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On the Robin Problem with Indefinite Weight
in Sobolev Spaces with Variable Exponents

Khaled Kefi

Abstract. The present paper is concerned with a Robin problem involving an indef-
inite weight in Sobolev spaces with variable exponents − div(|∇u|p(x)−2∇u) = λV (x)|u|q(x)−2u, x ∈ Ω

|∇u|p(x)−2 ∂u

∂n
+ a(x)|u|p(x)−2u = 0. x ∈ ∂Ω

By means of the variational approach and Ekeland’s principle, we establish that the
above problem admits a non-trivial weak solution under appropriate conditions.

Keywords. Robin problem, Ekeland’s variational principle, generalized Sobolev spa-
ces, weak solution
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1. Introduction

Robin boundary conditions are a weighted combination of Dirichlet and Neuman
boundary conditions and it is also called impedance boundary conditions, from
their application in electromagnetic problems or convective boundary conditions
from their application in heat transfer problems. Moreover Robin conditions
are commonly used in solving Sturm–Liouville problems which appear in many
contexts in sciences and engineering. In addition, it is a general form of the
insulating boundary condition for convection-diffusion equations

ux(0)c(0)−D∂c(0)

∂x
= 0,

where D is the diffuse constant, u is the convective velocity at the boundary, c is
the concentration and the convective and diffusive fluxes at the boundary sum
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to zero. The second term is a result of Fick’s law of diffusion. In addition oper-
ators involving Lebesgue and Sobolev variable exponents are very interesting in
many topic like electrorheological fluids (see [21]), elastic mechanics (see [22]),
stationary thermo-rheological viscous flows of non-Newtonian fluids, image pro-
cessing (See [5]) and the mathematical description of the processes filtration of
an idea barotropic gas through a porous medium (see [1]). The p(x)-Laplacian
operator is nonhomogeneous and possess a more complicated structure then the
classical p-Laplacian. Motivated by the above cited contributions, we study the
existence of the weak solution for the following problem − div(|∇u|p(x)−2∇u) = λV (x)|u|q(x)−2u, x ∈ Ω

|∇u|p(x)−2 ∂u

∂n
+ a(x)|u|p(x)−2u = 0. x ∈ ∂Ω

(1)

where ∆p(x)u= div(|∇u|p(x)−2∇u) is the so-called p(x)-Laplacian operator, Ω
is a smooth bounded domain in RN , λ>0, p, q are continuous functions on Ω,
a ∈ L∞(∂Ω) such that ess infx∈Ω a(x) > 0 and V is a given function in a genera-
lized Lebesgue space Ls(x)(Ω) such that V > 0 in an open set Ω0 ⊂⊂ Ω, where
| Ω0 |> 0.

The p(x)-Laplacian problem involving Robin boundary conditions was stud-
ied by many authors in recent years, we mention that Deng in [6] considered
the following problem − div(|∇u|p(x)−2∇u) = λf(x, u), x ∈ Ω

|∇u|p(x)−2 ∂u

∂n
+ a(x)|u|p(x)−2u = 0. x ∈ ∂Ω

(2)

Applying the sub-supersolution method and the variational method, under ap-
propriate assumptions on f , the author established the existence of λ∗ > 0
such that the above problem has at least two positive solutions if λ ∈ (0, λ∗),
has at least one positive solution if λ = λ∗ < +∞ and has no positive solu-
tion if λ > λ∗. Deng et al in [7] investigated problem (1) under the particular
case when p(x) ≡ q(x) and V (x) ≡ 1, the authors established the existence
of infinitely many eigenvalue sequences provided p(x) is non constant and they
presented some sufficient conditions for which there is no principal eigenvalue
for the problem and the set of all eigenvalues is not closed.

Moreover problem (2) was investigated by Allaoui in [2], the author showed
under appropriate conditions on f and using mountain pass theorem, the exis-
tence of a continuous spectrum of eigenvalues.

Meanwhile, elliptic problems involving operators in divergence form can
be found in [4, 18]. Some other results dealing the p(x)-Laplace operator and
Sobolev spaces with variable exponents can be found in [14,19].

Inspired by the above-mentioned papers, we study problem (1) under the
assumptions
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(H) 1 < q(x) < p(x) < N < s(x), for all x ∈ Ω, V ∈ Ls(x)(Ω) and V > 0 in
Ω0 ⊂⊂ Ω, with | Ω0 |> 0.

Our main results established, the existence of a global minimizer of the Euler
Lagrange functional associated to (1), in the second hand, we establish the
existence of a continuous family of eigenvalues in a neighborhood of the origin.
Note that condition (H) has never been used for Robin problems, moreover one
of our result was investigated by Ekeland’s variational problem which has never
been used before for this kind of problem.

2. Abstract setting

In the sequel, we recall some results on the spaces Lp(x)(Ω) and W 1,p(x)(Ω) (for
details, one can see [19,20]), which will be needed later. Set

C+(Ω) := {h : h ∈ C(Ω), h(x) > 1, for all x ∈ Ω}.

For any p∈C+(Ω), we denote by 1<p− :=minx∈Ω p(x)≤p+ :=maxx∈Ω p(x)<∞
and

Lp(x)(Ω) =

{
u : Ω→ R measurable and

∫
Ω

|u(x)|p(x)dx <∞
}
.

We recall the following so-called Luxemburg norm on this space defined by the
formula

|u|p(x) = inf

{
µ > 0 :

∫
Ω

∣∣∣∣u(x)

µ

∣∣∣∣p(x)

dx ≤ 1

}
.

Clearly, when p(x) = p, a positive constant, the space Lp(x)(Ω) reduces to the
classical Lebesgue space Lp(Ω) and the norm |u|p(x) reduces to the standard

norm ‖u‖Lp = (
∫

Ω
|u|pdx)

1
p in Lp(Ω).

Let Lp
′(x)(Ω) the conjugate space of Lp(x)(Ω) with 1

p
+ 1

p′
= 1, then the

Hölder type inequality∣∣∣∣∫
Ω

uvdx

∣∣∣∣ ≤ ( 1

p−
+

1

(p′)−

)
|u|p(x)|v|p′(x), u ∈ Lp(x)(Ω), v ∈ Lp′(x)(Ω) (3)

holds.
Moreover, if h1, h2 and h3 : Ω→ (1,∞) are three Lipschitz continuous func-

tions such that 1
h1(x)

+ 1
h2(x)

+ 1
h3(x)

= 1, then for any u ∈ Lh1(x)(Ω), v ∈ Lh2(x)(Ω)

and w ∈ Lh3(x)(Ω) the following inequality holds (see [10, Proposition 2.5]):∣∣∣∣∫
Ω

uvw dx

∣∣∣∣ ≤ ( 1

h−1
+

1

h2
− +

1

h3
−

)
|u|h1(x)|v|h2(x)|w|h3(x). (4)
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The modular on the space Lp(x)(Ω) is the map ρp(x) : Lp(x)(Ω)→ R defined by

ρp(x)(u) :=

∫
Ω

|u|p(x)dx,

and it satisfies the following propositions

Proposition 2.1 ([16, Proposition 1.2]). For all u, v ∈ Lp(x)(Ω), we have

1. |u|p(x) < 1 (resp. = 1, > 1) ⇔ ρp(x)(u) < 1 (resp. = 1, > 1).

2. min
(
|u|p

−

p(x), |u|
p+

p(x)

)
≤ ρp(x)(u) ≤ max

(
|u|p

−

p(x), |u|
p+

p(x)

)
.

3. ρp(x)(u− v)→ 0 ⇔ |u− v|p(x) → 0.

Proposition 2.2 ([8, Lemma 2.1]). Let p and q two measurable functions such
that p ∈ L∞(Ω) and 1 ≤ p(x)q(x) ≤ ∞, for a.e. x ∈ Ω. Let u ∈ Lq(x)(Ω),
u 6= 0. Then

min
(
|u|p

+

p(x)q(x), |u|
p−

p(x)q(x)

)
≤ ||u|p(x)|q(x) ≤ max

(
|u|p

−

p(x)q(x), |u|
p+

p(x)q(x)

)
.

For more details concerning the modular, one can see [11,16].
Define also the variable exponent Sobolev space X := W 1,p(x)(Ω), by

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

with the norm

‖u‖ = inf

{
µ > 0 :

∫
Ω

(∣∣∣∣∇uµ
∣∣∣∣p(x)

+

∣∣∣∣uµ
∣∣∣∣p(x)

)
dx ≤ 1

}
for u ∈ X,

‖u‖ = |∇u|p(x) + |u|p(x).

Note that, (X, ‖.‖) is a separable and reflexive Banach space.
Let

‖u‖a = inf

{
µ > 0 :

∫
Ω

∣∣∣∣∇uµ
∣∣∣∣p(x)

dx+

∫
∂Ω

a(x)

∣∣∣∣uµ
∣∣∣∣p(x)

dσ ≤ 1

}
for u ∈ X.

Then, by [6, Theorem 2.1], ‖u‖a is also a norm on X which is equivalent to ‖u‖,
moreover, if we define the so called modular which is defined by Ia : X → R by

Ia(u) =

∫
Ω

|∇u|p(x)dx+

∫
∂Ω

a(x)|u|p(x)dσ,

one has



On the Robin Problem with Indefinite Weight 29

Proposition 2.3 ([6, Proposition 2.4]).

1. ‖u‖a < 1 (resp. = 1, > 1) ⇔ Ia(u) < 1 (resp. = 1, > 1).

2. min(‖u‖p−a , ‖u‖p+a ) ≤ Ia(u) ≤ max(‖u‖p−a , ‖u‖p+a ).

3. ‖un‖a → 0 (resp.→∞) ⇔ Ia(un)→ 0 (resp.→∞).

Proposition 2.4 ([15, Proposition 2.2]). Let

L(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx+

∫
∂Ω

a(x)

p(x)
|u|p(x)dσ,

then there holds true: The mapping L′ : X → X∗ is a strictly monotone,
continuous bounded homeomorphism and is of type (S+), namely un ⇀ u and
lim supn→+∞ L

′(un)(un − u) ≤ 0, implies un → u.

In the sequel, let  p∗(x) =
Np(x)

N − p(x)
, p(x) < N,

p∗(x) = +∞, p(x) ≥ N.

We point out that if q ∈ C+(Ω) and q(x) < p∗(x) for all x ∈ Ω, then X is
continuously and compactly embedded in Lq(x)(Ω).

3. Main results and auxiliary properties

Throughout the paper, the letters c, ci, i = 1, 2, . . . denote positive constants
which may change from line to line.

In the sequel, denote by s′(x) the conjugate exponent of the function s(x)

and put α(x) := s(x)q(x)
s(x)−q(x)

then we have:

Remark 3.1. Under assumption (H), one has s′(x)q(x) < p∗(x), for all x ∈ Ω,
α(x)<p∗(x), for all x∈Ω, so the embedding X ↪→Ls

′(x)q(x)(Ω) and X ↪→Lα(x)(Ω)
are compact and continuous.

Note that an eigenvalue for problem (1) satisfy the following definition.

Definition 3.2. We say that λ ∈ R is an eigenvalue of problem (1), if there
exists u ∈ X \ {0} such that∫

Ω

|∇u|p(x)−2∇u∇vdx+

∫
∂Ω

a(x)|u|p(x)−2uvdσ = λ

∫
Ω

V (x)|u|q(x)−2uvdx,

for any v ∈ X and we recall that if λ is an eigenvalue of the problem (1), then
the corresponding u ∈ X \ {0} is a weak solution of (1).
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The first result in this paper is the following.

Theorem 3.3. Assume hypothesis (H) is fulfilled. Then, there exists λ∗ > 0,
such that any λ ∈ (0, λ∗) is an eigenvalue of problem (1).

In the second, we establish that the Euler–Lagrange functional associated
to problem (1), has a global minimizer.

Theorem 3.4. Assume that hypothesis (H) holds. Then any λ > 0 is an
eigenvalue of problem (1).

In order to formulate the variational problem (1), let us introduce the func-
tionals Φ and J : X → R defined by:

Φ(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx+

∫
∂Ω

a(x)

p(x)
|u|p(x)dσ and J(u) =

∫
Ω

V (x)

q(x)
|u|q(x)dx.

Using Proposition 2.2 and Remark 3.1, we mention that J is well defined and
we have for all u ∈ X,

|J(u)| ≤ 1

q−
|V |s(x)||u|q(x)|s′(x) ≤

{
1
q−
|V |s(x)|u|q

−

s′(x)q(x), if |u|s′(x)q(x) ≤ 1,
1
q−
|V |s(x)|u|q

+

s′(x)q(x), if |u|s′(x)q(x) > 1.

Let us introduce the Euler–Lagrange functional corresponding to problem (1)
which is defined as

Ψλ : X → R, where Ψλ(u) := Φ(u)− λJ(u).

We start with the following auxiliary property.

Proposition 3.5. Under assumption (H), Ψλ ∈ C1(X,R) is weakly lower semi-
continuous and u ∈ X is a critical point of Ψλ if and only if u is a weak solution
for the problem (1).

Proof. To show that Ψλ ∈ C1(X,R), we show that for all ϕ ∈ X,

lim
t→0+

Ψλ(u+ tϕ)−Ψλ(u)

t
= 〈dΨλ(u), ϕ〉,

and dΨλ : X → X∗ continuous, where we denote by X∗ the dual space of X.
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For all ϕ ∈ X we have

lim
t→0+

J(u+ tϕ)− J(u)

t
=

d

dt
J(u+ tϕ)|t=0

=
d

dt

∫
Ω

V (x)

q(x)
|u+ tϕ|q(x)dx|t=0

=

∫
Ω

∂

∂t

(
V (x)

q(x)
|u+ tϕ|q(x)

)
|t=0dx

=

∫
Ω

V (x)|u+ tϕ|q(x)−1sgn(u+ tϕ)ϕ|t=0dx

=

∫
Ω

V (x)|u+ tϕ|q(x)−2(u+ tϕ)ϕ|t=0dx

=

∫
Ω

V (x)|u|q(x)−2uϕdx

= 〈dJ(u), ϕ〉.

The differentiation under the integral is allowed if for t close to zero. Indeed,
for |t| < 1, we have:

|V (x)|u+ tϕ|q(x)−2(u+ tϕ)ϕ| ≤ |V (x)|(|u|+ |ϕ|)q(x)−1|ϕ| ∈ L1(Ω).

Because u, ϕ ∈ X imply:

|u|, |ϕ| ∈ X ↪→ Lq(x)(Ω) and |ϕ| ∈ X ↪→ Lα(x)(Ω).

Due to the fact that V ∈ Ls(x)(Ω), the conclusion is an immediate consequence
of inequality (4). For u ∈ X chosen we show that dJ(u) ∈ X∗. It is easy to see
that dJ(u) is linear.

Since there is a continuous embedding X ↪→ Lα(x)(Ω), then

|v|α(x) ≤ c‖v‖a, for all v ∈ X. (5)

Using inequalities (4) and (5) we obtain

|〈dJ(u), ϕ〉| =
∣∣∣∣∫

Ω

V (x)|u|q(x)−2uϕdx

∣∣∣∣
≤
∫

Ω

|V (x)||u|q(x)−1|ϕ|dx

≤ |V |s(x)||u|q(x)−1| q(x)
q(x)−1

|ϕ|α(x)

≤ c|V |s(x)||u|q(x)−1| q(x)
q(x)−1

‖ϕ‖a.

Hence there exists c1 = c|V (x)|||u|q(x)−1| q(x)
q(x)−1

> 0 such that

|〈dJ(u), ϕ〉| ≤ c1‖ϕ‖a.
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Using the linearity of dJ(u) and the above inequality we deduce that dJ(u)∈X∗.
For the Fréchet differentiability we need the following Lemma

Lemma 3.6 ([3, Lemma 1]). The map u ∈ Lq(x)(Ω) → |u|q(x)−2u ∈ L
q(x)
q(x)−1 (Ω)

is continuous.

We conclude that J is Fréchet differentiable.
It is well known that Φ is well defined and continuously Gâteaux differen-

tiable and its Gâteaux derivative at point u ∈ X is given by

〈dΦ(u), v〉 =

∫
Ω

|∇u|p(x)−2∇u∇vdx+

∫
∂Ω

a(x)|u|p(x)−2uvdσ, for all v ∈ X.

We deduce that Ψλ ∈ C1(X,R) because Φ, J ∈ C1(X,R). Moreover

〈dΨλ(u), v〉 =

∫
Ω

|∇u|p(x)−2∇u∇vdx+

∫
∂Ω

a(x)|u|p(x)−2uvdσ

− λ
∫

Ω

V (x)|u|q(x)−2uvdx, for all v ∈ X.

Let u be a critical point of Ψλ. Then we have dΨλ(u) = 0X∗ that is
〈dΨλ(u), v〉 = 0, for all v ∈ X, which yields∫

Ω

|∇u|p(x)−2∇u∇vdx+

∫
∂Ω

a(x)|u|p(x)−2uvdσ = λ

∫
Ω

V (x)|u|q(x)−2uvdx,

for all v ∈ X.
It follows that u is a weak solution for the problem (1). Now we assume

that u is a weak solution, by Definition 3.2 it results that∫
Ω

|∇u|p(x)−2∇u∇vdx+

∫
∂Ω

a(x)|u|p(x)−2uvdσ = λ

∫
Ω

V (x)|u|q(x)−2uvdx,

for all v ∈ X.
That is 〈dΨλ(u), v〉 = 0, for all v ∈ X. We obtain dΨλ(u) = 0X∗ . Hence u

is a critical point of Ψλ. This completes the proof of Proposition 3.5.

The argument key for the proof of Theorem 3.3 is related to Ekeland’s
variational principle [9]. For this purpose, we show the existence of a mountain
for Ψλ near the origin.

Lemma 3.7. Suppose we are under hypotheses of Theorem 3.3. Then for all
ρ ∈ (0, 1), there exist λ∗ > 0 and b > 0 such that for all u ∈ X with ‖u‖a = ρ

Ψλ(u) ≥ b > 0 for all λ ∈ (0, λ∗).
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Proof. Since the embedding X ↪→ Ls
′(x)q(x)(Ω) is continuous, then

|u|s′(x)q(x) ≤ c2‖u‖a, for all u ∈ X. (6)

Let us assume that ‖u‖a < min
(
1, 1

c2

)
, where c2 is the positive constant of in-

equality (6). Then, we have |u|s′(x)q(x) < 1, using Hölder inequality (3), Propo-
sition 2.3 and inequality (6), we deduce that for any u ∈ X with ‖u‖a = ρ the
following inequalities hold true

Ψλ(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx+

∫
∂Ω

a(x)

p(x)
|u|p(x)dσ − λ

q−

∫
Ω

V (x)|u|q(x)dx

≥ 1

p+
‖u‖p+a −

λ

q−
|V |s(x)||u|q(x)|s′(x)

≥ 1

p+
‖u‖p+a −

λ

q−
|V |s(x)|u|q

−

s′(x)q(x)

≥ 1

p+
‖u‖p+a −

λ

q−
|V |s(x)c

q−

2 ‖u‖q
−

a

=
1

p+
ρp

+ − λ

q−
cq
−

2 |V |s(x)ρ
q−

= ρq
−
(

1

p+
ρp

+−q− − λ

q−
cq
−

2 |V |s(x)

)
.

By the above inequality, we remark that if we define

λ∗ =
ρp

+−q−

2p+
· q−

cq
−

2 |V |s(x)

, (7)

then for any λ ∈ (0, λ∗) and u ∈ X with ‖u‖a = ρ there exists b > 0 such that

Ψλ(u) ≥ b > 0.

The proof of Lemma 3.7 is complete.

The following result asserts the existence of a valley for Ψλ near the origin.

Lemma 3.8. There exists φ ∈ X such that φ ≥ 0, φ 6= 0 and Ψλ(tφ) < 0, for
t > 0 small enough.

Proof. Assumption (H) implies q(x) < p(x), for all x ∈ Ω0. In the sequel,
denote by q−0 = infΩ0 q(x) and by p−0 = infΩ0 p(x). Let ε0 such that q−0 +ε0 < p−0 .
On the other hand, since q ∈ C(Ω0), there exists an open set Ω1 ⊂ Ω0 such that
|q(x)−q−0 |<ε0, for all x∈Ω1. It follows that q(x)≤q−0 +ε0<p

−
0 , for all x∈Ω1.

Let φ∈C∞0 (Ω) such that supp(φ)⊂Ω1⊂Ω0, φ=1 in a subset Ω′1⊂supp(φ),
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0 ≤ φ ≤ 1 in Ω1. then we have:

Ψλ(tφ)=

∫
Ω

1

p(x)
|∇(tφ)|p(x)dx+

∫
∂Ω

a(x)

p(x)
|tφ|p(x)dσ −λ

∫
Ω

V (x)

q(x)
|tφ|q(x)dx

≤ 1

p−0

(∫
Ω0

tp(x)|∇φ|p(x)dx+

∫
∂Ω

tp(x)a(x)|φ|p(x)dσ

)
−λ
∫

Ω1

V (x)

q(x)
tq(x)|φ|q(x)dx

≤


tp
−
0

p−0
Ia(φ)−λ

∫
Ω1

V (x)

q(x)
tq(x)|φ|q(x)dx, if ∂Ω ∩ Ω0 6= ∅,

tp
−
0

p−0
ρp(x)(∇φ)−λ

∫
Ω1

V (x)

q(x)
tq(x)|φ|q(x)dx, if ∂Ω ∩ Ω0 = ∅.

Using Proposition 2.1, one has

Ψλ(tφ)

≤


tp
−
0

p−0
Ia(φ)− λ

∫
Ω1

V (x)

q(x)
tq(x)|φ|q(x)dx, if ∂Ω ∩ Ω0 6= ∅,

tp
−
0

p−0
max

(
|∇φ|p

−

p(x), |∇φ|
p+

p(x)

)
− λ

∫
Ω1

V (x)

q(x)
tq(x)|φ|q(x)dx, if ∂Ω ∩ Ω0 = ∅.

≤


tp
−
0

p−0
Ia(φ)− λ

∫
Ω1

V (x)

q(x)
tq(x)|φ|q(x)dx, if ∂Ω ∩ Ω0 6= ∅,

tp
−
0

p−0
max

(
‖φ‖p− , ‖φ‖p+

)
− λ

∫
Ω1

V (x)

q(x)
tq(x)|φ|q(x)dx, if ∂Ω ∩ Ω0 = ∅.

Therefore Ψλ(tφ) < 0 for t < δ
1

p−0 −q
−
0 −ε0 with

0 < δ <


min

{
1,

λ
q+0

∫
Ω1
V (x)|φ|q(x)dx

Ia(φ)

}
, if ∂Ω ∩ Ω0 6= ∅,

min

{
1,

λ
q+0

∫
Ω1
V (x)|φ|q(x)dx

max(‖φ‖p+ , ‖φ‖p−)

}
, if ∂Ω ∩ Ω0 = ∅.

Since φ = 1 in Ω′1, then ‖φ‖ > 0 and Proposition 2.3 ensures that Ia(φ) > 0,
the proof of Lemma 3.8 is complete.

Proof of Theorem 3.3 completed. Let λ∗ > 0 be defined as in (7) and λ ∈ (0, λ∗).
By Lemma 3.7 it follows that on the boundary of the ball centered at the origin
and of radius ρ in X, denoted by Bρ(0), we have

inf
∂Bρ(0)

Ψλ > 0. (8)



On the Robin Problem with Indefinite Weight 35

On the other hand, by Lemma 3.8, there exists φ ∈ X such that Ψλ(tφ) < 0 for
all t > 0 small enough. Moreover, using Hölder inequality (3), Proposition 2.3
and inequality (6) we deduce that for any u ∈ Bρ(0) we have

Ψλ(u) ≥ 1

p+
‖u‖p+a −

λ

q−
cq−2 |V |s(x)‖u‖q

−

a .

It follows that
−∞ < c := inf

Bρ(0)
Ψλ < 0.

Let 0 < ε < inf∂Bρ(0) Ψλ − infBρ(0) Ψλ. Using the above information, the func-

tional Ψλ : Bρ(0) −→ R, is lower bounded on Bρ(0) and Ψλ ∈ C1(Bρ(0),R).

Then by Ekeland’s variational principle, there exists uε ∈ Bρ(0) such that{
c ≤ Ψλ(uε) ≤ c+ ε

0 < Ψλ(u)−Ψλ(uε) + ε · ‖u− uε‖a, u 6= uε.

Since
Ψλ(uε) ≤ inf

Bρ(0)
Ψλ + ε ≤ inf

Bρ(0)
Ψλ + ε < inf

∂Bρ(0)
Ψλ,

we deduce that uε ∈ Bρ(0). Now, we define Iλ : Bρ(0) −→ R by Iλ(u) =
Ψλ(u) + ε · ‖u− uε‖a. It is clear that uε is a minimum point of Iλ and thus

Iλ(uε + t · v)− Iλ(uε)
t

≥ 0

for small t > 0 and any v ∈ B1(0). The above relation yields

Ψλ(uε + t · v)−Ψλ(uε)

t
+ ε · ‖v‖a ≥ 0

Letting t → 0 it follows that 〈dΨλ(uε), v〉 + ε · ‖v‖a ≥ 0 and we infer that
‖dΨλ(uε)‖a ≤ ε.

We deduce that there exists a sequence {wn} ⊂ Bρ(0) such that

Ψλ(wn) −→ c < 0 and dΨλ(wn) −→ 0X∗ . (9)

It is clear that {wn} is bounded in X. Thus, there exists w in X such that, up
to a subsequence, {wn} converges weakly to w in X. Since α(x) < p∗(x) for
all x ∈ Ω we deduce that there exists a compact embedding E ↪→ Lα(x)(Ω) and
consequently {wn} converges strongly in Lα(x)(Ω). For the strong convergence
of {wn} in X, we need the following proposition:

Proposition 3.9.

lim
n→∞

∫
Ω

V (x)|wn|q(x)−2wn(wn − w)dx = 0.



36 K. Kefi

Proof. Using Hölder inequality (3) we have:∫
Ω

V (x)|wn|q(x)−2wn(wn − w)dx ≤ |V |s(x)||wn|q(x)−2wn(wn − w)|s′(x)

≤ |V |s(x)||wn|q(x)−2wn| q(x)
q(x)−1

|wn − w|α(x).

Now if ||wn|q(x)−2wn| q(x)
q(x)−1

> 1, by Proposition 2.2, we get

||wn|q(x)−2wn| q(x)
q(x)−1

≤ |wn|q
+

q(x).

The compact imbedding X ↪→ Lq(x)(Ω) ends the proof.

Since dΨλ(wn)→ 0 and wn is bounded in X we have

|〈dΨλ(wn), wn − w〉| ≤ |〈dΨλ(wn), wn〉|+ |〈dΨλ(wn), w〉|
≤ ‖dΨλ(wn)‖a‖wn‖a + ‖dΨλ(wn)‖a‖w‖a.

Moreover, using Proposition 3.9, one has limn→∞〈dΨλ(wn), wn − w〉 = 0. So

lim
n→∞

∫
Ω

|∇wn|p(x)−2∇wn(∇wn −∇w)dx+

∫
∂Ω

a(x)|wn|p(x)−2wn(wn − w)dσ = 0.

Now, Proposition 2.4, ensures that {wn} converges strongly to w in X.
Since Ψλ ∈ C1(X,R), we conclude

dΨλ(wn)→ dΨλ(w), as n→∞. (10)

Relations (9) and (10) show that dΨλ(w) = 0 and thus w is a weak solution
for problem (1). Moreover, by relation (9), it follows that Ψλ(w) < 0 and thus, w
is a non-trivial weak solution for (1), since Ψλ(|w|) = Ψλ(w) then problem (1)
has a positive one. The proof of Theorem 3.3 is complete.

Proof of Theorem 3.4. Using Hölder inequality (3) for ‖u‖a > 1, one has

Ψλ(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx+

∫
∂Ω

a(x)|u|p(x)dσ − λ

q−

∫
Ω

V (x)|u|q(x)dx

≥ 1

p+
‖u‖p−a −

λ

q−
|V |s(x)||u|q(x)|s′(x)

≥ 1

p+
‖u‖p−a −

λ

q−
|V |s(x)|u|q

−

s′(x)q(x)

≥ 1

p+
‖u‖p−a −

λ

q−
|V |s(x)C

q−‖u‖q−a → +∞, as ‖u‖a → +∞.

As a conclusion, since Ψλ is weakly lower semi-continuous then it has a global
minimizer which is solution of problem (1), moreover Lemma 3.8 ensures that
this minimizer is non-trivial, which ends the proof.
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