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A Characterization of Circles
by Single Layer Potentials
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Abstract. We give a characterization of circles by polynomial eigenfunctions of single
layer potentials.
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1. Introduction

Let €2 be a smoothly bounded domain in the plane and ds be the arc-length
measure supported on 9€2. The single layer potential on L?(9€, ds) is defined by

Smf(2) = 5= [ 1Oz clas

The operator Sy represents the potential associated with the electric field gen-
erated by a charge distribution on a surface 0€). The operator Sy is a self-
adjoint Hilbert—Schmidt operator [6].

Throughout this paper T denotes the boundary of the unit disk D={z€C:
|z| < 1}. We denote the zero set of polynomial p by Z(p). It is easy to show
that for the boundary curve being the unit circle, the eigenfunctions of the cor-
responding single layer potential are monomials. For the sake of completeness,
we provide the simple calculations in here. For n € Z* and z € D,

1 1
S(=") = —5- /Tg" Iz ¢ldsc = - /Tg" {m (1 . %) +In(1 —zg)} dsc,
ie.,
S DY S R B°2 L I 1 w1
S’JI‘(Z)—_E TC [_ZE<Z)_;E(ZC)]0ZSC_M/Tz dsC—%z.
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Similarly, for n € Z~ and z € D, we have Sp(z") = —5-2" and Sp(1) = 0 for
n = 0. Therefore, it follows from the continuity of the single layer potentials

that
Lo ez
Sr(z") = 2|n|~
(=) {0, n=0,

for z € T.

Ebenfelt et al. in [3] show that if the the exterior of the boundary curve I'
is Smirnov (see [2]) and Sr has a constant eigenfunction, then I' must be a
circle. A stronger version is given by Khavinson—Solynin—Vasillev in [5]. For
the analog of these results in higher dimensions we refer to [4, 7].

In the present note we show that under a smoothness assumption on the
boundary curve, only the circle allows the single layer potential to have poly-
nomial eigenfunctions with zeros inside the disk. This can be considered as a
generalization of the result given by Ebenfelt—-Khavinson—-Shapiro in [3].

2. Main results

Our approach is based on following characterizations (see [3,5] for more detail):

Theorem 2.1 (Ebenfelt—Khavinson—Shapiro [3]). Let I' be a rectifiable Jordan
curve and T'(z) the tangent vector to I' defined a.e. on T". Suppose that

T(z)=H(z), a.e. onT,

where H(z) stands for non-tangential boundary values of a bounded analytic
function H in the exterior Q. of T' with H(oo) = 0. Then, I' must be a circle.

Theorem 2.2 (Khavinson—-Solynin—Vassilev [5]). Suppose that T, Q, and H
satisfy the conditions of the previous theorem, but H has a simple pole at a
giwen finite point zo € Q.. Then

1—p2 ]

Theorem 2.3. Assume 2 is a smoothly bounded domain in the plane. If Ssq
has a polynomial eigenfunction p with Z(p) C 2, then 02 must be circle.

p
1—p?

I‘:{z:a(+zo:’C—

with some a € C* and 0 < p < 1.

Proof. Assume Spa(p) = Ap for some non-zero A € R and some polynomial p(z)
with Z(p) C Q. Since Ap(z) = [, 2(¢)In|z — (| ds¢ for all z € Q, then

g [ PO [ O,
2>\p<z>_/@QC_Zd8<_/8Q C—z d¢ for z € Q.
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Without loss of generality we may assume that ) contains the origin (via
an appropriate translation). Set F(z) = [, I%d(’ on the exterior domain
Q,=C \ Q. The function F is analytic in Q, and F(co0)=0. By the Sokhotski-

Plemelj jump theorem (see [6]), we find the following holds almost everywhere

on 0f) L o
e~ p(QT(<) . p(QT(<)
2 T(z)=1 ———d( — 1 ———=d
mip(=)T(z) tte%% /89 (—t ¢ ”Lf:_i% /aQ (—w ‘
= lim F(t) 42X lim p'(w)
tte_gi; IZJES%Z7
= lim [F(w) +20/(w)],
wEN 4

which can be rewritten as

70 = g i [T a2

2mi oo L p(w p(w)
The function ®(w) = QLM(% + 2)3%) is analytic on Q, ®(c0) = 0 and
® =T a.e. on 0. Thus, by Theorem 2.2, 92 must be a circle. O]

Corollary 2.4. Suppose ) contains the origin. If Ssq has monomial eigen-
functions of the form 2", then OS2 must be a circle.

We conclude this paper with the following remark on logarithmic potentials.
Recall that the logarithmic potential on a bounded domain €2 is defined by

(Caf)w) = 5 [ )]z~ vl aAw)

for f € L?(Q,dA). The operator Lq is a self-adjoint Hilbert—Schmidt operator
on L?(Q2,dA) (see [1]). We show that Lq unlike Spq, never has a polynomial
eigenfunction.

Proposition 2.5. The operator Lq has no eigenfunction polynomial of z and Z.

Proof. Assume to the contrary that there exists A € C and a polynomial
P = P(z,%), not identically zero, such that AP = Lo P. We can find a polyno-
mial Q(z,Zz) so that AQ = P. For z € Q,

AP(z,z) = L /Q P(w,w)In|w — z| dA(w)

27
1

= — | AQ(w,w)In|w — z| dA(w)
27T Q
0 - 0
=Q(z,2) + o, (a—filn\g —z| — Q(C, C)a_nCIHK = 2]) dsc.
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Taking 0,-derivatives we obtain

oP  0Q 1 [ [0Q 1 o ([ 1
)\g_£+§/aa {57’%3—5_@5’”4 (i—fﬂ B¢

Finally taking 0,-derivatives it follows that 4\AP = 4A(Q). Since by assumption
P = AQ we must have A\AP = P. But this is a clear contradiction. n
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