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Abstract. We show that, for positive definite kernels, if specific forms of regularity
(continuity, Sn-differentiability or holomorphy) hold locally on the diagonal, then
they must hold globally on the whole domain of positive-definiteness. This local-to-
global propagation of regularity is constructively shown to be a consequence of the
algebraic structure induced by the non-negativity of the associated bilinear forms
up to order 5. Consequences of these results for topological groups and for positive
definite and exponentially convex functions are explored.
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1. Positive definite kernels and functions

1.1. Introduction. The phenomenon of regularity propagation for positive def-
inite functions has recently attracted renewed attention. If an appropriate form
of regularity (continuity, C2n differentiability in the real case, holomorphy in
the complex case) holds in a neighborhood of the origin or the imaginary axis,
then positive definiteness effectively sweeps it along horizontal lines, produc-
ing a local-to-global propagation of regularity to horizontal tubes in the whole
domain. Regularity propagation is known in different contexts: in Rn, where
it follows directly [9] or by properties of Fourier transforms [16]; for complex
functions, for which it follows by Fourier–Laplace transforms [5, 12]; for com-
plexifications of finite-dimensional real vector spaces [18]; and for involutive
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oliveira@unifei.edu.br



2 J. Buescu et al.

topological groups [30]. Proofs of regularity propagation usually rely on an
appropriate integral representation determined by Bochner’s theorem.

In this paper we show that regularity propagation holds in the much more
general setting of positive definite kernels , for which no analog of the Bochner
integral representation exists. Regularity propagation is thus a deeper and more
fundamental property than previously considered, since it is a direct algebraic-
analytic consequence of the definition of positive-definiteness. More specifically,
we show constructively that, if the appropriate kind of regularity (continuity,
C2n-type regularity for real-variable kernels, holomorphy for complex-variable
kernels) holds in a neighborhood of the diagonal, then the positive-definiteness
condition “sweeps” the whole domain, forcing regularity to propagate through-
out it.

The key property for regularity propagation is the basic positive-definite-
ness condition. Indeed, our results follow constructively from matrix positive
definiteness properties of the relevant bilinear forms. While it is quite possible
that more abstract representations such as those associated with the concept of
reproducing kernel Hilbert space (RKHS) as introduced by Aronszajn [2] and
Krein [19] may conceivably be used to provide an alternative derivation of our
results, our methods provide purely algebraic and analytical proofs which are
constructive from first principles and do not rely on the use of those more so-
phisticated functional analytic methods. In fact, it is possible that replicating
these results relying solely on RKHS theory may involve technical subtleties
which may render fully rigorous proofs quite involved. For instance, in Sub-
section 3.2 it becomes necessary to relate different positive definite kernels in
distinct Sn classes to study C2n propagation. In the RKHS context this would
imply relating different RKHS consisting of functions of different finite order
of differentiability equipped with with unknown norms, which seems a highly
non-trivial task. In the same vein, the RKHS approach would not be able to
circumvent use of (some version of) the constructive methods we develop in
Section 3 to attack differentiability, leaving the extra problem of showing, by
density or more sophisticated functional analytic arguments, the existence of
the relevant derivatives in the RKHS.

Regularity propagation for positive definite functions is not to be con-
fused with the classical extension problem, which has a long and rich history
[20,21,23–25] but a quite different nature. In this problem one seeks to extend
a positive definite function beyond its domain of definition preserving positive
definiteness and, if possible, regularity. In regularity propagation one starts
with a positive definite function in a fixed domain and studies how specific
types of regularity extend from local to global sets as a consequence of positive
definiteness. There are however some connections between the two problems,
see Remark 3.23.

The paper is structured as follows. In the remainder of Section 1 we set up
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the relevant basic definitions. In Section 2 we provide necessary and sufficient
conditions for propagation of continuity from a neighborhood of the diagonal.
As an application we characterize a naturally generalized class of shift-invariant
kernels on topological groups. In Section 3 we characterize regularity propaga-
tion for differentiable and holomorphic positive definite kernels. We conclude
with an application to positive definite functions by means of the associated
kernels.

1.2. Basic definitions and properties.

Definition 1.1. Let Ω be a nonempty set. A function k : Ω × Ω → C is
a positive definite kernel on Ω if, for every n ∈ N and all finite collections
{xj}nj=1 ⊂ Ω and {ξj}nj=1 ⊂ C,

n∑
i,j=1

k(xi, xj) ξi ξj ≥ 0

that is, if every square matrix [k(xi, xj)]
n
i,j=1 is positive semidefinite.

Consideration of order 1 and order 2 matrices easily leads to the following
basic properties of positive definite kernels.

(P1) k(x, x) = k(x, x) ≥ 0 ∀x ∈ Ω;

(P2) k(x, y) = k(y, x) ∀(x, y) ∈ Ω2;

(P3) |k(x, y)|2≤ k(x, x) k(y, y) ∀(x, y) ∈ Ω2.

Given a nonempty set Ω, we define the diagonal of Ω2 as the set

D(Ω2) = {(x, x) : x ∈ Ω}.

Properties P1–P3 illustrate the central rôle played by the values assumed by k
along the diagonal D(Ω2) on the global behaviour of the kernel k. Considera-
tion of higher order matrices in the appropriate topological and differentiable
contexts has been shown to imply a number of additional properties of positive
definite kernels (see [6]) which further stress the importance of the diagonal in
the control of regularity.

In this paper we explore the consequences of the properties of 3rd, 4th and 5th

order bilinear forms resulting from Definition 1.1 for the propagation of regu-
larity of the kernel k from the diagonal D(Ω2) to Ω2. Convenient assumptions
will be made about the nature of the set Ω in order to derive conclusions for
the continuous, C2n-differentiable and holomorphic cases.

Natural connections exist between positive definite kernels and positive def-
inite functions, allowing the identification of the latter with a subclass of the
former. This fact is clear from the following definition and will be used later in
this paper to derive regularity propagation for positive definite functions as a
consequence of those obtained for positive definite kernels.
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Definition 1.2. Let (G,+) be an Abelian group and suppose x→ x∗ is a map
in G. Consider any nonempty subset Ω of G and define S = Ω + Ω∗ = {z ∈ G :
z = x+ y∗, x, y ∈ Ω}. Then a function f : S → C is said to be positive definite
if k(x, y) ≡ f(x+ y∗) is a positive definite kernel k : Ω2 → C, that is, if

n∑
i,j=1

f(xi + x∗j) ξi ξj ≥ 0

for every n ∈ N and all finite collections {xj}nj=1 ⊂ Ω and {ξj}nj=1 ⊂ C.

This definition of a positive definite function provides a natural general-
ization of the notion of shift-invariant positive definite kernel on Ω. Given a
nonempty set Ω, it is convenient to define the diagonal of S = Ω + Ω∗ as the set

DΩ(S) = {x+ x∗ : x ∈ Ω}.

Remark 1.3. DΩ(S) has zero as its unique element in examples (i)–(iii) below.
However, example (iv) shows that this is not, in general, the case.

We list a few concrete examples of this abstract setting where the map
x 7→ x∗ is an involution. Recall that, in a group (G, ◦), an involution ∗ : G→ G
is a map whose second power is the identity and which satisfies (g1◦g2)∗ = g∗2◦g∗1
(see e.g. [3]).

(i) Taking Ω = G and x∗ = −x, we have S = G− G = G. Then f : G → C
is a positive definite function if k(x, y) = f(x − y) is a positive definite
kernel on G.

(ii) In the special case where Ω = Rn and x∗ = −x, we obtain the standard
definition of positive definite function f : Rn → C associated with the
positive definite kernel k : R2n → C defined by k(x, y) = f(x− y).

(iii) If Ω ⊂ Rn and x∗ = −x, we have S = Ω−Ω. Then f : S → C is a positive
definite function if k(x, y) = f(x− y) is a positive definite kernel on Ω.

(iv) Examples (i)–(iii) admit a natural counterpart where the ∗−map is re-
placed with the identity x∗=x, S=Ω + Ω∗=Ω + Ω and k(x, y)=f(x+y).
In this special case we will refer to k as a co-positive definite function [12].
Co-positive definite functions are also known as exponentially convex func-
tions in the context of example (ii). In the real-variable context, these
functions were introduced by Bernstein in 1929 [4] and have been studied
by Widder [28], Devinatz [14,15] and other authors.

(v) Suppose that Ω ⊂ Cn, x∗ = −x and S = {z = x − y : x, y ∈ Ω} =
codiff(Ω) (for the general definition of codifference sets see [10,11]). Then
f : S → C is a positive definite function iff k(x, y) = f(x−y) is a positive
definite kernel on Ω.
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2. Propagation of continuity for positive definite kernels

Suppose that Ω is a topological space and that k is a positive definite kernel
on Ω, where Ω2 is endowed with the product topology. For convenience, we
define ky : Ω → C by ky(x) = k(x, y) for each fixed y ∈ Ω and kx(y) = k(x, y)
for each fixed x ∈ Ω.

The following lemmas will be used in the proof of this and next section’s
main results.

Lemma 2.1. Suppose that K : Ω2→ C is a separately continuous function and
that, for each x0∈Ω, there exists a neighborhood V(x0) such that {Kx : x∈V(x0)}
is equicontinuous in Ω. Then K is continuous in Ω2.

Proof. Fix (x0, y0) in Ω2. For any (x, y) ∈ Ω2 we have

|K(x, y)−K(x0, y0)|≤ |K(x, y)−K(x, y0)|+|K(x, y0)−K(x0, y0)|.

Observe that, for any fixed y0, Ky0(x) is by hypothesis continuous in Ω and,
in particular, at x = x0. Hence, for every δ > 0 there exists a neighborhood
V δ(x0) such that

|Ky0(x)−Ky0(x0)|= |K(x, y0)−K(x0, y0)|< δ

2

whenever x ∈ V δ(x0). Now, by hypothesis, if x ∈ V (x0) there exists a neigh-
borhood W (y0), independent of x, such that

|Kx(y)−Kx(y0)|= |K(x, y)−K(x, y0)|< δ

2

for every y ∈ W (y0).
Then, if (x, y) ∈ U(x0, y0) =

(
V (x0) ∩ V δ(x0)

)
× W (y0), it follows that

|K(x, y)−K(x0, y0)|< δ. This finishes the proof.

Lemma 2.2. Let Ω be a set and suppose k : Ω2 → C is a positive definite
kernel. Then for every x1, x2, x3 in Ω, we have

|k(x1, x2)−k(x1, x3)|2≤ 2k(x1, x1)<
(
k(x2, x2) + k(x3, x3)

2
− k(x2, x3)

)
. (2.1)

Proof. Let {x1, x2, x3} ⊂ Ω. Since k is a positive definite kernel, we have

3∑
i,j=1

k(xi, xj) ξi ξj ≥ 0 (2.2)



6 J. Buescu et al.

for any {ξj}3
j=1 ⊂ C. Choosing ξ1 = η, ξ2 = 1 and ξ3 = −1 and using proper-

ties P1 and P2, condition (2.2) may be written in the form

− k(x1, x1)|η|2−2<(η(k(x1, x2)− k(x1, x3))

≤ 2<
(
k(x2, x2) + k(x3, x3)

2
− k(x2, x3)

)
(2.3)

for every η ∈ C.
If k(x1, x1) = 0 then (2.1) holds trivially since, in this case, it follows from

property P3 that the left hand side of (2.3) is zero.

Suppose then that k(x1, x1) 6= 0. Choosing η = −(k(x1,x2)−k(x1,x3))
k(x1,x1)

, we obtain

from (2.3)

− |k(x1, x2)− k(x1, x3)|2

k(x1, x1)
+ 2
|k(x1, x2)− k(x1, x3)|2

k(x1, x1)

≤ 2<
(
k(x2, x2) + k(x3, x3)

2
− k(x2, x3)

)
which implies (2.1).

Theorem 2.3. Let Ω be a topological space. Suppose that k : Ω2 → C is
a positive definite kernel whose real part <(k) is continuous on the diagonal
D(Ω2). Then k is continuous in Ω2.

Proof. Let {x1, x2, x3} ⊂ Ω. Then acording to Lemma 2.2, we have

|k(x1, x2)− k(x1, x3)|2≤ k(x1, x1) 2<
(
k(x2, x2) + k(x3, x3)

2
− k(x2, x3)

)
.

Taking limits when x3 → x2 and using continuity of <(k) on the diagonal
we conclude that k is separately continuous on the second variable. From prop-
erty P2 we then derive that k is separately continuous in Ω2. Since, according
to the hypothesis, the real part of k is continuous on D(Ω2), it follows that
k(x, x) is bounded on some neighborhood V (x0) of any x0 ∈ Ω. Then there
exists M > 0 such that k(x1, x1) = |<k(x1, x1)|≤ M for every x1 ∈ V (x0) and
we derive from (2.1) that

|k(x1, x2)− k(x1, x3)|2≤ 2M <
(
k(x2, x2) + k(x3, x3)

2
− k(x2, x3)

)
.

Since the right hand side of the equation does not depend on x1 we conclude,
by taking limits when x3 → x2 and using continuity of <(k) on the diagonal,
that {kx : x ∈ V (x0)} is equicontinuous in Ω. Since this is true for any x0 ∈ Ω,
we conclude by Lemma 2.1 that k is continuous in Ω2, as stated.
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Remark 2.4. Although a different proof of this result may be derived in the
context of the theory of reproducing kernels, our direct approach has the ad-
vantage of clarifying the precise analytical rôle of each hypothesis. In fact, this
result is frequently stated and proved, in the RKHS approach, by requiring
cumulatively separate continuity of the kernel in both variables and continu-
ity on the diagonal (see e.g. Schwartz [26, Proposition 24] or Steinwart and
Christmann [27, Lemma 4.29]). Our proof shows that the hypothesis of sepa-
rate continuity is unnecessary, since it follows from continuity on the diagonal
and joint continuity implied by continuity on the diagonal alone. The fact that
continuity on the diagonal is, in this context, the more fundamental property
may be judged from a result by Lehto [22] showing that separately continuous,
bounded positive definite kernels are not necessarily continuous. It is worth
noting, however, that in the original paper of Krein [19] on RKHS this result is
stated in a rigorously equivalent form to Theorem 2.3.

2.1. Application to shift-invariant kernels on groups. A first and
straightforward consequence of Definition 1.2 and Theorem 2.3 may be stated
as follows.

Corollary 2.5. Suppose (G,+) is a topological group and that x → x∗ is a
continuous map. Let Ω be an open subset of G, S = Ω + Ω∗ and suppose
f : S → C is a positive definite function. Then f is continuous in S if and only
if <(f) is continuous in DΩ(S).

Proof. Since the “only if” part of the assertion is trivial, we concentrate on
the sufficiency assertion. Define the positive definite kernel k : Ω2 → C by
k(x, y) = f(x + y∗). Observe that <(k(x, y)) = <(f(x + y∗)) is continuous in
D(Ω2) since <(f) is continuous in DΩ(S) by hypothesis. Since k is a positive
definite kernel, we conclude by Theorem 2.3 that k is continuous in Ω2.

For any fixed y ∈ Ω, define Ωy = Ω+{y∗} and ly : Ωy → Ω by ly(z) = z−y∗.
Notice that Ωy is an open set and that ly is continuous for the topologies induced
by G on Ω and Ωy. Now observe that k(z−y∗, y) = ky ◦ ly(z) = f|Ωy(z) is
continuous in Ωy since k is continuous in Ω2. Notice, furthermore, that since Ωy

is open, any open set of Ωy is an open set of S = Ω + Ω∗ =
⋃
y∈Ω Ωy. For any

open set U ⊂ C, this imples that f−1(U) =
⋃
y∈Ω f

−1
|Ωy(U) is an open set of S,

showing that f is continuous in S and concluding the proof.

The next result follows from direct application of Corollary 2.5 to exam-
ple (iii) in Section 1 and is a standard result, readily found in the literature, for
the case where Ω = Rn.

Corollary 2.6. Suppose Ω is an open subset of Rn, S=Ω−Ω, and let f : S → C
be a positive definite function in the usual Rn variable sense (that is, taking
x∗ = −x). Then f is continuous in S if and only if <(f) is continuous at the
origin.
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Proof. The result follows immediately from Corollary 2.5 by observing that, in
this case, DΩ(S) = {0}.

In a similar way, direct application of Corollary 2.5 the case of example (iv)
leads to the following result.

Corollary 2.7. Suppose Ω is an open subset of Cn, S = {z = x − y, x, y ∈
Ω} ≡ codiff(Ω), and let f : S → C be a positive definite function on S in the
usual Cn variable sense (i.e. with x∗ = −x). Then f is continuous in S if and
only if <(f) is continuous on DΩ(S).

3. Propagation of differentiability for positive definite
kernels and functions

We now focus on differentiability properties of positive definite kernels of two
real or complex variables. Results will be derived in a constructive way from
direct consideration of 4th and 5th order square matrices associated with the
corresponding bilinear forms on Definition 1.1 under suitable hypotheses on the
regularity of the kernel on the diagonal. The main results will be established
in Subsection 3.2. Consequences for real and complex variable positive definite
functions are explored in Subsection 3.3. Notation and terminology will be fixed
in the next section along with some essential but not necessarily original results.
Proofs are nevertheless provided when they shed light on the methods used in
other sections.

3.1. Differentiation of one or two real or complex variable functions.
A real or complex variable function f : D → C is said to be differentiable at a
point a ∈ int(D) if its derivative

df

dx
(a) = lim

h→0

f(a+ h)− f(a)

h
(3.1)

is a complex number.
In the complex variable case, differentiability of f at every point of an

open set Ω imples analiticity in Ω and is usually referred to as holomorphy in
this set (see [6] for further details). The next definition is also very useful in
this context. Given a set U , we denote by U∗ its complex conjugate, that is,
U∗ = {z : z ∈ U}.

Definition 3.1. Let D ⊂ C. A function f : D → C is said to be anti-
holomorphic on an open subset U ⊂ D if there exists a holomorphic function
g : U∗ → C such that f(x) = g(x) for all x ∈ U . We define, for every a ∈ U ,

df

dx |x=a
=
dg

dx |x=a
. (3.2)
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As a consequence, the corresponding higher-order differential operators are
given by dmf

dxm |x=a
= dmg

dxm |x=a
.

A straightforward consequence of Definition 3.1 is that, for a ∈ int(D),

df

dx
(a) =

dg

dx
(a) = lim

h→0

g(a+ h)− g(a)

h
= lim

h→0

f(a+ h)− f(a)

h
. (3.3)

The following characterization of the existence of the derivatives defined in
(3.1) and (3.3) will be essential for what follows.

Lemma 3.2. (i) Suppose f : D → C is a real or complex variable function

and a ∈ int(D). Then df
dx

(a) = limh→0
f(a+h)−f(a)

h
is a complex number if

and only if

lim
(h,l)→(0,0)

f(a+ h)

h
+ f(a)

(
1

l
− 1

h

)
− f(a+ l)

l
= 0.

(ii) Suppose f : D → C is a complex variable function and a ∈ int(D). Then
df
dx

(a) = limh→0
f(a+h)−f(a)

h
is a complex number if and only if

lim
(h,l)→(0,0)

f(a+ h)

h
+ f(a)

(
1

l
− 1

h

)
− f(a+ l)

l
= 0.

Proof. Since the “only if” part of the assertions is trivial, we focus on the

sufficiency of the conditions given in (i) and (ii). Let G(h) = f(a+h)−f(a)
h

in the

first case and G(h) = f(a+h)−f(a)

h
in the second. In either case write P(h, l) =

G(h)− G(l). Both statements will be simultaneously proved if we show that if

lim(h,l)→(0,0)P(h, l) = 0, then limh→0 G(h) is necessarily a complex number.

We begin by showing that G must be bounded on some (real or complex,
according to the relevant case) neighborhood of zero. In order to establish a
contradiction, suppose that this is not the case. Then we can find a sequence ln
convergent to zero such that |G(ln+1) − G(ln)|> 1 for every n ∈ N. Defining
hn = ln+1, we have that (hn, ln) → (0, 0) (in R2 or C2, according to the case)
and that |P(hn, ln)|= |G(hn) − G(ln)|= |G(ln+1) − G(ln)|> 1 for every n ∈ N.
Hence lim(h,l)→(0,0)P(h, l) cannot be zero, contradicting the hypothesis.

It therefore follows that G is bounded in some neighborhood of zero. Then,
for any sequence ln → 0, we conclude that G(ln) is bounded in C and therefore
admits a subsequence G(lbn) converging to α ∈ C. Since (ln, lbn) → (0, 0)
(respectively in R2 or C2) and lim(h,l)→(0,0)P(h, l) = 0 by hypothesis, it follows
that G(ln) − G(lbn) → 0 as n → ∞. Writing G(ln) = G(ln) − G(lbn) + G(lbn),
it follows that limn→∞ G(ln) = limn→∞ G(lbn) = α. Arbitrariness of ln implies
that limh→0 G(h) = α ∈ C, finishing the proof.

We now turn our attention to functions of two real or complex variables.
We first concentrate on this last case, where particularly significant phenomena
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take place. It is convenient to define, given U ⊂ C2, the sesquiconjugate set
U∗ = {(x, y) ∈ C2 : (x, y) ∈ U }.

Definition 3.3. Let U ⊂ C2 be an open set and k : U → C. We say that k(u, v)
is sesquiholomorphic in U if there exists a separately holomorphic function g :
U∗ → C such that k(u, v) = g(u, v) for all (u, v) ∈ U , i.e., if k(u, v) is separately
holomorphic in u and anti-holomorphic in v.

Proposition 3.4. Let U ⊂ C2 be an open set and suppose k(u, v) is sesquiholo-
morphic in U . Then, for all m1, m2 ∈ N, k has continuous partial derivatives
∂m1+m2

∂vm2∂um1
k(u, v) of all orders with respect to the variables u and v and the order

of differentiation is immaterial.

A proof of this fact may be found, after minor adaptations, in [6, Proposi-
tion 1.4].

The following lemma will be relevant for the use of finite increments in the
context of differentiation. It is convenient to define

∆h,lk(u, v) = k(u+ h, v + l)− k(u, v + l)− k(u+ h, v) + k(u, v) (3.4)

whenever the right-hand side is defined for u, v, h, l ∈ C.

Lemma 3.5. Let U ⊂ C2 be an open set and suppose k(u, v) is sesquiholomor-
phic in U . Then, for (u, v) ∈ U ,

∂2

∂u∂v
k(u, v) =

∂2

∂v∂u
k(u, v) = lim

(h,l)→(0,0)

∆h,lk(u, v)

h l
.

Proof. We will show that, for separately holomorphic g(u, v), the identity

∂2

∂u∂v
g(u, v) =

∂2

∂v∂u
g(u, v) = lim

(h,l)→(0,0)

∆h,lg(u, v)

h l
(3.5)

holds. This will imply that, for g such that k(u, v) = g(u, v), we have, by virtue
of (3.2) and (3.3),

∂2

∂u∂v
k(u, v) =

∂2

∂u∂v
g(u, v)

and

∂2

∂v∂u
k(u, v) =

∂2

∂v∂u
g(u, v) = lim

(h,l)→(0,0)

∆h,lg(u, v)

h l
= lim

(h,l)→(0,0)

∆h,lk(u, v)

h l

implying the statement of the lemma.
In order to establish identity (3.5), it is convenient to recall the follow-

ing version of the finite increment formula for holomorphic functions (see e.g.
[1, p. 125]). Suppose f is analytic on an open set U ⊂ C, D is a topological
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disc whose closure is contained in U , C = ∂D, z and h are complex numbers
such that z and z + h are in D. Then

f(z + h)− f(z)

h
=

1

2πi

∫
C

f(ζ)

(ζ − z)(ζ − z − h)
dζ. (3.6)

Suppose g : U∗ → C is separately holomorphic and that (u, v) ∈ U∗. Let D1

(resp. D2) be a disc centered at U (resp. v such that D1×D2 ⊂ U∗, C1 = ∂D1,
C2 = ∂D2. Successive applications of formula (3.6) yield

∆h,lg(u, v)

h l
=

1

(2πi)2

∫
C2

∫
C1

g(ζ1, ζ2)

(ζ1−u)(ζ1−u−h)(ζ2−v)(ζ2−v−l)
dζ1 dζ2. (3.7)

Continuity of g and the integral representation (3.7) imply that

lim
(h,l)→(0,0)

∆h,lg(u, v)

h l
=

1

(2πi)2

∫
C2

∫
C1

g(ζ1, ζ2)

(ζ1 − u)2(ζ2 − v)2
dζ1 dζ2

=
∂2

∂v∂u
g(u, v)

=
∂2

∂u∂v
g(u, v),

concluding the proof.
It will be essential for what follows to define the following differentiability

class; for further details and motivation see e.g. [7, 8].

Definition 3.6. Let U ⊂ R2 be an open set. A function k : U → C is said to
be of class Sn(U) if, for every m1 = 0, 1, . . . , n and m2 = 0, 1, . . . , n, the partial
derivatives ∂m1+m2

∂vm2 ∂um1
k(u, v) are continuous in U .

The special significance of this class of kernels in the present context is due
to the following result.

Theorem 3.7. Let Ω ⊆ R be an open set and k(x, y) be a positive definite
kernel of class Sn(Ω2). Then, for all 0 ≤ m ≤ n,

km(x, y) ≡ ∂2m

∂ym∂xm
k(x, y)

is a positive definite kernel of class Sn−m(Ω2).

For a proof in the case where Ω is an interval, see [7, Theorem 3.6]; extension
to general open sets is immediate. Generalizations to several real and complex
variables exist (see e.g. [6]) but will not be necessary in this paper.

We are now ready to construct a version of Lemma 3.5 for functions of two
real variables using definition (3.4) in the appropriate way.
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Lemma 3.8. Let U ⊂ R2 be an open set and suppose that k : U → C is of class
S1(U). Then, for (u, v) ∈ U ,

∂2

∂u∂v
k(u, v) =

∂2

∂v∂u
k(u, v) = lim

(h,l)→(0,0)

∆h,lk(u, v)

h l
.

Proof. Suppose that I1 and I2 are open intervals centered at u and v, respec-
tively, such that I1 × I2 ⊂ U . For any h, l such that u + h ∈ I1 and v + l ∈ I1

define
φ1(t) = k(u+ th, v + l)− k(u+ th, v),

observe that φ1 is differentiable in an open interval containing [0, 1] and that
∆h,lk(u, v) = φ1(1) − φ1(0). By the mean value theorem for functions of one
real variable there exists t1 ∈ ]0, 1[ such that

φ1(1)− φ1(0) = φ′1(t1) =

(
∂k

∂u
(u+ t1h, v + l)− ∂k

∂u
(u+ t1h, v)

)
h.

A second application of the mean value theorem to the function

φ2(t) =
∂k

∂u
(u+ t1h, v + tl)

yields ∆h,lk(u, v) = ∂2k
∂u∂v

(u + t1h, v + t2l)h l for some t2 ∈]0, 1[. Continuity of
∂2k
∂v∂u

then implies that

lim
(h,l)→(0,0)

∆h,lk(u, v)

h l
=

∂2k

∂v∂u
(u, v).

The corresponding equality for the symmetric mixed derivative ∂2k
∂u∂v

is estab-
lished in a completely analogous way.

For the purposes of the next section, it will be convenient to establish the
following consequences from lemmas 3.5 and 3.8.

Corollary 3.9. In the conditions of Lemma 3.5 (resp. Lemma 3.8) define

ψ(h, l) =
∆h,lk(u, v)

h l

(
resp.

∆h,lk(u, v)

h l

)
and

φ(h, l) = ψ(h, h) + ψ(l, l)− ψ(h, l)− ψ(l, h).

Then
lim

(h,l)→(0,0)
φ(h, l) = 0.

Proof. Observe that, under the conditions of lemma 3.5 (resp. 3.8), we have

∂2

∂v∂u
k(u,v)= lim

(h,l)→(0,0)
ψ(h,l)= lim

(h,l)→(0,0)
ψ(l,h)= lim

(h,l)→(0,0)
ψ(h,h)= lim

(h,l)→(0,0)
ψ(l,l).

Remark 3.10. Notice that, if u = v, property P2 yields ψ(h, l) = ψ(l, h),
implying, in this case, that φ(h, l) is a real-valued function.
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3.2. Propagation of differentiability for positive definite kernels. We
first consider the case of complex variable positive definite kernels.

Let Ω ⊂ C be an open set and k : Ω2 → C a positive definite kernel
on Ω. We say that k is a holomorphic positive definite kernel in Ω if k is
sesquiholomorphic on Ω2.

Remark 3.11. Holomorphic positive definite kernels in Ω, also known as holo-
morphic reproducing kernels, are not defined as holomorphic functions on Ω2.
In fact, imposing separate holomorphy on these kernels would lead to a trivial-
ization of the concept; see [6] for further details.

Remark 3.12. As previously observed, the theory of reproducing kernels may
provide an alternative approach to the issues under discussion. For instance,
results have been stated in Krein [19] for holomorphic functions that may be
adapted to address the much more significant sesquiholomorphic case. Our
proof of the following results does not rely on any of these functional-analytic
constructions.

We may now state our main theorem for the complex context.

Theorem 3.13 (Propagation of regularity, complex context). Suppose Ω is an
open subset of C and let k : Ω2 → C be a positive definite kernel. If k is
sesquiholomorphic on an open set U containing the diagonal D(Ω2), then k is a
holomorphic reproducing kernel in Ω.

Proof. We will show that k is separately holomorphic in the first variable and
anti-holomorphic in the second variable for (u, v) ⊂ Ω2. For this purpose it
will be sufficient to see that ∂k

∂v
exists for (u0, v0) ∈ Ω2 since, using property P2,

Definition 3.1 and formula (3.3), we have:

∂k

∂u
(u0,v0)= lim

h→0

k(u0+h,v0)−k(u0,v0)

h
= lim
h→0

[
k(v0,u0+h)−k(v0,u0)

h

]
=
∂k

∂v
(v0,u0).

Now consider an arbitrary collection {xj}4
j=1 ⊂ Ω and the corresponding

bilinear form in Definition 1.1. Since k is a positive definite kernel, it follows
that, for any collection {ξj}4

j=1 ⊂ C,

4∑
i,j=1

k(xi, xj) ξi ξj ≥ 0. (3.8)

For (u, v) ∈ Ω2, fix some open discD ⊂ C with center v such thatD×D ⊂ U
and {u}×D ⊂ Ω2. For any nonzero h, l ∈ C such that v+h and v+ l are in D,
define

x1 = u, x2 = v + h, x3 = v, x4 = v + l.
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Choosing for the ξi the values

ξ1 = η, ξ2 =
1

h
, ξ3 =

1

l
− 1

h
, ξ4 = −1

l
, η ∈ C,

and observing that by property P2 we may write

k(xi, xj) = k(xj, xi), i, j = 1, . . . , 4 (3.9)

we derive from (3.8) that

k(u, u) |η|2+2<[η β0(h, l)] + γ(h, l) ≥ 0, (3.10)

where we have defined

β0(h, l) =
k(u, v + h)

h
+ k(u, v)

(
1

l
− 1

h

)
− k(u, v + l)

l

and

γ(h, l) =
k(v + h, v + h)

|h|2
+ k(v, v)

∣∣∣∣1l − 1

h

∣∣∣∣2 +
k(v + l, v + l)

|l|2

+ 2<
[
k(v + h, v)

1

h

(
1

l
− 1

h

)
+ k(v + h, v + l)

1

h

(
−1

l

)
+k(v, v + l)

(
1

l
− 1

h

)(
−1

l

)]
.

(3.11)

Next we show that the inequality

|β0(h, l)|2≤ k(u, u) γ(h, l). (3.12)

is a consequence of (3.10). Indeed, if k(u, u) = 0, this is a trivial consequence
of the fact that, by property P3, β0(h, l) = 0. Suppose that k(u, u) 6= 0. Then
(3.12) follows from (3.10) by choosing η = − 1

k(u,u)
β0(h, l).

Finally observe that we only need to show that lim(h,l)→(0,0) γ(h, l) = 0
in order to finish the proof. Indeed, according to (3.12), the aforementioned
condition implies that lim(h,l)→(0,0) β0(h, l) = 0. This, in turn, will lead to
the conclusion that ∂k

∂v
(u, v) is a complex number, as stated in the theorem

by direct application of Lemma 3.2 (ii) with the appropriate identification of
k(u, v) with f(v).

It will prove convenient to rewrite (3.11) in the following form:

γ(h, l)

= <
[
k(v+h,v+h)

|h|2
+ k(v,v)

−hl−lh+|h|2+|l|2

|h|2|l|2
+
k(v+l,v+l)

|l|2

+2k(v+h,v)

(
1

hl
− 1

|h|2

)
−2k(v+h,v+l)

1

hl
+2k(v,v+l)

(
1

hl
− 1

|l|2

)]
.

(3.13)
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Now recall the contents of Corollary 3.9 and set

ψ(h, l) =
∆h,lk(v, v)

hl
, φ(h, l) = ψ(h, h) + ψ(l, l)− ψ(h, l)− ψ(l, h).

Then the conclusions of the corollary together with the fact that k is, by hy-
pothesis, sesquiholomorphic on an open set U containing (v, v), imply that

lim
(h,l)→(0,0)

φ(h, l) = 0. (3.14)

A straightforward calculation now reveals, through the use of formulas (3.9)
and direct comparison with (3.13), the following identification:

γ(h, l) = φ(h, l) (3.15)

(observe that this expression is real by Remark 3.10). From (3.14) and (3.15)
we finally derive that lim(h,l)→(0,0) γ(h, l) = 0, which finishes the proof.

We now focus on establishing the real variable counterpart of Theorem 3.13.
The constructive arguments used in the proof of this theorem will be adapted
in order to prove the following lemmas.

Lemma 3.14. Suppose Ω is an open subset of R and let k : Ω2 → C be a positive
definite kernel. If k is of class S1(U) for some open subset U containing the
diagonal D(Ω2), then k is separately differentiable in Ω2.

Proof. The proof follows very closely that of Theorem 3.13. Since by prop-

erty P2 and Definition 3.1 we have that ∂k
∂u

(u0, v0) = ∂k
∂v

(v0, u0) it is sufficient to
show that ∂k

∂v
(u0, v0) exists in C for all (u0, v0) ∈ Ω2.

For (u, v) ∈ Ω2 we fix some open interval I centered at v such that I×I ⊂ U
and {u}×I ⊂ Ω2 and consider nonzero h, l ∈ R such that v+h and v+ l belong
to I. Since k is a positive definite kernel, we may write Definition 1.1 as (3.8)
with the following choices:

x1 = u, x2 = v + h, x3 = v, x4 = v + l

and

ξ1 = η, ξ2 =
1

h
, ξ3 =

1

l
− 1

h
, ξ4 = −1

l
, η ∈ C.

Now formulas (3.10)–(3.13) follow in the exact same way as in the complex
variable case, with the obvious particularity that now h = h and l = l. The
arguments leading to the conclusion (3.12) also carry through. Thus, if γ(h, l)
may be proved to have zero limit at the origin, direct application of Lemma 3.2(i)
with the identification k(u, v) = f(v) yields the conclusions of the theorem as
a consequence of the fact that, in that case, lim(h,l)→(0,0) β0(h, l) = 0. To show
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that lim(h,l)→(0,0) γ(h, l) = 0 we recall once again the definitions of ψ and φ in
Corollary 3.9 and set

ψ(h, l) =
∆h,lk(v, v)

h l

in this case. Since k is, by hypothesis, of class S1(U) on an open set U containing
(v, v), the conclusion of the corollary will yield formula (3.14) as a consequence.
The proof is finished by establishing formula (3.15) and using it together with
(3.14) to conclude that lim(h,l)→(0,0) γ(h, l) = 0.

Lemma 3.15. In the conditions of Lemma 3.14, ∂k
∂v

(u, v) (resp. ∂k
∂u

(u, v)) is
continuous in v ∈ Ω (resp. is continuous in u ∈ Ω) for every fixed value of u ∈ Ω
(for every fixed value of v ∈ Ω). Furthermore, for any (u0, v0) ∈ Ω2 there exists
a neighborhood U(u0) (resp. V (v0)) such that the family {∂k

∂v
(u, v), u ∈ U(u0)}

of fixed-u functions of v (resp. {∂k
∂u

(u, v), v ∈ V (v0)} of fixed-v functions of u)
is equicontinuous in Ω.

Proof. As in the proof of Lemma 3.14, observe that by property P2 we have
that ∂k

∂u
(u0, v0) = ∂k

∂v
(v0, u0) for all (u0, v0) ∈ Ω2 and therefore it suffices to prove

the assertions for ∂k
∂v

.

For (u, v) ∈ Ω2 we fix some open interval I centered at v such that I×I ⊂ U
and {u} × I ⊂ Ω2 and consider nonzero h, l ∈ R such that v + h and v + h+ l
belong to I. Since k is a positive definite kernel, we may write Definition 1.1 as
(3.8) with the following choices:

x1 = u, x2 = v, x3 = v + h, x4 = v + h+ l

and

ξ1 = η, ξ2 =
1

h
, ξ3 =

1

l
− 1

h
, ξ4 = −1

l
.

We formally rewrite inequality (3.10) as

k(u, u) |η|2+ 2<[η β0(h, l)] + γ0(h, l) ≥ 0,

with the new definitions

β0(h, l) =
k(u, v + h)− k(u, v)

h
− k(u, v + h+ l)− k(u, v + h)

l

and

γ0(h, l) =
k(v, v)

|h|2
+ k(v + h, v + h)

∣∣∣∣1l +
1

h

∣∣∣∣2 +
k(v + h+ l, v + h+ l)

|l|2

+ 2<
[
k(v, v + h)

(
−1

h

)(
1

l
+

1

h

)
+ k(v, v + h+ l)

1

hl

+k(v + h, v + h+ l)

(
−1

l

)(
1

h
+

1

l

)]
.

(3.16)
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The formula corresponding to (3.12) is obtained in the exact same way,
leading to

|β0(h, l)|2≤ k(u, u) γ0(h, l). (3.17)

Now, defining

ψ0(h, l) =
∆h,lk(v, v + h)

h l

and
φ0(h, l) = ψ0(h, h) + ψ0(l, l)− ψ0(h, l)− ψ0(l, h) (3.18)

the identification
γ0(h, l) = φ0(h, l) (3.19)

may be established by direct comparison of (3.18) and (3.16). On the other
hand, by adapting the procedures of the proof of Lemma 3.8 it is possible to
derive the identity

∂2

∂u∂v
k(v, v) = lim

(h,l)→(0,0)
ψ0(h, l) (3.20)

from the hypothesis that k is of class S1(U) on an open set containing (v, v).
From (3.18)–(3.20) we may now conclude that

lim
(h,l)→(0,0)

γ0(h, l) = lim
(h,l)→(0,0)

φ0(h, l) = 0

and also that, according to (3.17),

lim
(h,l)→(0,0)

β0(h, l) = 0. (3.21)

Finally, observe that condition (3.21) implies

lim
h→0

(
lim
l→0

β0(h, l)
)

= 0. (3.22)

Since liml→0 β
0(h, l) = k(u,v+h)−k(u,v)

h
− ∂k

∂v
(u, v + h), it follows from (3.22) that

∂k

∂v
(u, v) = lim

h→0

∂k

∂v
(u, v + h),

showing that ∂k
∂v

(u, v) is continuous on the second variable v ∈ Ω for any fixed
u ∈ Ω, as asserted.

To finish the proof we finally observe that, for any u0 ∈ Ω, continuity of
k(u, u) implies that there exists a neighborhood U(u0) such that k(u, u) ≤ M
for some positive M and all u ∈ U(u0). Hence we may rewrite formula (3.17)
as

|β0(h, l)|2≤M γ0(h, l). (3.23)
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for u ∈ U(u0). Since the right hand side of (3.23) does not depend on u, we
conclude from (3.22) that the family of fixed-u functions of v {∂k

∂v
(u, v), u ∈

U(u0)} is equicontinuous in Ω.
The two following results will be essential in the proof of Lemma 3.18 below.

The first is a corollary of Lemma 3.2.

Corollary 3.16. Let Ω be an open subset of R and k : Ω2 → C be a complex
function. Suppose that ∂k

∂u
(u, v) exists for every (u, v) ∈ Ω2 and write, whenever

meaningful for λ, h, l ∈ R,

βλ(h, l) =
k(u+ λ, v + h)

h
+ k(u+ λ, v)

(
1

l
− 1

h

)
− k(u+ λ, v + l)

l
.

Then ∂2k
∂v∂u

(u, v) is a complex number if and only if

lim
(h,l)→(0,0)

lim
λ→0

βλ(h, l)− β0(h, l)

λ
= 0.

Proof. Applying Lemma 3.2 to ∂k
∂u

(u, v) as a function of v, we have that
∂2k
∂v∂u

(u, v) is a complex number if and only if

lim
(h,l)→(0,0)

∂k
∂u

(u, v + h)

h
+
∂k

∂u
(u, v)

(
1

l
− 1

h

)
−

∂k
∂u

(u, v + l)

l
= 0. (3.24)

Writing ∂k
∂u

(u, v) = limλ→0
k(u+λ,v)−k(u,v)

λ
and using the definition of βλ, we con-

clude that condition (3.24) may be written in the form

lim
(h,l)→(0,0)

lim
λ→0

βλ(u, v)− β0(u, v)

λ
= 0,

as asserted.

Proposition 3.17. Let T be a square matrix of order r1 + r2 partitioned in the
block form

T =

[
A
∣∣ B

D
∣∣ C

]
where A = [aij], B = [biq], C = [cpq], D = [dpj] with i, j = 1 . . . , r1 and p, q =
1, . . . , r2 and let z = (z1, . . . , zr1) ∈ Cr1 , w = (w1, . . . , wr2) ∈ Cr2. Then, if T is
positive semidefinite, we have

|zT B w|2≤ (zT Az) (wT C w).

References and a proof of Proposition 3.17 may be found in [17] or [6].
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Lemma 3.18. Suppose Ω is an open subset of R and let k : Ω2 → C be a
positive definite kernel. If k is of class S1(U) for some open subset U containing
the diagonal D(Ω2), then the second order mixed partial derivatives ∂2k

∂v∂u
(u, v),

∂2k
∂u∂v

(u, v) exist for all (u, v) ∈ Ω2.

Proof. We will prove the result only for the mixed derivative ∂2k
∂v∂u

(u, v); the
corresponding result for the mixed partial in the reverse order then follows im-
mediately either by an analogous argument or simply by invoking the Hermitian
property P2.

For (u, v) ∈ Ω2 we fix some open intervals Iu and Iv centered at u and v
respectively, such that Iu × Iv ⊂ U and Iu × Iv ⊂ Ω2. Consider nonzero λ, h, l
such that u+λ ∈ Iu and v+ l, v+λ ∈ Iv and observe that, since k is a positive
definite kernel, we may write Definition 1.1 for n = 5 with the following choices:

x1 = u, x2 = u+ λ, x3 = v + h, x4 = v, x5 = v + l

and

ξ1 = −1

λ
, ξ2 =

1

λ
, ξ3 =

1

h
, ξ4 =

1

l
− 1

h
, ξ5 = −1

l
.

Fix r1 = 2, r2 = 3 and consider the order 5 square matrix [k(xi, xj)]i,j=1,...5

partitioned in the block form given in Proposition 3.17. This will lead to the
following identifications for i, j = 1, 2 and p, q = 1, 2, 3:

aij = k(xi, xj), biq = k(xi, xq+2), dpj = k(xp+2, xj), cpq = k(xp+2, xq+2),

zi = ξi, wp = ξp+2.

We now recall formula (3.4) and the definitions of βλ and γ in Corollary 3.16
and Lemma 3.14, respectively, to obtain

zTAz =
∆λλk(u, u)

λ2
, zTB w =

βλ(h, l)− β0(h, l)

λ
, wTC w = γ(h, l).

Then, according to the conclusions of Proposition 3.17, we have:∣∣∣∣βλ(h, l)− β0(h, l)

λ

∣∣∣∣2 ≤ ∆λλk(u, u)

λ2
γ(h, l)

Applying limits to both sides, we obtain:

lim
(h,l)→(0,0)

lim
λ→0

βλ(h, l)− β0(h, l)

λ
≤ lim

λ→0

∆λλk(u, u)

λ2
lim

(h,l)→(0,0)
γ(h, l).

By using Lemma 3.8, we recognize that limλ→0
∆λλk(u,u)

λ2
must coincide with

∂2k
∂v∂u

(u, u) which, according to the hypothesis, exists for every u ∈ Ω. Since
lim(h,l)→(0,0) γ(h, l) = 0 as observed in the proof of Lemma 3.14, we have that

lim
(h,l)→(0,0)

lim
λ→0

βλ(h, l)− β0(h, l)

λ
= 0.
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Hence, according to the conclusions of Corollary 3.16, ∂2k
∂v∂u

(u, v) is a complex
number, as asserted.

Remark 3.19. It may be of interest to observe that Proposition 3.17 might
also have been used, as in the proof above, to establish the relevant inequalities
in the proofs of Theorem 3.13 and Lemmas 3.14 and 3.15.

We are now ready to prove our main result in the real context.

Theorem 3.20 (Propagation of regularity, real context). Suppose Ω is an open
subset of R and let k : Ω2 → C be a positive definite kernel. If k is of class
Sn(U) for some open subset U containing the diagonal D(Ω2), then k is of class
Sn(Ω2).

Proof. We first concentrate on the case n=1. Since k is of class S1(U), we derive
from Lemmas 3.15 and 3.18 that ∂k

∂u
, ∂k
∂v

, ∂2k
∂v∂u

and ∂2k
∂u∂v

exist for all (u, v)∈Ω2.
Continuity of these functions will now ensure that k is in class S1(Ω2).

We first consider ∂k
∂v

. By Lemma 3.15, for every u0 ∈ Ω there exists a neigh-
borhood U(u0) such that the family

{
∂k
∂v

(u, v), u ∈ U(u0)
}

of fixed-u functions
of v is equicontinuous in Ω. On the other hand, continuity of ∂k

∂v
(u, v) in the

first variable is implied by the existence of ∂2k
∂u∂v

for all u ∈ Ω. Hence ∂k
∂v

is in
the conditions of Lemma 2.1 and we conclude that it is continuous in Ω2. A
similar procedure, or the simple observation that k satisfies property P2, leads
to the corresponding conclusion for ∂k

∂u
.

In order to show that ∂2k
∂u∂v

is continuous in Ω2, we first recall from The-
orem 3.7 that this function is itself a positive definite kernel. Since it is, by
hypothesis, continuous on U , we conclude from Theorem 2.3 that it is con-
tinuous on Ω2 and coincides (by Schwarz’s theorem) with ∂2k

∂v∂u
and is of class

S1(Ω2).
For the induction step, suppose the statement holds for n− 1. In order to

prove that it also holds for n, suppose k is in class Sn(U). Then it is of class
Sn−1(U) and therefore of class Sn−1(Ω). Hence

kn−1 ≡
∂2(n−1) k

∂un−1∂vn−1
(u, v)

exists for all (u, v) ∈ Ω2 and, according to [7], is a positive definite kernel.
Writing kn−1 in place of k and repeating the arguments of the first part of the
proof, we conclude that kn−1 has continuous first and second mixed derivatives
in Ω2. Therefore k is of class Sn(Ω2), and the conclusions of the theorem now
follow by induction on n.

3.3. Propagation of differentiability for positive definite functions.
We now derive consequences from Theorems 3.13 and 3.20 for positive and
co-positive definite functions. In the complex variable case, we have:
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Theorem 3.21. Suppose Ω ⊂ C is an open set, S = codiff Ω = Ω − Ω∗, and
f : S → C is a positive definite function. If f is holomorphic on an open set U
containing DΩ(S), then f is holomorphic in S.

Proof. Define k : Ω2 → C by k(u, v) = f(u − v). Then k is a positive definite
kernel. Continuity of the mapping s(u, v) = u − v implies that U = s−1(U) is
an open subset of C2. Moreover, it is clear that D(Ω2) ⊂ U . Since, for every
(x, y) ∈ U , we have u− v ∈ U , the fact that f is holomorphic in U implies that
k is sesquiholomorphic in U , with

∂k

∂u
(u, v) = f ′(u− v),

∂k

∂v
(u, v) = −f ′(u− v).

Then, according to Theorem 3.13, we conclude that k is a holomorphic positive
definite kernel.

Now, for any v ∈ Ω, write z = u−v for all u ∈ Ω and consider the mapping
f : Ω− {v} → C defined by

f(z) = k(z + v, v).

This mapping is clearly holomorphic in Ω− {v} since k(u, v) is holomorphic in
the first variable u ∈ Ω for any v ∈ Ω. Since v is arbitrary, we conclude that f
is holomorphic in S = Ω− Ω∗, as asserted.

Theorem 3.22. Suppose Ω ⊂ R is an open set, S = Ω−Ω (resp. S = Ω + Ω),
and f : S → C is a positive definite function (resp. co-positive definite function).
If f is of class C2n in an open set U containing DΩ(S) = {0} (resp. DΩ(S)),
then f is of class C2n in S.

Proof. Define k : Ω2 → C by k(u, v) = f(u+ v∗), where v∗ = −v (resp. v∗ = v).
Then k is a positive definite kernel. Continuity of the map s(u, v) = u + v∗

implies that U = s−1(U) is an open subset of R2. Moreover, it is clear that
D(Ω2) ⊂ U . Since for every (u, v) ∈ U we have u + v∗ ∈ U , the fact that f is
of class C2n in U implies that k is of class Sn(U). Then Theorem 3.20 implies
that k is of class Sn(Ω2). Let z0 = u0 + v∗0, where z0 ∈ S and (u0, v0) ∈ Ω2 and
suppose I is an interval containing the origin such that (u0 +I)×(v0 +I∗) ⊂ Ω2,
where I∗ = −I (resp. I∗ = I). Then

J = (u0 + I) + (v0 + I∗)∗ = z0 + 2I ⊂ S

is an interval containing z0. For any z ∈ J , write (u, v) = (u0+ z−z0
2
, v0+

(
z−z0

2

)∗
)

and observe that f(z) = k(u, v) to conclude that f is of class C2n(J) with

f (i+j)(z) =

(
1

2

)i(
1∗

2

)j
∂i+jk

∂ui∂vj
(u, v), i, j = 1, . . . , n.

Since z0 is arbitrary, it follows that f is of class C2n in S, as asserted.
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Remark 3.23. Theorem 3.21 is particularly significant: its results may be ob-
tained via Fourier–Laplace integral transforms [5, 12, 25] in horizontal strips of
the complex plane but not in more general codifference sets. The reason our
result is more general is that it does not require the existence of integral repre-
sentations, building directly from the algebraic positive definiteness condition.

Analogously, the proof of Theorem 3.22 does not require the existence of
integral representations. For positive definite functions, in the case Ω = R the
Bochner integral representation yields equivalent results to our Theorem 3.22
(see e.g. Donoghue [16]). If S does not coincide with R the situation is more
delicate. First note that an open codifference set always contains a neighbor-
hood V of the origin. Then, given a C2n (n ≥ 0) positive definite function in S,
the classical extension theorems [20, 23] together with Theorem 3.7 imply that
there exists a positive definite C2n extension of f|V to R. This extension is,
however, in general not unique, and thus does not allow the reconstruction of
the original f in S.

When f is co-definite positive and DΩ(S) = S = Ω + Ω the statements in
the theorem are obviously trivial. However, this does not happen in general
(consider, for instance, the case where Ω is the union of disjoint open intervals).

Remark 3.24. It is worth observing that regularity propagation does not occur
in the odd (i.e. C2n+1) case. Wolfe [29] shows constructively that, if k is a posi-
tive odd integer, there exists a characteristic function f such that f (k)(0) exists
but f (k)(tm) does not exist for a sequence of numbers {tm} such that tm → 0
as m→∞. Characteristic functions are Fourier transforms of probability mea-
sures on R, and thus, by Bochner’s theorem, coincide with the real-variable
continuous positive definite functions up to a normalization factor. Thus this
negative regularity propagation result holds for real-variable positive definite
functions.
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[5] Bisgaard, T. M. and Sasvári, Z., Characteristic Functions and Moment Se-
quences. Positive Definiteness in Probability. Huntington (NY): Nova Science
Publishers 2000.

[6] Buescu, J. and Paixão, A., A linear algebraic approach to holomorphic repro-
ducing kernels in Cn. Linear Algebra Appl. 412 (2006)(2–3), 270 – 290.

[7] Buescu, J. and Paixão, A., Positive definite matrices and differentiable repro-
ducing kernel inequalities. J. Math. Anal. Appl. 320 (2006), 279 – 292.

[8] Buescu, J. and Paixão, A., Positive definite matrices and integral equations
on unbounded domains. Diff. Integral Equ. 19 (2006), 189 – 210.

[9] Buescu, J. and Paixão, A., On differentiability and analyticity of positive
definite functions. J. Math. Anal. Appl. 375 (2011)(1), 336 – 341.

[10] Buescu, J. and Paixão, A., Real and complex variable positive definite func-
tions. São Paulo J. Math. Sci. 6 (2012)(2), 155 – 169.

[11] Buescu, J. and Paixão, A., Complex variable positive definite functions.
Complex Anal. Oper. Theory 8 (2014)(4), 937 – 954.

[12] Buescu, J., Paixão, A. and Symeonides, A., Complex positive definite functions
on strips. Complex Anal. Oper. Theory 11 (2017)(3), 627 – 649.

[13] Devinatz, A., On the extensions of positive definite functions. Acta Math. 102
(1959), 109 – 134.

[14] Devinatz, A., Integral representations of positive definite functions. Trans.
Amer. Math. Soc. 74 (1953), 56 – 77.

[15] Devinatz, A., Integral representations of positive definite functions. II. Trans.
Amer. Math. Soc. 77 (1954), 455 – 480.

[16] Donoghue, W., Distributions and Fourier Transforms. New York: Academic
Press 1969.

[17] Fitzgerald, C. and Horn, R., On the structure of Hermitian-symmetric inequal-
ities. J. Lond. Math. Soc. 15 (1977)(2), 419 – 430.

[18] Graczyk, P. and Loeb, J., Bochner and Schoenberg theorems on symmetric
spaces in the complex case. Bull. Soc. Math. France 122 (1994)(4), 571 – 590.

[19] Krein, M., Hermitian positive kernels on homogeneous spaces. I. Amer. Math.
Soc. Transl. 34 (1963)(2), 69 – 108.

[20] Krein, M., Sur le problème du prolongement des fonctions hermitiennes pos-
itives et continues (in French). C. R. (Doklady) Acad. Sci. URSS (N.S.) 26
(1940), 17 – 22.

[21] Jorgensen, P. and Niedzialomski, R., Extension of positive definite functions.
J. Math. Anal. Appl. 422 (2015)(1), 71 – 740.

[22] Lehto, O., Some remarks on the kernel functions in Hilbert spaces. Ann. Acad.
Sci. Fenn. Ser. A. I. 1952 (1952)(109), 6 pp.



24 J. Buescu et al.

[23] Rudin, W., The extension problem for positive-definite functions. Illinois J.
Math. 7 (1963), 532 – 539.
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