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Abstract. Optimal estimates are obtained for the rates of blow up of the norm of the

embedding Bs
p,r ↪→ B

s−n( 1
p
− 1
q
)

q,r with p < q as s→ n
(
1
p −

1
q

)
+. We also show optimal

limiting embeddings between Besov spaces and Lipschitz spaces.
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1. Introduction

The analysis of the behaviour of the embedding constants associated to embed-
dings of Sobolev type as the smoothness parameters approach critical values
has attracted much recent attention. The motivation comes from the sharp
form of the Sobolev embedding theorem obtained by Bourgain, Brézis and
Mironescu [7]. Namely let Q be a cube in Rn and let p ≥ 1, 1

2
≤ s < 1

and sp < n. Assume that f is defined on Q such that∫
Q

f = 0 and

∫
Q

∫
Q

|f(x)− f(y)|p

|x− y|n+sp
dxdy <∞. (1)

Then

‖f |L
pn
n−sp (Q)‖p ≤ cn

1− s
(n− sp)p−1

∫
Q

∫
Q

|f(x)− f(y)|p

|x− y|n+sp
dxdy. (2)

Here the constant cn depends only on n. Afterwards, this result was extended
to all values s ∈ (0, 1) by Maz’ya and Shaposhnikova [34] (see also [32]). More
precisely, they proved the following sharp inequality: let p ≥ 1, 0 < s < 1, and
sp < n. Assume that f satisfies the conditions given in (1). Then

‖f |L
pn
n−sp (Q)‖p ≤ cp,n

s(1− s)
(n− sp)p−1

∫
Q

∫
Q

|f(x)− f(y)|p

|x− y|n+sp
dxdy (3)
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ultad de Matemáticas, Universidad Complutense de Madrid, Plaza de Ciencias 3,
28040 Madrid, Spain; oscar.dominguez@ucm.es



128 O. Domı́nguez

where the constant cp,n depends only on p and n. A detailed study of related
problems may be found as well in [33, 10.2].

The natural extension of the inequalities (2) and (3) to higher-order smooth-
ness 0 < s < n

p
was studied by Karadzhov, Milman and Xiao [30] and Edmunds,

Evans and Karadzhov [16, 17] with the help of the Besov spaces Bs
p,q(Rn) de-

fined by the modulus of smoothness ωk(f, t)p of a function f ∈ Lp(Rn) (see (4)
and (5) below).

Concerning sharp estimates of the norms of embeddings for Besov spaces
when the smoothness parameters are approaching some critical values, we also
refer to the book by Triebel [39, 4.4.2] where certain embeddings into the space
of continuous functions are investigated.

Before we state our main results, we introduce all the function spaces that
we shall use in the paper.

As usual, N denotes the natural numbers, N0 = N ∪ {0}, and Tn is an n-
dimensional torus, T = T1. Throughout this paper Ω denotes a subset of Rn of
one of the following two types: Ω is either Rn or a bounded Lipschitz domain
in Rn (see [39, pp. 63–64]). If X and Y are two Banach spaces, then the symbol
X ↪→ Y indicates that the embedding is continuous. All unimportant positive
constants will be denoted by c, occasionally with subscripts; its value may vary
from line to line.

Let 1 ≤ p ≤ ∞ and k ∈ N. Let W k
p (Ω) be the Sobolev space given by the

completion of C∞0 (Ω) with respect to the semi-norm

‖f |W k
p (Ω)‖ = max

|β|=k
‖Dβf |Lp(Ω)‖.

Here β = (β1, . . . , βn) ∈ Nn
0 stands for some multi-index,

|β| = β1 + · · ·+ βn

and Dβ are classical derivatives, that is,

Dβ =
∂|β|

∂xβ11 · · · ∂x
βn
n

.

We use the notation W k
p (Tn) to mean the periodic counterpart which is obtained

by replacing Lp(Ω) by Lp(Tn).
In this paper we always work with the Besov spaces Bs

p,q(Ω) given by the
modulus of smoothness (see (5) below). However, in the literature one can
find several equivalent approaches to introduce Besov spaces. For instance, us-
ing the Fourier transform, decomposition methods, interpolation, . . . but the
equivalence constants may depend on the involved parameters s, p, q and the
dimension n of the underlying domain. As a consequence, studying sharp em-
bedding constants, it is important to fix a natural norm on Besov spaces. Next
we recall the definition of Besov spaces through the modulus of smoothness.
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Given h ∈ Rn, we let Ωh = {x : x+βh ∈ Ω for all 0 ≤ β ≤ 1}. For x ∈ Ωkh,
we introduce

∆k
hf(x) =

k∑
i=0

(−1)i
(
k

i

)
f(x+ ih)

and define the k-th order modulus of smoothness of f ∈ Lp(Ω) by

ωk(f, t)p = sup
|h|≤t
‖∆k

hf |Lp(Ωkh)‖, t > 0. (4)

In the case k = 1 we simply write ω(f, t)p instead of ω1(f, t)p. In the definition
of ωk(f, t)p for a periodic function f ∈ Lp(Tn), the norm is taken over all Tn.

Let s > 0, α ∈ R and 1 ≤ q ≤ ∞. We take k ∈ N such that k > s. The
Besov space Bs,α

p,q (Ω) consists of all f ∈ Lp(Ω) having a finite semi-norm

‖f |Bs,α
p,q (Ω)‖k =

(∫ ∞
0

(
t−s(1 + | log t|

)α
ωk(f, t)p

)q dt
t

) 1
q

(5)

(with the usual modification if q =∞). Any choice of k > s will define the same
space with equivalent norms where the corresponding equivalence constants
depend on s. This justifies the subscript k in our notation for Besov semi-
norms (5). The spaces Bs,α

p,q (Ω) have classical smoothness s and an additional
logarithmic smoothness of exponent α. In particular, if α = 0 we recover the
classical Besov spaces Bs

p,q(Ω) equipped with the semi-norm ‖ · |Bs
p,q(Ω)‖k.

This approach also allows us to introduce the Besov spacesB0,α
p,q (Ω) involving

only logarithmic smoothness. The space B0,α
p,q (Ω) is formed by all f ∈ Lp(Ω)

such that

‖f |B0,α
p,q (Ω)‖k =

(∫ 1

0

(
(1 + | log t|)αωk(f, t)p

)q dt
t

) 1
q

(6)

is finite. Here k ∈ N. These spaces were already investigated by DeVore,
Riemenschneider and Sharpley [14] and are attracting a lot of attention in the
last years as can be seen in the papers [5, 9–11, 15, 40] and the references given
there. Note that the case of interest is when α ≥ −1

q
if q <∞ (α > 0 if q =∞),

otherwise it is not hard to check that B0,α
p,q (Ω) = Lp(Ω).

Putting s = k = 1 and α = 0 in the Besov semi-norm (5), it is clear that
the only functions satisfying that this condition is finite are constant functions.
One can overcome this obstruction with the help of the additional parameter
α. In particular, the logarithmic Lipschitz space Lip(1,−α)

p,q (Ω) is formed by all
functions f ∈ Lp(Ω) for which

‖f |Lip(1,−α)
p,q (Ω)‖ =

(∫ 1

0

(
t−1(1− log t)−αω(f, t)p

)q dt
t

) 1
q

(7)
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is finite. See [23, 24]. Here, α > 1
q

if q < ∞ (α ≥ 0 if q = ∞). This restriction
is natural as otherwise we obtain trivial spaces.

It is worthwhile to remark that the integral in (6) (respectively, (7)), which
corresponds to the semi-norm on B0,α

p,q (Ω) (respectively, Lip(1,−α)
p,q (Ω)), is defined

on the interval (0, 1) in contrast to the integral on the larger interval (0,∞)
which defines the semi-norm on the Besov space Bs,α

p,q (Ω) for s > 0 (cf. (5)).
This modification becomes necessary to avoid trivial spaces.

Analogously, one can follow the same approach to introduce the periodic
counterparts Bs,α

p,q (Tn), B0,α
p,q (Tn) and Lip(1,−α)

p,q (Tn) of the above spaces.
The classical Sobolev embedding theorem between Besov spaces (see, e.g.,

[35, 6.3]) claims that

Bs
p,r(Ω) ↪→ B

s−n( 1
p
− 1
q
)

q,r (Ω) if 1≤p<q≤∞, 1≤r≤∞, s>n
(

1

p
− 1

q

)
. (8)

Before proceeding further, some comments are in order. Working with Fourier-
analytically defined Besov spaces on Rn, the previous embedding holds for all
s ∈ R (see, e.g., [3, Theorem 6.5.1], [38, Theorem 2.8.1]). Clearly, we need the
restriction s ≥ n

(
1
p
− 1

q

)
when we deal with Besov spaces given by the modulus

of smoothness. Furthermore, it was proved recently in [20, Corollary 2.8, (2.20)]
and [11, Theorem 3.7] that if s = n

(
1
p
− 1

q

)
then the embedding holds with a loss

of 1
min{q,r} in the exponent of the logarithmic smoothness of the source space. To

be more precise, the following embedding between Besov spaces of generalized
smoothness holds

B
n( 1
p
− 1
q
),α+ 1

min{q,r}
p,r (Rn) ↪→ B0,α

q,r (Rn), α > −1

r
. (9)

The corresponding result for Besov spaces on Tn also holds true. On the other

hand, the order k with k > s of the modulus of smoothness used in the Besov

semi-norms (5) on Bs
p,r(Ω) and B

s−n( 1
p
− 1
q
)

q,r (Ω) will also play a role in the embed-

ding constant of (8). Then we will refer to the values s = n(1
p
− 1

q
) and s = k

as the limiting cases of the embedding given in (8).

The main aim of this paper is to investigate the behaviour of the embedding
constant of the embedding (8) as the smoothness parameter s approaches the
critical values n

(
1
p
− 1

q

)
and k. This question was already studied by Kolyada

and Lerner [32, Theorem 1.1] in the case of spaces defined over Rn with indices
1 ≤ p < q < ∞, 1 ≤ r < ∞ and k = 1. Under these assumptions, they stated
that if n

(
1
p
− 1

q

)
< s < 1 then

‖f |B
s−n( 1

p
− 1
q
)

q,r (Rn)‖1≤cp,q,r,n
(1−s)

1
max{p,r}(

s−n
(
1
p
− 1

q

))1
r

‖f |Bs
p,r(Rn)‖1, f ∈Bs

p,r(Rn) (10)
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where the constant cp,q,r,n does not depend on s and f (but may depend on
p, q, r and n). As they showed in [32, Remark 3.2] the exponent 1

max{p,r} in (10)
is sharp in general. However, there is an inaccuracy in the exponent of the term
s− n

(
1
p
− 1

q

)
. Indeed, we show here that for any f ∈ Bs

p,r(Rn),

‖f |B
s−n( 1

p
− 1
q
)

q,r (Rn)‖1 ≤ cp,q,r,n
(1− s)

1
max{p,r}(

s− n
(
1
p
− 1

q

)) 1
min{q,r}

‖f |Bs
p,r(Rn)‖1, (11)

and the exponent 1
min{q,r} in (11) is optimal in general. The approach that we

follow is completely different from the one in [32] and it is based on ideas of
interpolation theory which work for higher-order Besov spaces defined over Rn,
as well as on Tn and bounded Lipschitz domains in Rn. In addition, it allows
us to cover the extreme cases when r = ∞ or q = ∞. In this latter case, the

constant in (11) is replaced by cp,r,n(1− s)
1

max{p,r} (s− n
p
)−1.

It is known that there exist limiting relationships between Sobolev and
Besov (semi-) norms. In particular, it was proved in [6] that for any f ∈ W 1

p (Rn),

lim
s→1−

(1− s)
∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+sp
dxdy = c ‖∇f |Lp(Rn)‖p. (12)

The corresponding result when s→ 0+ was achieved by Maz’ya and
Shaposhnikova [34], who observed that

lim
s→0+

s

∫
Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+sp
dxdy = c ‖f |Lp(Rn)‖p. (13)

As we shall point out (see Remark 3.4 below), it is a simple consequence
of (12) and (13) that the Sobolev-type inequalities

‖f |B
1−n( 1

p
− 1
q
)

q,p (Rn)‖1 ≤ c1‖∇f |Lp(Rn)‖

and

‖f |Lq(Rn)‖ ≤ c2‖f |B
n( 1
p
− 1
q
)

p,q (Rn)‖1
can be considered as the limiting cases of (11) when s→ 1− and s→ n

(
1
p
− 1

q

)
+,

respectively.
We also study the limiting cases of the embedding (8), that is, s =

n
(
1
p
− 1

q

)
or s = k = 1. Here, we recall that k denotes the order of the

modulus of smoothness used in the semi-norm (5) on the involved spaces in (8).
As mentioned above, spaces of generalized smoothness arise in a natural way
when we investigate the case s = n

(
1
p
− 1

q

)
(see (9)). In this paper, we derive

the corresponding embedding when s = k = 1. This is done with the help
of the spaces Lip(1,−α)

p,q (Ω) (see (7)) and applying extrapolation methods to the
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inequality (11). In this case, we lose 1
max{p,r} in the exponent of the logarithmic

smoothness of the target space. More specifically, we obtain that

Lip(1,−α)
p,r (Ω) ↪→ B

1−n( 1
p
− 1
q
),−α+ 1

max{p,r}
q,r (Ω). (14)

In addition we show that the losses of logarithmic smoothness in (9) and (14)
are indeed necessary because these embeddings are optimal. To get this we rely
on realization results for the modulus of smoothness and integrability theorems
for Fourier series.

The paper is organized as follows. Section 2 contains necessary information

concerning real interpolation and extrapolation that we need in the paper. In

Section 3 we study the rates of blow up of the embedding constant of the

embedding Bs
p,r(Ω) ↪→ B

s−n( 1
p
− 1
q
)

q,r (Ω), p < q, and we derive some sharp limiting

embeddings between smoothness spaces.

2. Preliminaries

Let (A0, A1) be a pair of Banach spaces that are compatible in the sense that
both A0 and A1 are continuously embedded in some common Banach space.
The K-functional for (A0, A1) is defined, for t > 0 and f ∈ A0 + A1, by

K(t, f) = K(t, f ;A0, A1) = inf
f=f0+f1

{‖f0|A0‖+ t‖f1|A1‖}.

In some specific situations, it is customary to work with a modified K-functional
in which ‖ · |A0‖ and/or ‖ · |A1‖ are semi-norms. All the results of this section
hold as well for such a modification.

For 0 < θ < 1 and 1 ≤ q ≤ ∞, the real interpolation space (A0, A1)θ,q is
the set of all f ∈ A0 + A1 such that

‖f |(A0, A1)θ,q‖ =

(∫ ∞
0

(
t−θK(t, f)

)q dt
t

) 1
q

(15)

is finite (as usual, the integral should be replaced by the supremum if q =∞).
See [2, 3, 8, 38].

For later use, we recall some properties of the spaces (A0, A1)θ,q. Since
K(t, f ;A0, A1) = tK(t−1, f ;A1, A0), we have that

‖f |(A0, A1)θ,q‖ = ‖f |(A1, A0)1−θ,q‖. (16)

See also [3, Theorem 3.4.1].
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The following sharp reiteration formulas turn out to be an essential key in
the sequel. Let 0 < θ, σ < 1 and 1 ≤ p, q ≤ ∞. Then, there are positive
constants c1, c2 which are independent of θ and f such that

c1(1− θ)−
1

max{p,q}‖f |(A0, A1)θσ,q‖
≤ ‖f |(A0, (A0, A1)σ,p)θ,q‖

≤ c2

(
(1− σ)−

1
p + (1− θ)−

1
min{p,q}

)
‖f |(A0, A1)θσ,q‖

(17)

For the proof we refer to [25, Theorem 3.1 and Remark 3.2] (see also [30, The-
orem 3]).

Real interpolation spaces can also be introduced by using the J-functional
which is defined, for t > 0 and f ∈ A0 ∩ A1, by

J(t, f) = J(t, f ;A0, A1) = max{‖f |A0‖, t‖f |A1‖}.

Let (A0, A1)θ,q;J be the space of all f ∈ A0 + A1 for which

‖f |(A0, A1)θ,q;J‖ = inf

(∫ ∞
0

(
t−θJ(t, u(t))

)q dt
t

) 1
q

<∞, (18)

where the infimum is taken over all representations

f =

∫ ∞
0

u(t)
dt

t
(convergence in A0 + A1) (19)

with u(t) is a strongly measurable function taking values in A0 ∩ A1. The
equivalence theorem (see [3, Theorem 3.3.1]) yields that

(A0, A1)θ,q = (A0, A1)θ,q;J (20)

with equivalence of norms. Furthermore, the exact dependence on θ and q of
the equivalence constants in (20) was studied in [12]. In particular, we have

c1‖f |(A0, A1)θ,q;J‖ ≤ θ(1− θ)‖f |(A0, A1)θ,q‖ ≤ c2‖f |(A0, A1)θ,q;J‖ (21)

where the constants c1 and c2 are independent of f and θ. The latter estimates
were shown in [12, Corollary 3.4] for the discrete versions of the K- and J-
spaces, but it is readily seen that these discrete norms are equivalent to the
corresponding norms given by (15) and (18) with constants independent of θ.
Hence, (21) holds.

The extensions of the interpolation methods which are obtained by replacing
t−θ in the definitions (15) and (18) by more general non-negative measurable
functions g on (0,∞) are also important. We can define the spaces (A0, A1)g,q
and (A0, A1)g,q;J as the sets of all f ∈ A0 + A1 for which

‖f |(A0, A1)g,q‖ =

(∫ ∞
0

(
g(t)K(t, f)

)q dt
t

) 1
q

<∞ (22)
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and

‖f |(A0, A1)g,q;J‖ = inf

(∫ ∞
0

(
g(t)J(t, u(t))

)q dt
t

) 1
q

<∞

where the infimum is taken over all representations (19), respectively. Our main
interest is when g has the shape

g(t) =

{
t−θ0(1− log t)α0 for 0 < t ≤ 1,
t−θ1(1 + log t)α∞ for 1 < t <∞,

with 0≤ θ0, θ1≤ 1 and α0, α∞∈R. In the particular case g(t) = t−θ(1+| log t|)α
(i.e., θ0 = θ1 = θ and α0 = α∞ = α), we simply write (A0, A1)θ,q,α and
(A0, A1)θ,q,α;J . See [18, 19,22].

The modulus of smoothness ωk(f, t)p given in (4) is intimately connected
to the K-functional associated to the pair (Lp(Ω),W k

p (Ω)). In fact, there are
positive constants c1 and c2 depending only on p, k and Ω such that

c1 ωk(f, t)p ≤ K(tk, f ;Lp(Ω),W k
p (Ω)) ≤ c2 ωk(f, t)p, t > 0. (23)

See [28, Theorem 1] or [2, page 341] (for Ω = Rn). By the definition of the real
interpolation space (15) and (23), we derive that

(Lp(Ω),W k
p (Ω))s,q = Bsk

p,q(Ω) (24)

with equivalence constants which are independent of s. More precisely, there
exist positive constants c1 and c2 which depend only on p, q, k and Ω for which

c1 ‖f |(Lp(Ω),W k
p (Ω))s,q‖ ≤ ‖f |Bsk

p,q(Ω)‖k ≤ c2 ‖f |(Lp(Ω),W k
p (Ω))s,q‖. (25)

Since (23) also hold for periodic functions, one can replace Ω by Tn in the
previous estimates.

It turns out that Besov spaces of generalized smoothness can be charac-
terized as interpolation spaces involving logarithmic weights. Indeed, it is an
immediate consequence of (23) and (22) that

(Lp(Ω),W k
p (Ω))s,q,α = Bsk,α

p,q (Ω). (26)

In the particular case α = 0 we recover the formula (24).
Assume now that (A0, A1) is pair with A1 ↪→ A0. We shall also need the

following limiting K- and J- spaces. For τ ∈ R, we define (A0, A1)(0,τ),q as the
collection of all f ∈ A0 for which

‖f |(A0, A1)(0,τ),q‖ =

(∫ 1

0

(
(1− log t)τK(t, f)

)q dt
t

) 1
q

<∞ (27)
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and (A0, A1)(0,τ),q;J is formed by all f ∈ A0 which admit a representation

f =

∫ 1

0

u(t)
dt

t
(convergence in A0) (28)

where u(t) is a strongly measurable function taking values in A1 with∫ 1

0

(
(1− log t)τJ(t, u(t))

)q dt
t
<∞.

The norm in (A0, A1)(0,τ),q;J is given by

‖f |(A0, A1)(0,τ),q;J‖ = inf

(∫ 1

0

(
(1− log t)τJ(t, u(t))

)q dt
t

) 1
q

where the infimum is taken over all representations (28). See [10,13].
In sharp contrast to classical interpolation, the equivalence result (20) does

not hold true for the spaces (A0, A1)(0,τ),q and (A0, A1)(0,τ),q;J . In fact, it was
proved in [15, Theorem 3.3] that if τ > −1

q
then

(A0, A1)(0,τ),q = (A0, A1)(0,τ+1),q;J . (29)

Let

g(t) =

{
(1− log t)τ for 0 < t ≤ 1,
t−θ for 1 < t <∞,

where 0 ≤ θ < 1 and τ ∈ R. It is not hard to check that

(A0, A1)(0,τ),q;J = (A0, A1)g,q;J (30)

with equivalence of norms.
An example of limiting K-space is the space B0,α

p,q (Ω) (cf. (6)). To be more
precise, we have

(Lp(Ω),W k
p (Ω))(0,α),q = B0,α

p,q (Ω). (31)

This follows immediately from (27) and (23).
Let us recall the extrapolation constructions of scales formed by real inter-

polation spaces. See [27, 29]. Let 1 ≤ q ≤ ∞, 0 ≤ θ < 1 and j0 ∈ N such
that θ + 2−j < 1 for all j ≥ j0. Let (Mj) be a sequence formed by positive
numbers such that

∑∞
j=0(

1
Mj

)q
′
< ∞, where 1

q
+ 1

q′
= 1. The Σ(q) sum of the

scale {Mj(A0, A1)θ+2−j ,q} is defined by all elements f ∈ A0 +A1 which admit a
representation

f =
∞∑
j=j0

gj, gj ∈ (A0, A1)θ+2−j ,q, (32)

with
∞∑
j=j0

(
Mj‖gj|(A0, A1)θ+2−j ,q‖

)q
<∞. (33)
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Furthermore, Σ(q)(Mj(A0, A1)θ+2−j ,q) becomes a Banach space under the norm
given by

‖f |Σ(q)(Mj(A0, A1)θ+2−j ,q)‖ = inf

(
∞∑
j=j0

(
Mj‖gj|(A0, A1)θ+2−j ,q‖

)q) 1
q

(34)

where the infimum is taken over all possible representations (32) such that
(33) holds. Note that the spaces Σ(q)(Mj(A0, A1)θ+2−j ,q) are independent of j0,
with equivalence of norms. Similarly, one can introduce the constructions
Σ(q)(Mj(A0, A1)θ+2−j ,q;J) which are obtained by using the spaces (A0, A1)θ+2−j ,q;J

in (32)–(34).
It turns out that Σ(q)-spaces can be characterized as interpolation spaces.

In the special case that (Mj) = (2jα) with α > 0 and 0 < θ < θ0 < 1, the
following formula holds with equivalence of norms [29, Theorem 4.2]

Σ(q)(2jα(A0, A1)θ+2−j ,q) = (A0, A1)g,q (35)

where

g(t) =

{
t−θ(1− log t)α for 0 < t ≤ 1,
t−θ0 for 1 < t <∞.

Consequently, since g(t) ≤ ct−θ(1 + | log t|)α, t > 0, we get the embedding

(A0, A1)θ,q,α ↪→ Σ(q)(2jα(A0, A1)θ+2−j ,q). (36)

Working with extrapolation of J-spaces, the corresponding formula (35)
with θ = 0 reads

Σ(q)(2jα(A0, A1)2−j ,q;J) = (A0, A1)g,q;J (37)

where

g(t) =

{
(1− log t)α for 0 < t ≤ 1,
t−θ0 for 1 < t <∞.

See [29, Remark 2.6].
Suppose that

∑∞
j=0M

q
j < ∞. Let 0<θ≤1 and j0∈N such that θ−2−j>0

for j ≥ j0. The ∆(q) space of the scale {Mj(A0, A1)θ−2−j ,q} is formed by all
elements f ∈

⋂∞
j=j0

(A0, A1)θ−2−j ,q satisfying that

‖f |∆(q)
(
Mj(A0, A1)θ−2−j ,q

)
‖ =

(
∞∑
j=j0

(
Mj‖f |(A0, A1)θ−2−j ,q‖

)q) 1
q

(38)

is finite. It is readily seen that the spaces ∆(q)
(
Mj(A0, A1)θ−2−j ,q

)
are indepen-

dent of j0, in the sense of equivalent norms.
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The corresponding characterization of ∆(q)-spaces as K-spaces reads as fol-
lows

∆(q)
(
Mj(A0, A1)θ−2−j ,q

)
= (A0, A1)g,q (39)

where

g(t) =
( ∞∑
j=j0

M q
j t

2−jq
) 1
q
t−θ, t > 0. (40)

The proof of (39) can easily be obtained by using Fubini and the definition of
the K-space (22).

3. Sharp embedding constant for Besov spaces and limit-
ing embeddings

Let 1 ≤ p < q ≤ ∞, 1 ≤ r ≤ ∞, k ∈ N and γ = n
(
1
p
− 1

q

)
< s < k. We are

concerned with the embedding Bs
p,r(Ω) ↪→ Bs−γ

q,r (Ω), as well as its periodic coun-
terpart. First, we study the asymptotic behaviour of the embedding constant
as s→ k− and s→ γ+.

Theorem 3.1. Let s > 0, 1 < p < q <∞ and 1 ≤ r ≤ ∞. Put γ = n
(
1
p
− 1

q

)
.

Take any k ∈ N such that s < k. Assume that γ < s, then there exists a positive
constant cp,q,r,k,n which depends only on p, q, r, k and n such that

‖f |Bs−γ
q,r (Ω)‖k ≤ cp,q,r,k,n

(k − s)
1

max{p,r}

(s− γ)
1

min{q,r}
‖f |Bs

p,r(Ω)‖k (41)

for all f ∈ Bs
p,r(Ω). The same result holds for periodic functions defined on Tn.

Proof. Let θ be given by the equation s = kθ+ γ(1− θ). We interpolate by the
real interpolation method the well-known embeddings

Bγ
p,q(Ω) ↪→ Lq(Ω) and W k

p (Ω) ↪→ Bk−γ
q,p (Ω) (42)

(see [4, 36]) which imply that

‖f |(Lq(Ω), Bk−γ
q,p (Ω))θ,r‖ ≤ c‖f |(Bγ

p,q(Ω),W k
p (Ω))θ,r‖ (43)

where c is a positive constant that is independent of θ and f (but may depend
on p, q, r, k and n). Using (24), (16) and (17), we derive

‖f |(Bγ
p,q(Ω),W k

p (Ω))θ,r‖≤c1‖f |((Lp(Ω),W k
p (Ω)) γ

k
,q,W

k
p (Ω))θ,r‖

=c1‖f |(W k
p (Ω), (W k

p (Ω), Lp(Ω))1− γ
k
,q)1−θ,r‖

≤c2
((γ
k

)− 1
q
+θ−

1
min{q,r}

)
‖f |(W k

p (Ω), Lp(Ω))(1−θ)(1− γ
k
),r‖

=c2

((γ
k

)− 1
q
+θ−

1
min{q,r}

)
‖f |(Lp(Ω),W k

p (Ω)) s
k
,r‖

≤c3
((γ
k

)− 1
q
+θ−

1
min{q,r}

)
‖f |Bs

p,r(Ω)‖k
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where in the last equivalence we have used (25). To characterize the interpola-
tion norm on the left-hand side in (43) we can proceed similarly to derive

(1− θ)−
1

max{p,r}‖f |Bs−γ
q,r (Ω)‖k ≤ c4‖f |(Lq(Ω), Bk−γ

q,p (Ω))θ,r‖

where the constant c4 > 0 does not depend on θ.
Finally, it is not hard to check that there is c5 > 0, which is independent of

s with γ < s < k, such that

(1− θ)
1

max{p,r}

((γ
k

)− 1
q

+ θ−
1

min{q,r}

)
≤ c5(k − s)

1
max{p,r} (s− γ)−

1
min{q,r}

which yields the desired estimate (41).
The proof in the case that we work with periodic functions can be carried

out in a similar way.

Remark 3.2. The previous result is also true in the limiting case p = 1 with
k = 1 if we work with Besov spaces defined over Rn with n ≥ 2 because the
embedding W 1

p (Rn) ↪→ B1−γ
q,p (Rn) holds (see [31]).

Remark 3.3. The corresponding result to Theorem 3.1 when q = ∞ reads as
follows: Let s > 0, 1 < p < ∞, 1 ≤ r ≤ ∞ and k ∈ N with k > s. Put γ = n

p
.

If γ < s, then there exists a positive constant cp,r,k,n depending only on p, r, k
and n such that

‖f |B
s−n

p
∞,r (Ω)‖k ≤ cp,r,k,n

(k − s)
1

max{p,r}

s− n
p

‖f |Bs
p,r(Ω)‖k, f ∈ Bs

p,r(Ω).

The proof is similar to that given in Theorem 3.1, but now we interpolate
between the well-known embedding

B
n
p

p,1(Ω) ↪→ L∞(Ω) and W k
p (Ω) ↪→ B

k−n
p

∞,p (Ω)

(see [26, 31]).

Remark 3.4. Assume that 0 < s < 1 and 1 < p <∞. In [32, Proposition 2.3]
it is shown that

(nvn)
1
p2−n−2‖f |Bs

p,p(Rn)‖1 ≤
(∫

Rn

∫
Rn

|f(x)− f(y)|p

|x− y|n+sp
dxdy

) 1
p

≤ ((n+ p)vn)
1
p‖f |Bs

p,p(Rn)‖1.

Here vn denotes the volume of the unit ball in Rn. Hence our semi-norm
‖ · |Bs

p,p(Rn)‖1 is uniformly equivalent with respect to s to that used in [6,7,34].
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Taking limits when s→ γ+ with r = q in the inequality (41) and applying (13),
we get that

‖f |Lq(Rn)‖ ≤ c‖f |Bγ
p,q(Rn)‖1 (44)

for any f ∈ Bγ
p,q(Rn). Analogously, when s→ 1−, it follows from (12) that

‖f |B1−γ
q,p (Rn)‖1 ≤ c‖∇f |Lp(Rn)‖ (45)

for any f ∈ W 1
p (Rn). Then, we have shown that the embeddings (44) and (45)

are simple consequences of the inequality (41) using the limits of Besov norms
given by (12) and (13). Conversely, the proof of Theorem 3.1 exhibits that (41)
follows from (44) and (45) (cf. (42)) together with the sharp reiteration formula
(17). Hence, in some sense, the sharp inequality (41) turns out to be equivalent
to the classical embeddings (44) and (45).

In the rest of the paper we study the limiting cases of the embedding (8)
when s = n

(
1
p
− 1

q

)
and s = k = 1. First, we investigate the case s = n

(
1
p
− 1

q

)
.

Let us recall that the following embedding holds (see (9))

B
n
(

1
p
− 1
q

)
,α+ 1

min{q,r}
p,r (Tn) ↪→ B0,α

q,r (Tn).

Here 1 < p < q < ∞, 1 ≤ r ≤ ∞ and α > −1
r
. Note that there is a loss of

logarithmic smoothness in order to have f ∈ B0,α
q,r (Tn). This result is the best

possible in general as we state next.

Proposition 3.5. Let 1 < p < q ≤ r < ∞ and α > −1
r
. For any ε > 0 there

is a function f ∈ B
1
p
− 1
q
,α+ 1

q
−ε

p,r (T) such that f 6∈ B0,α
q,r (T).

In order to show Proposition 3.5 we will need the technical results given
in Lemmas 3.6 and 3.7 below. Lemma 3.6 is due to Askey and Wainger [1]
and consists of a generalization of the well-known Hardy-Littlewood theorem
for Fourier series with monotone coefficients (cf. [41, Chapter XII, (6.6)]). On
the other hand, Lemma 3.7 is a realization result of the modulus of smoothness
in terms of the partial Fourier series. See [37].

As usual, [·] denotes the greatest integer function, Slf stands for the l-th
partial sum of the Fourier series f and S ′lf is its first derivative.

Lemma 3.6. Let 1 < p < ∞ and let
∑∞

j=1 aj cos(jx) be the Fourier series of
an integrable function f .

(i) If the sequences (aj) and (λj) are such that
∑∞

ν=j |aν −aν+1| ≤ cλj, j ∈ N,
for some c > 0 which is independent of j, then there is K1 > 0 for which

‖f |Lp(T)‖p ≤ K1

∞∑
j=1

jp−2λpj .
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(ii) If (aj) is a nonnegative sequence, then there is K2 > 0 such that

∞∑
j=1

 j∑
ν=[ j

2
]

aν

p j−2 ≤ K2‖f |Lp(T)‖p.

Lemma 3.7. Let 1 < p <∞. Assume f ∈ Lp(T). Then,

c1
(
‖f − Slf |Lp(T)‖+ l−1‖S ′lf |Lp(T)‖

)
≤ ω

(
f, l−1

)
p

≤ c2
(
‖f − Slf |Lp(T)‖+ l−1‖S ′lf |Lp(T)‖

)
for all l ∈ N.

Proof of Proposition 3.5. Take β ∈ R such that

−1

q
− 1

r
− α ≤ β < min

{
−1

q
− 1

r
− α + ε,−1

q

}
.

We consider the Fourier series f(x) ∼
∑∞

j=1 aj cos(jx), x ∈ T, with aj =

j
− 1
q′ (1 + log j)β, j ∈ N. Since the sequence (aj) is monotonically decreasing

to zero we have
∑∞

ν=j |aν−aν+1| ≤ caj. Then, applying Lemma 3.6(i) we derive

‖f |Lq(T)‖q ≤ K1

∞∑
j=1

(
j
− 1
q′ (1 + log j)β

)q
jq−2 = K1

∞∑
j=1

(1 + log j)βq
1

j
<∞

since β + 1
q
< 0. Hence, f ∈ Lq(T).

We proceed to estimate ω(f, t)q with the help of Lemma 3.7. We have for
l ∈ N that

ω(f, l−1)q

≥c(‖f−Slf |Lq(T)‖+l−1‖S ′lf |Lq(T)‖)

≥c

∥∥∥∥∥
∞∑

j=l+1

j
− 1
q′(1+log j)βcos(jx)|Lq(T)

∥∥∥∥∥+c l−1

∥∥∥∥∥
l∑

j=1

j
1− 1

q′(1+log j)βcos(jx)|Lq(T)

∥∥∥∥∥
where we have used the boundedness of the conjugate function in the last in-
equality (see, e.g., [21, Theorem 3.5.6]). Using now Lemma 3.6(ii), we get

ω(f, l−1)q≥ c

(
∞∑
j=2l

(
j
− 1
q′ (1+log j)β

)q
jq−2

)1
q

+c l−1

(
l∑

j=1

(
j
1− 1

q′ (1+log j)β
)q
jq−2

)1
q

= c

(
∞∑
j=2l

(1+log j)βq
1

j

)1
q

+c l−1

(
l∑

j=1

(
j(1+log j)β

)q 1

j

)1
q

≥ c
(
(1+log l)β+

1
q +l−1l(1+log l)β

)
≥ c(1+log l)β+

1
q
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because β + 1
q
< 0. By monotonicity, we derive ω(f, t)q ≥ c(1 − log t)β+

1
q for

0 < t < 1. Consequently,

‖f |B0,α
q,r (T)‖1 =

(∫ 1

0

(
(1−log t)αω(f, t)q

)r dt
t

)1
r

≥c
(∫ 1

0

(1−log t)(α+β+
1
q
)r dt

t

)1
r

=∞

since α + β + 1
q

+ 1
r
≥ 0. Then, f 6∈ B0,α

q,r (T).

On the other hand, using again Lemma 3.6(i), we obtain

‖f |Lp(T)‖p≤K1

∞∑
j=1

(
j
− 1
q′ (1+log j)β

)p
jp−2 =K1

∞∑
j=1

(
j−(

1
p
− 1
q
)(1+log j)β

)p1

j
<∞,

which implies that f ∈ Lp(T). We proceed to estimate its modulus of smooth-
ness of first order with respect to the Lp(T)-norm. We have

ω(f, l−1)p ≤ c(‖f − Slf |Lp(T)‖+ l−1‖S ′lf |Lp(T)‖)

≤ c l−(
1
p
− 1
q
)(1 + log l)β + c

(
∞∑

j=l+1

(
j
− 1
q′ (1 + log j)β

)p
jp−2

)1
p

+ c l−1

(
l∑

j=1

(
l
1− 1

q′ (1 + log l)β
)p
jp−2

)1
p

≤ c
(
l−(

1
p
− 1
q
)(1 + log l)β + l−1l

1
q (1 + log l)βl1−

1
p

)
≤ c l−(

1
p
− 1
q
)(1 + log l)β

and then

ω(f, t)p ≤ c t
1
p
− 1
q (1− log t)β, 0 < t < 1.

Therefore,(∫ ∞
0

(
t−(

1
p
− 1
q
)(1 + | log t|)α+

1
q
−εω(f, t)p

)r dt
t

)1
r

≤ c‖f |Lp(T)‖+

(∫ 1

0

(
t−(

1
p
− 1
q
)(1− log t)α+

1
q
−εω(f, t)p

)r dt
t

)1
r

≤ c ‖f |Lp(T)‖+ c

(∫ 1

0

(1− log t)(α+
1
q
−ε+β)r dt

t

)1
r

<∞

since α+ 1
q
−ε+β+ 1

r
<0. Hence, f ∈B

1
p
− 1
q
,α+ 1

q
−ε

p,r (T). The proof is complete.
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Remark 3.8. We claim that the exponent 1
min{q,r} in Theorem 3.1 is sharp in

general. Indeed, assume that q < r and that there exists q0 satisfying that
q < q0 and

‖f |B
s−( 1

p
− 1
q
)

q,r (T)‖k ≤ c
1(

s−
(
1
p
− 1

q

)) 1
q0

‖f |Bs
p,r(T)‖k, f ∈ Bs

p,r(T), (46)

where c is uniform with respect to s →
(
1
p
− 1

q

)
+. Note that k > 1

p
− 1

q
. We

observe that (46) can be rewritten in terms of interpolation spaces via (25).
Namely, we have

‖f |(Lq(T),W k
q (T))(s−( 1

p
− 1
q
))k−1,r‖ ≤ c

1(
s−

(
1
p
− 1

q

)) 1
q0

‖f |(Lp(T),W k
p (T)) s

k
,r‖

for all f ∈ Bs
p,r(T) and s→

(
1
p
− 1

q

)
+. In particular, for all j ∈ N it holds that

‖f |(Lq(T),W k
q (T))2−j ,r‖ ≤ c 2

j
q0 ‖f |(Lp(T),W k

p (T))( 1
p
− 1
q
)k−1+2−j ,r‖. (47)

Suppose first that q0≤r. Let α>−1
r
. Multiplying both sides of (47) by 2jα

and using the Σ(r)-extrapolation approach (see (34)), we derive that

Σ(r)
(
2
j(α+ 1

q0
)
(Lp(T),W k

p (T))( 1
p
− 1
q
)k−1+2−j ,r

)
↪→Σ(r)

(
2jα(Lq(T),W k

q (T))2−j ,r
)
. (48)

Since α > − 1
q0

, it follows from (36) that

Σ(r)
(

2
j(α+ 1

q0
)
(Lp(T),W k

p (T))( 1
p
− 1
q
)k−1+2−j ,r

)
←↩ (Lp(T),W k

p (T))( 1
p
− 1
q
)k−1,r,α+ 1

q0

= B
1
p
− 1
q
,α+ 1

q0
p,r (T)

(49)

where in the last equivalence we have used (26).
Next we deal with the right-hand side space in (48). Let

g(t) =

{
(1− log t)α+1 for 0 < t ≤ 1,
t−α0 for 1 < t <∞,

for any 0 < α0 < 1. Applying (21), (37), (29)–(31), we get

Σ(r)
(
2jα(Lq(T),W k

q (T))2−j ,r
)

= Σ(r)
(
2j(α+1)(Lq(T),W k

q (T))2−j ,r;J
)

= (Lq(T),W k
q (T))g,r;J

= (Lq(T),W k
q (T))(0,α+1),r;J

= (Lq(T),W k
q (T))(0,α),r

= B0,α
q,r (T).

(50)
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Then, by (48)–(50), we get the embedding

B
1
p
− 1
q
,α+ 1

q0
p,r (T) ↪→ B0,α

q,r (T)

which contradicts the statement of Proposition 3.5. Hence, (46) is not true.

If q0>r, the proof follows from the fact that
(
s−
(
1
p
−1
q

))− 1
q0 <

(
s−
(
1
p
−1
q

))− 1
r

whenever s→
(
1
p
− 1

q

)
+ and the case given above.

Next we deal with the limiting case s = k = 1 in the embedding (8) with
the help of the logarithmic Lipschitz spaces Lip(1,−α)

p,q (Ω) (cf. (7)).

Theorem 3.9. Let 1 < p < q < ∞, 1 ≤ r ≤ ∞ and α > 1
r
. Assume that

γ = n
(
1
p
− 1

q

)
< 1. Then

Lip(1,−α)
p,r (Ω) ↪→ B

1−γ,−α+ 1
max{p,r}

q,r (Ω).

The periodic counterpart of the previous embedding also holds true.

Proof. A similar argument used to get (47) from (46) can be applied to obtain
from (41) the inequality

2
j

max{p,r}‖f |(Lq(Ω),W 1
q(Ω))1−γ−2−j ,r‖≤c‖f |(Lp(Ω),W 1

p(Ω))1−2−j ,r‖, j≥j0. (51)

Here, j0 is chosen so that 2−j0 < 1−γ and c is constant which is independent of f
and j. Multiplying both sides of the previous inequality by 2−jα and applying
the ∆(r)-extrapolation approach (cf. (38)), we arrive at

∆(r)
(
2−jα(Lp(Ω),W 1

p (Ω))1−2−j ,r
)

↪→ ∆(r)
(
2−j(α−

1
max{p,r} )(Lq(Ω),W 1

q (Ω))1−γ−2−j ,r
) (52)

Next we deal only with the case r < ∞. The modifications for the case
r =∞ are usual. According to (39) and (40) we have

∆(r)
(
2−jα(Lp(Ω),W 1

p (Ω))1−2−j ,r
)

= (Lp(Ω),W 1
p (Ω))g,r (53)

with g(t) =
(∑∞

j=j0
2−jαrt2

−jr
) 1
r
t−1. For 0 < t < 1, by monotonicity, the

function g(t) can be estimated by∫ 2−j0

0

tσrσ(α− 1
r
)rdσ ≤ c

∫ 2−j0

0

e−σr(1−log t)σ(α− 1
r
)rdσ

= c

∫ 2−j0 (1−log t)

0

e−σr
(

σ

1−log t

)(α− 1
r
)r

dσ

1−log t

= c(1−log t)−αr
∫ 2−j0 (1−log t)

0

e−σrσ(α− 1
r
)rdσ

= c(1−log t)−αr
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since
∫∞
0
e−σrσ(α− 1

r
)rdσ =

∫∞
1
u−r(log u)(α−

1
r
)r du

u
< ∞. On the other hand, if

t ≥ 1 we have the elementary estimates

2−j0αrt2
−j0r ≤

∞∑
j=j0

2−jαrt2
−jr ≤ t2

−j0r
∞∑
j=j0

2−jαr ≤ c t2
−j0r.

Hence g can be estimated from above by h where

h(t) =

{
t−1(1− log t)−α for 0 < t < 1,

t−(1−2
−j0 ) for t ≥ 1,

and then,

Lip(1,−α)
p,r (Ω) ↪→ (Lp(Ω),W 1

p (Ω))h,r ↪→ (Lp(Ω),W 1
p (Ω))g,r (54)

where the left-hand side embedding is clear by (23).
Analogously, we treat the right-hand side space in (52). Then,

∆(r)
(

2−j(α−
1

max{p,r} )(Lq(Ω),W 1
q (Ω))1−γ−2−j ,r

)
↪→ (Lq(Ω),W 1

q (Ω))f,r

where

f(t) =

{
t−(1−γ)(1− log t)−α+

1
max{p,r} for 0 < t < 1,

t−(1−γ−2
−j0 ) for t ≥ 1.

In particular,

∆(r)
(

2−j(α−
1

max{p,r} )(Lq(Ω),W 1
q (Ω))1−γ−2−j ,r

)
↪→ B

1−γ,−α+ 1
max{p,r}

q,r (Ω) (55)

because t−(1−γ)(1 + log t)−α+
1

max{p,r} ≤ c t−(1−γ−2
−j0 ) for t ≥ 1. Finally, the

desired result follows from (52)–(55).

Next we show the optimality in general of the previous result.

Proposition 3.10. Let 1 < r ≤ p < q <∞ and α > 1
r
. Given any ε > 0, there

exists f ∈ Lip(1,−α)
p,r (T) such that f 6∈ B

1− 1
p
+ 1
q
,−α+ 1

p
+ε

q,r (T).

Proof. Take δ ∈ R satisfying that

max

{
α− 1

r
− 1

p
− ε,−1

p

}
≤ δ < α− 1

r
− 1

p

and we consider the Fourier series f(x) ∼
∑∞

j=1 aj cos(jx), x ∈ T, where

aj = j−(2−
1
p
)(1 + log j)δ, j ∈ N. By Lemma 3.6(i),

‖f |Lp(T)‖p ≤ K1

∞∑
j=1

(
j−(2−

1
p
)(1+log j)δ

)p
jp−2 = K1

∞∑
j=1

j−p(1+log j)δp
1

j
<∞.
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Therefore, f ∈ Lp(T). We shall estimate ω(f, t)p by using Lemmas 3.7
and 3.6(i), then

ω(f, l−1)p≤ c
(
‖f − Slf |Lp(T)‖+ l−1‖S ′lf |Lp(T)‖

)
≤ c

∥∥∥∥∥
∞∑

j=l+1

j−(2−
1
p
)(1 + log j)δ cos(jx)|Lp(T)

∥∥∥∥∥
+ c l−1

∥∥∥∥∥
l∑

j=1

j−(1−
1
p
)(1 + log j)δ cos(jx)|Lp(T)

∥∥∥∥∥
≤ c l−1(1 + log l)δ + c

(
∞∑

j=l+1

j−p(1 + log j)δp
1

j

)1
p

+ c l−1

(
l∑

j=1

(1 + log j)δp
1

j

)1
p

≤ c l−1(1 + log l)δ+
1
p

since δ > −1
p
. So,

ω(f, t)p ≤ c t(1− log t)δ+
1
p , 0 < t < 1. (56)

Further, the function f also belongs to Lq(T) because

‖f |Lq(T)‖q≤K1

∞∑
j=1

(
j−(2−

1
p
)(1+log j)δ

)q
jq−2=K1

∞∑
j=1

(
j−(1−

1
p
+ 1
q
)(1+log j)δ

)q 1

j
<∞,

and applying Lemma 3.6(ii) we can estimate its first Lq(T)-modulus of smooth-
ness,

ω(f, l−1)q

≥ c
(
‖f−Slf |Lq(T)‖+ l−1‖S ′lf |Lq(T)‖

)
≥ c

(
∞∑
j=2l

(
j−(2−

1
p
)(1+log j)δ

)q
jq−2

)1
q

+ c l−1

(
l∑

j=1

(
j−(1−

1
p
)(1+log j)δ

)q
jq−2

)1
q

= c

(
∞∑
j=2l

(
j−(1−

1
p
+ 1
q
)(1+log j)δ

)q 1

j

)1
q

+ c l−1

(
l∑

j=1

(
j

1
p
− 1
q (1+log j)δ

)q 1

j

)1
q

≥ c l−(1−
1
p
+ 1
q
)(1+log l)δ.

Then,

ω(f, t)q ≥ c t1−
1
p
+ 1
q (1− log t)δ, 0 < t < 1. (57)
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By (56) we derive that

∫ 1

0

(t−1
(
1− log t)−αω(f, t)p

)r dt
t
≤ c

∫ 1

0

(1− log t)(−α+δ+
1
p
)r dt

t
<∞,

since −α + δ + 1
p

+ 1
r
< 0. Consequently, f ∈ Lip(1,−α)

p,r (T). On the other hand,

by (57) we have

∫ ∞
0

(
t−(1−

1
p
+ 1
q
)(1 + | log t|)−α+

1
p
+εω(f, t)q

)r dt
t

≥
∫ 1

0

(
t−(1−

1
p
+ 1
q
)(1− log t)−α+

1
p
+εω(f, t)q

)r dt
t

≥ c

∫ 1

0

(1− log t)(−α+
1
p
+ε+δ)r dt

t
=∞

because −α+ 1
p

+ ε+ δ+ 1
r
≥ 0. This implies that f 6∈ B

1− 1
p
+ 1
q
,−α+ 1

p
+ε

q,r (T). The
proof is finished.

Remark 3.11. The exponent 1
max{p,r} in Theorem 3.1 is sharp in general. This

fact was already shown in [32, Remark 3.2] for k = 1. We can also show it

from the extrapolation argument given in the proof of Theorem 3.9 together

with Proposition 3.10. Indeed, assume that r < p and that there exists p0 < p

such that ‖f |B
s− 1

p
+ 1
q

q,r (T)‖1 ≤ c(1− s)
1
p 0‖f |Bs

p,r(T)‖1 for all f ∈ Bs
p,r(T), where

the constant c is independent of s with s→ 1−. Then, starting from the sharp

estimate (51) but now with the exponent 1
p0

on its left-hand side, one can follow

the proof of Theorem 3.9 to arrive at Lip(1,−α)
p,r (T) ↪→ B

1− 1
p
+ 1
q
,−α+ 1

p 0
q,r (T), which

contradicts the statement of Proposition 3.10.

Acknowledgement. The author has been supported in part by the Spanish
Ministerio de Economı́a y Competitividad (MTM2017-84058-P (AEI/FEDER,
UE)) and by the FPU grant AP2012-0779 of the Ministerio de Economı́a y
Competitividad.

It is a pleasure to thank Professors Fernando Cobos and Hans Triebel for
valuable comments.

The author would like to thank the referees for their useful comments which
have led to improve the paper.



Norms of Embeddings between Besov Spaces 147

References

[1] Askey, R. and Wainger, S., Integrability theorems for Fourier series. Duke
Math. J. 33 (1966), 223 – 228.

[2] Bennett, C. and Sharpley, R., Interpolation of Operators. Boston: Academic
Press 1988.
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[40] Triebel, H., Comments on tractable embeddings and function spaces of smooth-
ness near zero. Report 2013.

[41] Zygmund, A., Trigonometric Series. Cambridge: Cambridge Univ. Press 1968.

Received April 18, 2016; revised September 7, 2017


