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An Easy Approach to Distributions
and Operational Calculus

Vakhtang Lomadze

Abstract. The Mikusinski space is introduced as the smallest extension of the space
of classical continuous functions in which the integration operator is bijective. (This
can be viewed as a very small part of the field of Mikusinski operators.) It is shown
that the space of Schwartz distributions (of finite order) can be defined as a quotient
of the Mikusinski space. A remarkable property of Mikusinski functions is that they
admit multiplication by all rational functions. It is demonstrated that this multipli-
cation provides a natural simple basis for Heaviside’s operational calculus.
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1. Introduction

Let I be an interval of real axis (with more than one point), and let C(I) be
the space of all complex-valued continuous functions defined on I. Assuming
(without loss of generality) that the interval contains 0, for every continuous
function u ∈ C(I), let J(u) denote the continuous function defined by

J(u)(x) =

∫ x

0

u(α)dα, x ∈ I.

The integral operator J : C(I) → C(I) is injective. But it is not bijective; in
other words, not every continuous function is an integral.

We construct an extension M(I) ⊇ C(I) and an integral operator on it
(that agrees with J on C(I) and) that is bijective. A differentiation operator
is defined to be the inverse of the integration one. Any element of M(I) is
an iterated derivative of a continuous function. (So that M(I) is the smallest
extension with the property above.) What is not normal with M(I) is that the
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iterated derivatives of constant functions are not zero, and a natural idea is to
“kill” all of them. Doing this, we get exactly the Schwartz distribution space.

Elements of M(I) are called Mikusinski functions. The point of these func-
tions is that they admit multiplication by all rational functions, and this makes
them very convenient to work with. We show that the representation of D′fin(I)
in terms of Mikusinski functions provides a natural simple basis for Heaviside’s
operational calculus.

In what follows, t will be an indeterminate, and C[[t]] will stand for the
ring of complex coefficient convergent formal series in t. (We remind that a
formal series

∑
i≥0 bit

i is said to be convergent if
∑

i≥0 |bi|εi < +∞ for some
positive real ε.) The fraction field of C[[t]] will be denoted by C((t)), and its
elements will be referred to as convergent Laurent series. By the theorem on
units (see [4]), a convergent formal series is invertible if and only if it has nonzero
free coefficient. It is immediate from this that every convergent Laurent series
can be written as g/tn with g ∈ C[[t]] and n ∈ Z+. We put s = t−1. It is worth
mentioning that C((t)) contains as a subfield the rational function field C(s),
which is the fraction field of the polynomial ring C[s]. Following Mikusinski [3],
if c is a constant, we shall write {c} to denote the function that is c everywhere
on I.

2. Mikusinski functions

Define the Mikusinski space M(I) to be the inductive limit of the sequence

C(I)
J→ C(I)

J→ C(I)
J→ C(I)

J→ · · · .

One can represent a Mikusinski function as a pair (u,m), where u ∈ C(I)
and m ∈ Z+. Two such pairs (u,m) and (v, n) represent the same Mikusinski
function if and only if

Jnu = Jmv.

Remark 2.1. As is known, Mikusinski (see [3]) developed an approach to the
notion of generalized functions that is based on using the convolution ring of
continuous functions defined on R+. From this ring, which is commutative and
without zero divisors, Mikusinski goes on to define the fraction field, elements
of which are called operators. In the case when I = R+, there is a canonical
mapping from our Mikusinski functions to Mikusinski’s operators, namely, the
mapping

(u,m) 7→ u

{1}m
.

It is easily seen that this is an embedding.



Distributions and Operational Calculus 153

Obviously, the map u 7→ (u, 0) is injective. This permits us to make the
identification

u = (u, 0).

We extend the integration operator J to Mikusinski functions by defining

J(u,m) = (Ju,m),

and the differentiation operator D by defining

D(u,m) = (u,m+ 1).

Notice that

DJ = id and JD = id.

Thus, both of the operators J : M(I) → M(I) and D : M(I) → M(I) are
bijective, and are inverse to each other.

Observe that if g =
∑

i≥0 bit
i is a convergent formal series and u is a con-

tinuous function on I, then the series∑
i≥0

biJ
i(u)

converges uniformly on every compact subinterval of I that contains 0. We
therefore can define the product gu by setting

gu =
∑
i≥0

biJ
i(u).

Given a convergent Laurent series g/tn and a Mikusinski function (u,m),
we set

g/tn · (u,m) = (gu,m+ n).

One can easily verify that this multiplication is well-defined and that it makes
M(I) a linear space over C((t)). (We shall need, in fact, the linear space struc-
ture over the rational function field C(s).)

We want to note that the multiplication by t is the same as J and the
multiplication by s is the same as D.

Concluding the section, remark that every Mikusinski function w can be
written in the form w = smu (or, what is the same, in the form w = Dmu),
where u ∈ C(I) and m ∈ Z+.
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3. Distributions

Distributions have been introduced by Schwartz, basically, in order to be able to
differentiate all continuous functions (see [5, p. 72]). Sebastião e Silva (see [6])
gave an appealing axiomatic characterization of distributions of finite order. He
showed that finite order distributions on I may be introduced as elements of
a linear space E(I) for which an embedding ı : C(I) → E(I) and an operator
D : E(I)→ E(I) are defined such that

(S1) If f ∈ C(I) is a continuously differentiable function, then D(ıf) = ı(f ′);

(S2) Every ξ ∈ E(I) can be written as ξ = Dm(ıf) for some f ∈ C(I) and
m ∈ Z+;

(S3) If ξ ∈ E(I), then D(ξ) = 0 if and only if ξ = ı({c}) for some constant c.

Silva showed that the Schwartz distribution space D′fin(I) is a model for
the above axioms and that all other models are isomorphic to it. (For the Silva
theory of distributions, the reader may refer [6] and also the books [1, 2].)

Let N(I) denote the subspace of M(I) spanned by functions Dm{1}, m ≥ 1.
(Remark that N(I) = {f{1} | f ∈ sC[s]}.)

Postulating that constant functions must have zero derivatives, we are led
to the following definition.

Definition 3.1. Define the distribution space S(I) to be

S(I) = M(I)/N(I).

(The terminology will be justified in a moment.)
Since N(I) is a C[s]-submodule of M(I), S(I) has the structure of a module

over C[s]. In particular, we can multiply distributions by s.
The differential operator of M(I) induces a differential operator of S(I).

We shall denote it by the same letter D. Thus,

D(w(mod N(I))) = (Dw)(mod N(I)), w ∈M(I).

To proceed further, we need the following lemma.

Lemma 3.2. We have:
C(I) ∩N(I) = {0}.

Proof. Assume there is u ∈ C(I) that is not zero and belongs to N(I). We then
have

u = (a0s
n + · · ·+ an−1s){1}

with n ≥ 1, ai ∈ C and a0 6= 0. Multiplying both of the sides by tn, we get

tnu = (a0 + a1t+ · · ·+ an−1t
n−1){1}.
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It follows that
tnu− (a1t+ · · ·+ an−1t

n−1){1} = {a0}.

On the left, we have a continuous function having value 0 at 0. Hence, a0 = 0,
which is a contradiction. The proof is complete.

Define the canonical map  : C(I)→ S(I) by the formula

(u) = u (mod N(I)).

It is immediate from the previous lemma, that  is injective.

Theorem 3.3. The triple (S(I), D, ) satisfies the Silva axioms.

Proof. (S1): Let u be a continuously differentiable function. Then, by the
Newton–Leibniz formula, u = Ju′ + u(0){1}. Consequently

Du (mod N(I)) = (u′ + u(0)D{1}) (mod N(I)) = u′(mod N(I)) = (u′).

(S2): Every distribution can be written as smu(mod N(I)) with continuous
function u and nonnegative integer m, and we have

smu (mod N(I)) = Dm(u (mod N(I))) = Dm(u).

(S3): Assume that a distribution ξ = smu(mod N(I)) is such that Dξ = 0.
Then

sm+1u ∈ N(I).

This means that there exist complex numbers a0, a1, a2, . . . such that all but a
finite number of them are zero and such that

sm+1u = s(a0 + a1s+ a2s
2 + · · · ){1}.

Multiplying both sides by tm+1, from this we get

u = (a0t
m + a1t

m−1 + · · ·+ am){1}+ (am+1s+ · · · ){1}.

Since the left side is an ordinary continuous function, we can see that ak = 0
for all k ≥ m+ 1. We therefore have

smu = a0 + (a1s+ · · ·+ ams
m){1}.

It follows that
ξ = a0(mod N(I)) = ({a0}).

The proof is complete.

Corollary 3.4. S(I) is canonically isomorphic to D′fin(I).
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Remark 3.5. 1) The isomorphism S(I) ' D′fin(I) can be established di-
rectly. Indeed, for each u ∈ C(I), let Tu be the corresponding Schwartz
distribution. We have seen that if u ∈ C(I), then D(u) = 0 if and only
if u is a constant function. This, in turn, implies that Dm(u) = 0 if
and only if u is a polynomial function of degree ≤ m. It follows that the
mapping

Dm(u) 7→ DmTu

is well-defined and injective. The surjectivity is clear.

2) As is known, Schwartz distributions defined on a compact interval have
finite order. Therefore, the Schwartz space D′(I), can be defined as the
projective limit

lim
←
S([α, β]),

where [α, β] runs over all compact subintervals of I that contain 0.

4. Heaviside’s operational calculus

In his seminal works in electromagnetic theory, O. Heaviside developed formal
rules for dealing with linear constant coefficient differential equations, much
of which he arrived at intuitively. A mathematical basis for his operational
calculus was done by mathematicians with the aid of the Laplace transform,
which however has some defects. (Laplace transforms methods need to add
restrictions to the growth of the functions considered; one also should worry
about one-sidedness and convergence.) A satisfactory theory of operational
calculus was described later by Mikusinski in his textbook [3]. (It should be
noted, however, that the Mikusinski approach is applicable only to differential
equations defined on R+.)

The goal of this section is to demonstrate that with the representation of
distribution space as a quotient of the Mikusinski space we have a natural,
simple explanation of Heaviside’s operational calculus.

Assume we have a linear constant coefficient differential equation

f(D)ξ = ω (ξ ∈ S(I)),

where f ∈ C[s] and ω ∈ S(I).
A particular solution of this equation can be found very easily. Indeed, if ω

is represented by a Mikusinski function w, then clearly

ξ =
w

f
modN(I)

is a solution. So, we only need to consider the homogeneous case.
Given g ∈ C[[t]], define its (inverse) Laplace transform L(g) by setting

L(g) = g{1}.
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Remark 4.1. Let L be the conventional Laplace transform. The connection of
our L with L−1 is as follows. If g =

∑
i bit

i, then

L(g) =
∑

bi
xi

i!
and L−1(tg) = L−1

(
1

s

∑
bi

1

si

)
=
∑

bi
xi

i!
.

And we see that

L(g) = L−1(tg).

Let us identify continuous functions with the corresponding distributions.

Theorem 4.2. Let f ∈ C[s] be a polynomial of degree d ≥ 1. Then, the
solutions of the linear differential equation

f(D)ξ = 0, ξ ∈ S(I)

are given by the formula

ξ = L

(
sr

f

)
,

where r runs over the polynomials in C[s] of degree ≤ d− 1.

Proof. It is easily seen that all these functions are solutions. Indeed,

f(D)ξ = f
sr

f
{1} = sr{1} = 0.

To show the converse, we proceed as we did in the proof of Theorem 3.3. Assume
that ξ is a solution of our equation and assume that a Mikusinski function smu
represents it. Then

fsmu ∈ N(I).

This means that there exist complex numbers a0, a1, a2, . . . such that all but a
finite number of them are zero and such that

fsmu = s(a0 + a1s+ a2s
2 + · · · ){1}.

Multiplying both sides by td+m, from this we get

(ftd)u = (a0t
d+m−1 + · · ·+ ad+m−1){1}+ (ad+ms+ · · · ){1}.

Since the left side is an ordinary continuous function, it follows that ak = 0 for
all k ≥ d+m. We therefore have

smu =
s(a0 + a1s+ · · ·+ ad+m−1s

d+m−1)

f
{1}.
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By the Euclidean division theorem, there exists a polynomial r of degree ≤ d−1
such that

a0 + a1s+ · · ·+ ad+m−1s
d+m−1

f
≡ r

f
mod C[s].

So that

ξ = L

(
sr

f

)
.

The proof is complete.
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