysis, see also [19].

6.2. Wave packet transforms on Rd with d > 1. The subgroup H = O(d,R)
is the most significant compact subgroup of GL(d,R). The compact subgroup
O(d,R), or simply just O(d), is the multiplicative matrix group consists of all
d× d-orthogonal matrices. That is,

O(d,R) := {A ∈Md×d(R) : ATA = Id×d}.

The compact group O(d) is a d(d−1)
2

-dimensional real Lie group and it is non-
connected. The probability (normalized Haar) measure over O(d) is given by∫

O(d)

φ(A)dσO(d)(A) =

∫
Sd−1

φ̃(y)dλd−1(y),

where λd−1 is the normalized surface measure on Sd−1, that is the standard unit
sphere in Rd, and the function φ̃ : Sd−1 → C is given by φ̃(Ax) := φ(A) for all
A ∈ O(d) and a fixed point x ∈ Sd−1.

Let K be a compact subgroup of GL(d,R) with the probability Haar mea-
sure σK. Then 〈·, ·〉K : Rd × Rd → R given by

(x, y) 7→ 〈x, y〉K :=

∫
K

〈Ax,Ay〉dσK(A),

for all x, y ∈ Rd, is a positive and symmetric bilinear from on Rd. Also, it is a
K-invariant form, that is

〈Ax,Ay〉K = 〈x, y〉,
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for all x, y ∈ Rd and A ∈ K. Thus there exists a positive definite matrix
D ∈Md×d(R) such that

〈x, y〉K = 〈x,Dy〉, ∀x, y ∈ Rd.

Let D = BTB be the Cholesky factorization of D with B invertible. Then
we deduce that BKB−1 ⊂ O(d), or equivalently K ⊂ B−1O(d)B. This implies
that, up to conjugation, O(d) is the maximal compact subgroup of GL(d,R).

6.2.1. The orthogonal group. By the above argument and theoretical moti-
vation, first we shall focus on analytic and constructive analysis of multivariate
wave-packet representations over the compact subgroup H = O(d).

In this case, the associated multivariate wave-packet group W(H) has the
underlying manifold

O(d)× Rd × R̂d = O(d)× Rd × Rd,

which is equipped with the following group law

(A, x, ω) o (A′, x′, ω′) = (AA′, A′
−1
x+ x′, A′ω + ω′),

for all (A, x, ω), (A′, x′, ω′) ∈W(H) = O(d) o (Rd ×Rd). Then dmW(H)(A, λ) =
dσO(d)(A)dµRd×R̂d(λ) is a Haar measure for the wave packet group W(H). The
multivariate wave-packet representation

ΓH : W(H) = O(d) o (Rd × Rd)→ U(L2(Rd))

is given by ΓH(A, x, ω) = DATxMω for all (A, x, ω) ∈W(H).
The multivariate wave-packet transform of f ∈ L2(Rd) with respect to the

window function ψ, is given by

Vψf(A, x, ω) = 〈f,ΓH(A, x, ω)ψ〉L2(Rd) = 〈f,DATxMωψ〉L2(Rd),

for all (A, x, ω) ∈W(H). In integral terms we have

Vψf(A, x, ω) = ω(x)

∫
Rd

f(y)e2πiω
T .A−1yψ(A−1y − x)dµRd(y).

Corollary 5.3 guarantees the following Plancherel formula∫
O(d)

∫
Rd

∫
R̂d

|〈f,ΓH(A, λ)ψ〉L2(Rn)|2dσO(d)(A)dµRd×R̂d(λ) = ‖ψ‖2L2(Rd)‖f‖
2
L2(Rd)

which is equivalent to the following reconstruction formula in the sense of the
Hilbert space L2(Rd);

f = ‖ψ‖−2
L2(Rd)

∫
O(d)

∫
Rd

∫
R̂d

Vψf(A, λ)ΓH(A, λ)ψ dσO(d)(A)dµRd×R̂d(λ).
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6.2.2. The special orthogonal group. For d > 2, the special orthogonal
SO(d,R) or just SO(d) is given by

SO(d) := {A ∈ O(d) : detA = 1}.

It is a connected and compact real Lie group.

In this case, the associated multivariate wave-packet group W(H) has the
underlying manifold

SO(d)× Rd × R̂d = SO(d)× Rd × Rd,

which is equipped with the following group law

(A, x, ω) o (A′, x′, ω′) = (AA′, A′
−1
x+ x′, A′ω + ω′),

for all (A, x, ω), (A′, x′, ω′) ∈W(H) = SO(d)o (Rd×Rd). Then dmW(H)(A, λ) =
dσSO(d)(A)dµRd×R̂d(λ) is a Haar measure for the multivariate wave-packet

group W(H). The wave packet representation

ΓH : W(H) = SO(d) o (Rd × Rd)→ U(L2(Rd))

is given by ΓH(A, x, ω) = DATxMω for all (A, x, ω) ∈W(H).

The multivariate wave-packet transform of f ∈ L2(Rd) with respect to the
window function ψ, is given by

Vψf(A, x, ω) = 〈f,ΓH(A, x, ω)ψ〉L2(Rd) = 〈f,DATxMωψ〉L2(Rd),

for all (A, x, ω) ∈W(H). In integral terms we have

Vψf(A, x, ω) = ω(x)

∫
Rd

f(y)e2πiω
T .A−1yψ(A−1y − x)dµRd(y).

Corollary 5.3 guarantees the following Plancherel formula∫
SO(d)

∫
Rd

∫
R̂d

|〈f,ΓH(A, λ)ψ〉L2(Rn)|2dσSO(d)(A)dµRd×R̂d(λ) = ‖ψ‖2L2(Rd)‖f‖
2
L2(Rd)

which is equivalent to the following reconstruction formula in the sense of the
Hilbert space L2(Rd);

f = ‖ψ‖−2
L2(Rd)

∫
SO(d)

∫
Rd

∫
R̂d

Vψf(A, λ)ΓH(A, λ)ψ dσSO(d)(A)dµRd×R̂d(λ).
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6.2.3. The maximal tori. A circle group is a linear (matrix) group isomorphic
to S1. A torus (tori) is a direct sum of circle groups. Thus any torus is a
compact connected Abelian Lie group. A maximal torus (tori) is a torus in a
linear (matrix) group which is not contained in any other torus. The rank of a
maximal tori T is the number r such that T = ⊕rj=1S1.

The following proposition [26,27] characterizes structure of a maximal tori
of the special orthogonal group SO(d).

Proposition 6.1. Let d > 2 and T be a maximal tori of SO(d). Then

1. If d = 2n with n ∈ N, then T = ⊕rj=1SO(2).

2. If d = 2n+ 1 with n ∈ N, then T =
(
⊕rj=1SO(2)

)
⊕ {1}.

In this case, the associated multivariate wave-packet group W(T) has the
underlying manifold

T× Rd × R̂d = T× Rd × Rd,

which is equipped with the following group law

(A, x, ω) o (A′, x′, ω′) = (AA′, A′
−1
x+ x′, A′ω + ω′),

for all (A, x, ω), (A′, x′, ω′) ∈ W(H) = T o (Rd × Rd). Then dmW(H)(A, λ) =
dσT(A)dµRd×R̂d(λ) is a Haar measure for the multivariate wave-packet

group W(H). The multivariate wave-packet representation

ΓH : W(H) = T o (Rd × Rd)→ U(L2(Rd))

is given by ΓH(A, x, ω) = DATxMω for all (A, x, ω) ∈W(T).
The multivariate wave-packet transform of f ∈ L2(Rd) with respect to the

window function ψ, is given by

Vψf(A, x, ω) = 〈f,ΓT(A, x, ω)ψ〉L2(Rd) = 〈f,DATxMωψ〉L2(Rd),

for all (A, x, ω) ∈W(T). In integral terms we have

Vψf(A, x, ω) = ω(x)

∫
Rd

f(y)e2πiω
T .A−1yψ(A−1y − x)dµRd(y).

Corollary 5.3 guarantees the following Plancherel formula∫
T

∫
Rd

∫
R̂d

|〈f,ΓH(A, λ)ψ〉L2(Rn)|2dσT(A)dµRd×R̂d(λ) = ‖ψ‖2L2(Rd)‖f‖
2
L2(Rd),

which is equivalent to the following reconstruction formula in the sense of the
Hilbert space L2(Rd);

f = ‖ψ‖−2
L2(Rd)

∫
T

∫
Rd

∫
R̂d

Vψf(A, λ)ΓH(A, λ)ψ dσT(A)dµRd×R̂d(λ).
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Concluding remarks. The main purpose of this article was dedicated to pre-
senting a constructive admissibility criterion on closed subgroups of the general
liner group GL(d,R) which guarantees square integrability of the associated
multivariate wave-packet representations and hence a valid resolution of the
identity operator in the sense of the Hilbert function space L2(Rd).

Invoking topological and geometric structure of the real Lie group GL(d,R),
there is a high degree of freedom in selecting an admissible subgroup H of
GL(d,R). Among all closed subgroups of GL(d,R), just compact ones are
admissible and hence they guarantee a square-integrable multivariate wave-
packet representation and valid reconstruction formula.
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[28] Kalisa, C. and Torrësani, B., N -dimensional affine Weyl–Heisenberg wavelets.
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