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Infinitely many Solutions for
Klein–Gordon–Maxwell System

with Potentials Vanishing at Infinity

Shang-Jie Chen and Lin Li

Abstract. In this paper, a nonlinear Klein–Gordon–Maxwell system with solitary
waves solution is considered. Using critical point theory, we establish sufficient con-
ditions for the existence of Infinitely many radial solitary waves solutions.
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1. Introduction and main results

Many recent papers show the application of global variational methods to the
study of the interaction between matter and electromagnetic fields. A typical
example is given by the following system of Klein–Gordon–Maxwell equations{

−∆u+ [m2 − (ω + eφ)2]u = |u|q−2u, x ∈ R3,

−∆φ+ e2φu2 = −eωu2, x ∈ R3,
(1)

where m, ω and e are real constants, u, φ : R3 → R. Such a system has been
first introduced in [5] as a model describing solitary waves for the nonlinear
stationary Klein–Gordon equation in the three-dimensional space interacting
with the electrostatic field. Here m and e are the mass and the charge of the
particle respectively, while ω denote the phase. The unknowns of the system are
the field u associated to the particle and the electric potential φ. The presence of
the nonlinear term simulates the interaction between many particles or external
nonlinear perturbations.
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Some existence and nonexistence results for Klein–Gordon–Maxwell equa-
tions (1) have been proved via modern variational methods under various hy-
potheses on the nonlinear term. We recall some of them as follows.

Benci and Fortunato [4, 5] were pioneered work with this system. They
found the existence of infinitely many radially symmetric solutions for sys-
tem (1) when |m| > |ω| and 4 < q < 6. In [8], D’Aprile and Mugnai extended
the interval of definition of the power in nonlinearity for the case q ∈ (2, 4]
provided m

√
q
2
− 1 > ω > 0. Later, in [3], Azzollini, Pisani and Pomponio gave

a small improvement with q ∈ (2, 4). Under the conditions

· 3 ≤ q < 6 and m > ω > 0,

· 2 < q < 3 and m
√

(q − 2)(4− q) > ω > 0,

they proved that problem (1) adimits a nontrivial solution. In [2] the existence
of a ground state solution (namely for solution which minimizes the action
functional among all the solutions) for problem (1) was got under one of the
conditions

· 4 ≤ q < 6 and m > ω,

· 2 < q < 4 and m
√
q − 2 > ω

√
6− q,

Soon afterwards, it is improved by the result in [19] provided one of the following
conditions is satisfied:

· 4 ≤ q < 6 and m > ω > 0,

· 2 < q < 4 and m
(

1 + (4−q)2
4(q−2)

)
> ω > 0.

In [9], the nonexistence results for system (1) were obtained for q ≤ 2 or q ≥ 6
and m ≥ ω > 0 respectively, where also more general nonlinear terms were
considered.

Very recently, Cunha [7], Ding and Li [10], He [12], and Li and Tang [14]
considered the following Klein–Gordon–Maxwell system with a non-constant
potential and a general nonlinear terms:{

−∆u+ V (x)u− (2ω + φ)φu = f(x, u), x ∈ R3,

−∆φ+ u2φ = −ωu2, x ∈ R3,
(2)

where ω > 0 is a constant, V : R3 → R, f : R3 × R → R. Concretely, suppos-
ing that V satisfies some assumptions which contain the coercivity condition:
V (x) → +∞ as |x| → ∞, [10, 12, 14] established the existence of infinitely
many high-energy solutions for problem (2), while the existence of nontrivial
solution was proved in [7] with periodic potential V . Other related results about
Klein–Gordon–Maxwell system on R3 can be found in [6, 13,16].

Motivated by the works mentioned above, in this paper we consider the
following Klein–Gordon–Maxwell system:{

−∆u+ V (x)u− (2ω + φ)φu = K(x)|u|p−2u, x ∈ R3,

−∆φ+ u2φ = −ωu2, x ∈ R3,
(KGM)
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where ω, p > 0 are constants, V,K : R3 → R, are assumed to satisfy the
following assumptions:

(V) V (x) ∈ C(R3,R+) is radial, smooth, and there exists α ∈ (0, 2], a, A > 0
such that

a

1 + |x|α
≤ V (x) ≤ A.

(K) K(x) ∈ C(R3,R+) is radial, smooth, and there exists β, b > 0 such that

0 < K(x) ≤ b

1 + |x|β
.

Before stating our main results, we give several notations. Let C∞0 (R3)
denote the collection of smooth functions with compact support and

C∞0,r(R3) =
{
u ∈ C∞0 (R3)

∣∣ u is radial
}
.

Denote respectively by D1,2
r (R3) and H1

r (R3;V ) the Hilbert spaces defined as
the completion of C∞0,r(R3) with respect to the following norms:

‖u‖D :=

(∫
R3

|∇u|2dx
) 1

2

, |u‖ :=

(∫
R3

|∇u|2 + V (x)u2dx

) 1
2

.

For our main result it is convenient to introduce the following quantities:

σ =

{
6− 4β

α
, if 0 < β < α,

2, otherwise.

We state the main result.

Theorem 1.1. Assume that condition (V), (K) hold for α ∈
(
0, 4

11

)
. If p ∈

(4, 6)
⋂

(σ, 6), then problem (KGM) has a sequence of solutions {(un, φn)} ⊂
H1
r (R3;V )×D1,2

r (R3) satisfying

1

2

∫
R3

(
|∇un|2+V (x)u2n−|∇φn|2−(2ω+φn)φnu

2
n

)
dx− 1

p

∫
R3

K(x)|un|pdx→∞.

Remark 1.2. The condition (V) and (K) were introduced by Ambrosetti, Felli
and Malchiodi in [1] in the frame of nonlinear Schrödinger equations and were
used in [15] where nontrivial solution were obtained for nonlinear Schrödinger–
Poisson systems on RN(N = 3, 4, 5). To the best of our knowledge, it seems that
Theorem 1.1 is the first result for the Klein–Gordon–Maxwell system (KGM)
under the assumptions (V) and (K).
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2. The variational framework and the proof of main re-
sults

In order to apply critical point theory, we first state two results on Sobolev
embeddings, then reduce the problem of finding solutions of system (KGM) to
the one of seeking the critical points of a corresponding variational functional.

The first embedding results can be found in [15, Remark 2 and Lemma 2].

Proposition 2.1. Let γ := 1 − α
4
, then H1

r (R3;V ) is continuously embedded
in Lp(R3) for any p ∈ [2 + α

γ
, 6]. Furthermore, the embedding is compact for

p ∈ (2 + α
γ
, 6).

We remark that if α ∈
(
0, 4

11

)
, it follows that 12

5
∈ (2 + α

γ
, 6), which is

important to ensure the solvability of the equation −∆φ + u2φ = −ωu2 for
u ∈ H1

r (R3;V ).
Define for q ≥ 1

Lq(R3;K) =

{
u : R3 → R

∣∣∣∣ u is measurable and

∫
R3

K(x)|u|qdx < +∞
}
,

with norm

‖u‖q,K =

(∫
R3

K(x)|u|qdx
) 1

q

.

The second embedding results can be found in [18].

Proposition 2.2. H1
r (R3;V ) is continuously embedded in Lp(R3;K) for any

p ∈ [σ, 6]. Furthermore, the embedding is compact for p ∈ (σ, 6).

System (KGM) has a variational structure. Indeed we consider the func-
tional

J : H1
r (R3;V )×D1,2

r (R3)→ R

defined by

J(u, φ)=
1

2

∫
R3

(
|∇u|2+V (x)u2−|∇φ|2−(2ω+φ)φu2

)
dx− 1

p

∫
R3

K(x)|u|pdx. (3)

Evidently, the action functional J belongs to C1(H1
r (R3;V )×D1,2

r (R3),R) and
the partial derivatives in (u, φ) are given, for ζ ∈ H1

r (R3;V ), η ∈ D1,2
r (R3), by〈

∂J
∂u

(u, φ), ζ

〉
=

∫
R3

(
∇u · ∇ζ + [V (x)− (2ω + φ)φ]uζ −K(x)|u|p−2uζ

)
dx,〈

∂J
∂φ

(u, φ), η

〉
=

∫
R3

(
−∇φ · ∇η − (φ+ ω)u2η

)
dx.

Thus, we have the following result:
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Proposition 2.3. The pair (u, φ) is a weak solution of system (KGM) if and
only if it is a critical point of J in H1

r (R3;V )×D1,2
r (R3).

The functional J is strongly indefinite, i.e. unbounded from below and
from above on infinite dimensional spaces. To avoid this difficulty, we reduce
the study of (3) to the study of a functional in the only variable u.

For any u∈H1
r (R3;V ), let us consider the linear functional Tu :D1,2

r (R3)→R
defined as

Tu(v) = −ω
∫
R3

u2vdx.

From 0 < α < 4
11

, we have 12
5
∈ (2 + α

γ
, 6). So by the Hölder inequality, Pro-

position 2.1 and the embedding D1,2
r (R3) ↪→ L6(R3) , we get

|Tu(v)| ≤ ω‖u2‖ 6
5
‖v‖6 = ω‖u‖212

5
‖v‖6 ≤ C‖u‖2‖v‖D ,

where ‖u‖q :=
(∫

R3 |u|qdx
) 1

q is the norm of the usual Lebesgue space Lq(R3),
(1 ≤ q <∞). So, Tu is continuous on D1,2

r (R3). Set

a(w, v) =

∫
R3

(∇w · ∇v + u2wv)dx, w, v ∈ D1,2
r (R3).

Again by the Hölder inequality, Proposition 2.1 and the embedding
D1,2
r (R3) ↪→ L6(R3),

a(w, v) ≤ ‖w‖D‖v‖D + ‖u2‖ 3
2
‖w‖6‖w‖6 ≤

(
1 + C‖u‖23

)
‖w‖D‖v‖D.

Thus, a(w, v) is a bilinear (i.e. a(w, v) is linear in w and v respectively), bounded
(i.e. there exists a constant C > 0 such that for any w, v ∈ D1,2

r (R3), |a(w, v)| ≤
C‖w‖D‖v‖D) and coercive (i.e. there exists a constant % > 0 such that for any
w ∈ D1,2

r (R3), a(w,w) ≥ %‖w‖2D). Hence, the Lax–Milgram theorem (see [11])
implies that for every u ∈ H1

r (R3;V ), there exists a unique φu ∈ D1,2
r (R3) such

that

Tu(v) = a(φu, v), for any v ∈ D1,2
r (R3),

that is, −ω
∫
R3 u

2vdx =
∫
R3 (∇φu · ∇v + u2φuv) dx. Using integration by parts,

we get

−ω
∫
R3

u2vdx =

∫
R3

(
−∆φuv + u2φuv

)
dx, for any v ∈ D1,2

r (R3),

therefore,

−∆φu + u2φu = −ωu2, (4)

in a weak sense.
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Multiplying (4) by φ+
u := max{φu, 0} and using integration by parts, we get∫

R3

(
|∇φ+

u |2 + u2
(
φ+
u

)2)
dx = −ω

∫
R3

u2φ+
u dx ≤ 0,

so that φ+
u ≡ 0. if we multiply (4) by (ω+φu)

− use integration by parts, which
is an admissable test function since ω > 0, we have∫

φu<−ω
|∇φu|2dx = −ω

∫
φu<−ω

u2(ω + φu)
2dx ≤ 0,

so that (ω + φu)
− = 0 where u 6= 0. Thus, we have −ω ≤ φu ≤ 0 on the set

{x |u(x) 6= 0}.
We take inner product of (4) with φu and integrating by parts,∫

R3

|∇φu|2dx = −
∫
R3

ωφuu
2dx−

∫
R3

φ2
uu

2dx. (5)

Since −ω ≤ φu ≤ 0, we have∫
R3

|∇φu|2dx ≤ ω

∫
R3

|φu|u2dx = ω‖u‖212
5
‖φu‖6 ≤ C‖u‖212

5
‖φu‖D .

Therefore,

‖φu‖D ≤ C‖u‖212
5
≤ C‖u‖2, and

∫
R3

|φu|u2 ≤ C‖u‖412
5
≤ C‖u‖4.

We have proved the following technical results.

Proposition 2.4. For any fixed u ∈ H1
r (R3;V ) be a radial function, there exists

a unique φ = φu ∈ D1,2
r (R3) which solves the second equation of (KGM) in a

weak sense. Moreover,

(i) −ω ≤ φu ≤ 0 on the set {x |u(x) 6= 0};
(ii) ‖φu‖D ≤ C‖u‖2 and

∫
R3 |φu|u2 ≤ C‖u‖4.

Remark 2.5. The proof is essentially contained on pages 5 and 6, and the
result were already proved for a more general system in [17].

Using (5), we can rewrite J as a C1 functional I : H1
r (R3;V )→ R given by

I(u) = J (u, φu) =
1

2

∫
R3

(
|∇u|2 + V (x)u2 − ωφuu2

)
dx− 1

p

∫
R3

K(x)|u|pdx,

while for I ′ we have

〈I ′(u), v〉 =

∫
R3

(
∇u · ∇v + V (x)uv − (2ω + φu)φuuv −K(x)|u|p−2uv

)
dx,
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for all v ∈ H1
r (R3;V ). Now we will look for its critical points since, as in [5],

(u, φ) ∈ H1
r (R3;V ) × D1,2

r (R3) is a critical point for J , if and only if u is a
critical point for I with φ = φu, that is , a weak solution of

−∆u+ V (x)u− (2ω + φu)φuu = K(x)|u|p−2u, x ∈ R3.

In order to obtain infinitely many solutions of (KGM), we shall use the
following critical point theorem (see [20]).

Theorem 2.6 (Fountain Theorem). Let X be a Banach space with the norm
‖ · ‖ and let Xj be a sequence of subspace of X with dimXj < ∞ for each
j ∈ N. Further, X = ⊕j∈NXj, the closure of the direct sum of all Xj. Set
Yk = ⊕kj=0Xj, Zk = ⊕∞j=kXj. Consider an even functional Φ ∈ C1(X,R)
(i.e. Φ(−u) = Φ(u) for all u ∈ X). If, for every k ∈ N, there exist ρk > rk > 0
such that

(i) ak := maxu∈Yk,‖u‖=ρk ϕ(u) ≤ 0,

(ii) bk := infu∈Zk,‖u‖=rk ϕ(u)→ +∞ as k →∞,

(iii) the Palais–Smale condition holds above 0, i.e. any sequence {un} in X
which satisfies Φ(un) → c > 0 and Φ′(un) → 0 contains a convergent
subsequence,

then Φ has an unbounded sequence of critical values.

We choose an orthogonal basis {ej} of X := H1
r (R3;V ) and define

Yk := span{e1, . . . , ek}, Zk := Y ⊥k−1. To complete the proof of our theorems,
we need the following lemma.

Lemma 2.7. For any σ < q < 2∗, we have that

βq(k) := sup
u∈Zk,‖u‖=1

‖u‖q,K → 0, as k →∞.

Proof. It is clear that 0≤βq(k+1)≤βq(k). Suppose that lim sup βq(k)=βq>0
as k →∞. Then for any k sufficiently large, there exists uk ∈ Zk with ‖uk‖ = 1
and

‖uk‖q,K ≥
βq
2
. (6)

For any u ∈ H1
r (R3;V ), since {ej} is an orthogonal basis of H1

r (R3;V ), there
exists a sequence {αj} ⊂ R satisfying u =

∑∞
j=1 αjej, thus by the Schwartz

inequality and the Parseval equality we have

|(u, uk)|=

∣∣∣∣∣
(
∞∑
j=1

αjej, uk

)∣∣∣∣∣=
∣∣∣∣∣
(
∞∑
j=k

αjej, uk

)∣∣∣∣∣≤
∥∥∥∥∥
∞∑
j=k

αjej

∥∥∥∥∥‖uk‖=

√√√√ ∞∑
j=k

α2
j → 0,

as k → ∞, where (·, ·) denotes the inner product in H1
r (R3;V ). Using the

Riesz–Fréchet representation theorem, we obtain that uk ⇀ 0 in H1
r (R3;V ) and

thus uk → 0 in Lq(R3;K) by Proposition 2.2. This is a contradiction to (6).
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Consider Φ : H1
r (R3;V )→ R defined by

Φ(u) := I(u) =
1

2
‖u‖2 − ω

2

∫
R3

φuu
2dx− 1

p
‖uk‖pp,K .

Evidently, Φ is even. First we show that under the condition (V) and (K), the
functional Φ satisfies the geometric condition of Theorem 2.6. We have the
following Lemma.

Lemma 2.8. Assume that (V), (K) and p ∈ (4, 6)
⋂

(σ, 6) hold. Then for every
k ∈ N, there exists ρk > rk > 0, such that

(i) ak := maxu∈Yk,‖u‖=ρk Φ(u) ≤ 0;

(ii) bk := infu∈Zk,‖u‖=rk Φ(u)→ +∞ as k →∞.

Proof. Due to Proposition 2.4(ii), we have

Φ(u) ≤ 1

2
‖u‖2 +

C

4
‖u‖4 − 1

p
‖uk‖pp,K .

Since, on the finitely dimensional space Yk all norms are equivalent, we have
that Φ(u) ≤ 1

2
‖u‖2 + C

4
‖u‖4 − C‖u‖p. Since p > 4, it follows that

ak := max
u∈Yk,‖u‖=ρk

Φ(u) ≤ 0

for some ρk > 0 large enough.
We prove that Φ satisfies (ii). By Lemma 2.7, we have

βp(k)→ 0, as k →∞.

For each k ≥ 1, taking

rk =
(
βpp(k)

) 1
2−p ,

one has rk → +∞ as k →∞ since p > 4. Now, due to (i), Proposition 2.4, and
the definition of βp(k), we have

bk = inf
u∈Zk,‖u‖=rk

Φ(u)

≥ inf
u∈Zk,‖u‖=rk

[
1

2
‖u‖2 − 1

p
‖uk‖pp,K

]
≥ inf

u∈Zk,‖u‖=rk

[
1

2
‖u‖2 −

βpp(k)

p
‖u‖p

]
=

(
1

2
− 1

p

)
r2k → +∞.

This proves (ii).
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Lemma 2.9. Assume that (V), (K) and p ∈ (4, 6)
⋂

(σ, 6) hold. Then the
functional Φ satisfies the Palais–Smale condition at any level c > 0.

Proof. We suppose that {un} is a Palais–Smale sequence, that is for some c∈R+

Φ(un)→ c, and Φ′(un)→ 0 (n→∞).

By Proposition 2.4(i),

Φ(un)− 1

p
〈Φ′(un), un〉=

(
1

2
− 1

p

)
‖un‖2−

(
1

2
− 2

p

)∫
R3

ωφunu
2
ndx+

1

p

∫
R3

φ2
unu

2
ndx

≥
(

1

2
− 1

p

)
‖un‖2.

Hence, {un} is bounded. Now we shall prove {un} contains a convergent subse-
quence. Without loss of generality, passing to a subsequence if necessary, there
exists a u ∈ H1

r (R3;V ) such that un ⇀ u in H1
r (R3;V ), by Proposition 2.2,

un → u in Lp(R3;K). So we can get

∣∣∣∣∫
R3

(
K(x)|un|p−2un −K(x)|u|p−2u)(un − u

)
dx

∣∣∣∣
≤
∫
R3

(
K(x)

p−1
p |un|p−1 +K(x)

p−1
p |u|p−1

)
K(x)

1
p |un − u|dx

≤
[
‖un‖p−1p,K + ‖u‖p−1p,K

]
‖un − u‖pp,K

≤ C
[
‖un‖p−1 + ‖u‖p−1

]
‖un − u‖pp,K → 0, as n→∞.

We observe that

〈Φ′(un)− Φ′(u), un − u〉 → 0,

and we have∫
R3

[(2ω + φun)φunun − (2ω + φu)φuu] (un − u)dx

= 2ω

∫
R3

(φunun − φuu)(un − u)dx+

∫
R3

(φ2
unun − φ

2
uu)(un − u)dx→ 0,

as n → ∞. Actually, by the Hölder inequality, the Sobolev inequality, and
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Proposition 2.4(ii), we have∣∣∣∣∫
R3

(φunun − φuu)(un − u)dx

∣∣∣∣
≤
∣∣∣∣∫

R3

(φun − φu)un(un − u)dx

∣∣∣∣+

∣∣∣∣∫
R3

φu(un − u)2dx

∣∣∣∣
≤ ‖φun − φu‖6‖un(un − u)‖ 6

5
+ ‖φun‖6‖(un − u)2‖ 6

5

≤ ‖φun − φu‖6‖un‖ 12
5
‖un − u‖ 12

5
+ ‖φun‖6‖un − u‖212

5

≤ C‖φun − φu‖D‖un‖‖un − u‖ 12
5

+ C‖φun‖D‖un − u‖212
5

≤ C(‖un‖2 + ‖u‖2)‖un‖‖un − u‖ 12
5

+ C‖un‖2‖un − u‖212
5
.

From the boundedness of {un} in H1
r (R3;V ) and Proposition 2.1, we know∫

R3

(φunun − φuu)(un − u)dx→ 0, as n→∞.

Observe that the sequence {φ2
unun} is bounded in L

3
2 (R3), since

‖φ2
unun‖ 3

2
≤ ‖φun‖26‖un‖3 ≤ C‖φun‖2D‖un‖ ≤ C‖un‖3,

so ∣∣∣∣∫ (φ2
unun − φ

2
uu)(un − u)

∣∣∣∣ ≤ ‖φ2
unun − φ

2
uu‖ 3

2
‖un − u‖3

≤ (‖φ2
unun‖ 3

2
+ ‖φ2

uu‖ 3
2
)‖un − u‖3 → 0

Now, we can get

‖un − u‖2E = 〈Φ′(un)− Φ′(u), un − u〉

+

∫
R3

[(2ω + φun)φunun − (2ω + φu)φuu](un − u)dx

+

∫
R3

(
K(x)|un|p−2un −K(x)|u|p−2u

)
(un − u)dx

→ 0, as n→∞.

That is un → u in H1
r (R3;V ) and the proof is complete.

Proof of Theorem 1.1. By Lemma 2.8, the functional Φ satisfies the geometric
conditions of Theorem 2.6. Lemma 2.9 implies that Φ satisfies the Palais–Smale
condition. Hence, problem (KGM) has infinitely many nontrivial solutions
(un, φn) ∈ H1

r (R3;V )×D1,2
r (R3). This completes the proof.
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