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Finite Time Singularity in
a MEMS Model Revisited

Philippe Laurençot and Christoph Walker

Abstract. A free boundary problem modeling a microelectromechanical system con-
sisting of a fixed ground plate and a deformable top plate is considered, the plates
being held at different electrostatic potentials. It couples a second order semilinear
parabolic equation for the deformation of the top plate to a Laplace equation for the
electrostatic potential in the device. The validity of the model is expected to break
down in finite time when the applied voltage exceeds a certain value, a finite time
singularity occurring then. This result, already known for non-positive initial config-
urations of the top plate, is here proved for arbitrary ones and thus now includes, in
particular, snap-through instabilities.
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1. Introduction

An important feature of microelectromechanical systems (MEMS) is the so-
called pull-in instability which occurs in principle when the potential difference
applied across the device exceeds a certain threshold value [6, 16]. For an ide-
alized electrostatic MEMS actuator consisting of an elastic plate coated with a
thin dielectric film held at potential one (after normalization) and suspended
above a rigid conducting ground plate held at potential zero, this phenomenon
corresponds to the touchdown of the elastic plate on the ground plate. It is of
utmost importance to figure out whether and when it does take place. Indeed,
though pull-in might be a sought-for behavior (in switching applications for in-
stance) or not (for micro-mirrors, in particular), its possible occurrence anyway
has a strong influence on the operating conditions of the MEMS device. From a
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mathematical viewpoint, touchdown takes place when the vertical deflection of
the elastic plate goes beyond a certain value at some time T∗. More precisely,
we assume that the ground and elastic plates have the same shape D, which
is a smooth bounded domain of Rn, n = 1, 2. The ground plate is assumed to
be located at height z = −1 (so that it corresponds to the surface D × {−1}
in Rn+1) while the elastic plate at time t ≥ 0 is the surface

{(x, z) ∈ D × R; z = u(t, x)} ⊂ Rn+1,

where u(t, x) denotes the deflection of the elastic plate in the vertical direction
at position x ∈ D and time t. The touchdown phenomenon then takes place at
time T∗ > 0 if

lim
t→T∗

min
x∈D̄
{u(t, x)} = −1. (1.1)

It is actually rather well-understood for the so-called vanishing aspect ratio
model

∂tu−∆u = − λ

(1 + u)2
, t > 0, x ∈ D,

u = 0, t > 0, x ∈ ∂D,
u(0) = u0, x ∈ D,

(1.2)

where the parameter λ is proportional to the square of the potential difference
applied across the device before rescaling, and the initial condition satisfies
u0 > −1 in D. A threshold value λs of the parameter λ is found for which there
is no stationary solution to (1.2) when λ exceeds λs, while there is at least one
stable stationary solution for λ ∈ (0, λs). Similarly, for the evolution equation
(1.2), there is a threshold value λe(u

0) > 0 depending on the initial condition u0

with the following properties: if λ ∈ (0, λe(u
0)), then there is a unique classical

solution to (1.2) which exists for all times and is well-separated from −1 on each
finite time interval. On the contrary, if λ > λe(u

0), then the unique classical
solution to (1.2) exists only on a finite time interval [0, T∗) and touchdown
occurs at time T∗ as described in (1.1). Several results are also available for
variants of (1.2), where ∂tu is replaced by ∂2

t u and/or ∆u is replaced by ∆2u
with either clamped (u = ∂νu = 0 on ∂D) or pinned (u = ∆u = 0 on ∂D)
boundary conditions. The results, though, are less complete and several gray
areas persist. We refer to [3–5, 8, 10, 11, 13, 15] and the references therein for a
more complete description of the available results.

Far less is known for a more complex and more precise model for MEMS
devices, which describes not only the dynamics of the deflection in the vertical
direction u, but also that of the electrostatic potential ψu between the two
plates. When D := (−1, 1), it reads

∂tu− ∂2
xu = −λ g(u), x ∈ D, t > 0, (1.3a)
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with clamped boundary conditions

u(t,±1) = 0, t > 0, (1.3b)

and initial condition

u(0, x) = u0(x), x ∈ D, (1.3c)

the electrostatic force g(u) being given by

g(u(t))(x) := ε2 |∂xψu(t, x, u(t, x))|2 + |∂zψu(t, x, u(t, x))|2 (1.3d)

for t > 0 and x ∈ D. The dimensionless electrostatic potential ψu = ψu(t, x, z)
is defined in the region

Ω(u(t)) := {(x, z) ∈ D × (−1,∞) : −1 < z < u(t, x)}

between the ground plate and the elastic plate and satisfies a rescaled Laplace’s
equation

ε2∂2
xψu + ∂2

zψu = 0, (x, z) ∈ Ω(u(t)), t > 0, (1.4a)

the parameter ε > 0 being the so-called aspect ratio of the device, that is, the
ratio between the vertical and horizontal length scales. Laplace’s equation is
supplemented with non-homogeneous boundary conditions

ψu(t, x, z) =
1 + z

1 + u(t, x)
, (x, z) ∈ ∂Ω(u(t)), t > 0. (1.4b)

In particular, ψu(t, x, u(t, x)) = 1 and ψu(t, x,−1) = 0 for x ∈ D as required.
The equation (1.2) for n = 1 is formally derived from (1.3), (1.4) by setting
ε = 0 since then the solution to (1.4) is given explicitly by (1.4b) for all x ∈
Ω(u(t)) and t > 0. In contrast to (1.2), the initial-boundary value problem
(1.3), (1.4) features a rather intricate coupling between the two unknowns u
and ψu. Indeed, the source term in (1.3a), governing the evolution of u, is
proportional to the square of the trace of the gradient of ψu on the elastic plate.
The electrostatic potential, in turn, solves an elliptic equation which involves a
non-smooth domain varying with u. Thus, the source term in (1.3a) depends
in a nonlocal and nonlinear way on u. Still, it is shown in [2, Theorem 1] that
(1.3), (1.4) is locally well-posed in

S2
q (D) :=

{
v ∈ W 2

q (D); v(±1) = 0 and − 1 < v(x) for x ∈ D
}
,

when q > 2. More precisely, given u0 ∈ S2
q (D), there are a maximal existence

time Tm > 0 and a unique solution (u, ψu) to (1.3), (1.4) such that

u ∈ C1
(
[0, Tm), Lq(D)

)
∩ C

(
[0, Tm),W 2

q (D)
)
, u(t) ∈ S2

q (D), (1.5)
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and ψu(t) ∈ H2(Ω(u(t)) for all t ∈ [0, Tm). It was further reported in
[2, Theorem 2] that, under the additional assumption that u0 is non-positive,
the corresponding solution to (1.3), (1.4) cannot exist globally if λ exceeds
some value λe(u

0, ε) depending on u0 and ε: indeed, for λ > λe(u
0, ε) there is

Tm ∈ (0,∞) depending on λ, u0, and ε such that

lim
t→Tm

min
x∈[−1,1]

{u(t, x)} = −1 or lim
t→Tm

‖u(t)‖W 2
q

=∞ . (1.6)

According to the discussion above, only the first singularity in (1.6) corresponds
to the pull-in instability (recall (1.1)), and this is the sole one expected to
occur. Though we have been unable to rule out the blowup of the Sobolev
norm up to now, we point out that the non-positivity of the initial condition
is important in the proof of (1.6) as it entails the upper bound u(t) ≤ 0 as
long as it exists, thanks to the non-positivity of the right-hand side of (1.3a)
and the comparison principle. The purpose of this note is to prove that the
non-positivity assumption on u0 can be relaxed and improved to the weaker
assumption that u0 is simply bounded from above. It is worth mentioning that
relaxing the sign condition on u0 is not just a mere mathematical improvement,
but is physically relevant, for instance, in the study of the so-called snap-through
instability, where the shape of the plate is initially an arch (such as u0(x) =
h(1 + cos(πx)) for x ∈ D) or a bell [1,9,14]. Also, non-positivity plays a crucial
role in the proof of the occurrence of a finite time singularity in a related MEMS
model [12]. More precisely, we prove the following result.

Theorem 1.1. Let ε > 0 and q > 2 and consider u0 ∈ S2
q (D). There is

λ∗(u0, ε) > 0 depending on ε and u0 such that, if λ > λ∗, then the maximal
existence time Tm of the corresponding solution (u, ψu) to (1.3), (1.4) is finite
and

lim
t→Tm

min
x∈[−1,1]

{u(t, x)} = −1 or lim
t→Tm

‖u(t)‖W 2
q

=∞.

A well-known technique to prove the occurrence of a finite time singularity
in evolution equations is the so-called eigenfunction method [7, Theorem 8].
Owing to the nonlocality of the right-hand side of (1.3a), a direct application
of this technique to (1.3), (1.4) seems to fail. Nevertheless, we developed in [2]
a nonlinear version of this technique which allowed us therein to prove Theo-
rem 1.1 under the additional assumption that u0 is non-positive, the latter being
used in particular to control the supplementary nonlinear terms. Not surpris-
ingly, the proof of Theorem 1.1 herein relies on the same technique and borrows
some steps of the proof of [2, Theorem 2]. Besides some technical variations,
the main new step in the proof is to use the non-positivity of the right hand
side of (1.3a) and the decay properties of the linear heat equation to control in
a suitable way the contribution of the positive part of u, see Lemma 2.1 below.
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2. Finite time singularity

Let ε > 0, λ > 0, q > 2, and consider u0 ∈ S2
q (D). We denote the corresponding

solution to (1.3), (1.4) by (u, ψu) and its maximal existence time by Tm, recalling
that u enjoys the regularity properties (1.5) and that ψu(t) ∈ H2(Ω(u(t)) for
all t ∈ [0, Tm). Consequently,

γm(t, x) := ∂zψu(t, x, u(t, x)), (t, x) ∈ [0, Tm)×D,

is well-defined and, since

∂xψu(t, x, u(t, x)) = −∂xu(t, x)γm(t, x), (t, x) ∈ [0, Tm)×D,

by (1.4b), the right-hand side of (1.3a) also reads

−λg(u) = −λ(1 + ε2|∂xu|2)γ2
m.

Introducing the principal eigenvalue µ1 := π2

4
of the Laplace operator −∂2

x in
L2(D) with homogeneous Dirichlet boundary conditions and the corresponding
eigenfunction ζ1(x) := π

4
cos(πx

2
), x ∈ D, we define

Eα(t) :=

∫
D

ζ1(x)
(
u(t, x) +

α

2
u(t, x)2

)
dx, t ∈ [0, Tm),

where α ∈ [0, 1] is to be determined later on. Observe that (1.5) and the
properties of ζ1 guarantee that

Eα(t) > −1, t ∈ [0, Tm), (2.1)

for all α ∈ [0, 1]. We shall show that, for any sufficiently large value of λ, we
can choose α ∈ [0, 1] such that (2.1) can only hold true when Tm < ∞. This
then implies Theorem 1.1.

The starting point of the analysis is the following upper bound on Eα.

Lemma 2.1. Let α ∈ [0, 1] with α ≤ 2
1+(maxu0)+

. There is a positive constant

C0 depending only on maxu0 such that

Eα(t) ≤ C0e
−µ1t, t ∈ [0, Tm).

Proof. Let v and w be the solutions to

∂tv − ∂2
xv = 0, (t, x) ∈ (0, Tm)×D,

v(t,±1) = 0, t ∈ (0, Tm),
(2.2)

∂tw − ∂2
xw = −λg(u), (t, x) ∈ (0, Tm)×D,

w(t,±1) = 0, t ∈ (0, Tm),
(2.3)
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with initial conditions

v(0, x) = max{u0(x), 0}, w(0, x) = u0(x)−max{u0(x), 0}, x ∈ D. (2.4)

Since w(0, x) ≤ 0 ≤ v(0, x) ≤ (maxu0)+ for x ∈ D, we infer from (2.2)–(2.4)
and the comparison principle that

w(t, x) ≤ 0 ≤ v(t, x) ≤ (maxu0)+, (t, x) ∈ (0, Tm)×D,

and
‖v(t)‖2 ≤ e−µ1t‖v(0)‖2 ≤

√
2(maxu0)+e

−µ1t, t ∈ (0, Tm).

Also,

w(t, x) = u(t, x)− v(t, x) ≥ −1− (maxu0)+, (t, x) ∈ (0, Tm)×D,

so that

1 +
α

2
w(t, x) ≥ 1− α

2

(
1 + (maxu0)+

)
≥ 0, (t, x) ∈ (0, Tm)×D,

thanks to the constraint on α. Therefore, for t ∈ (0, Tm),

Eα(t) =

∫
D

ζ1

[
v(t) +

α

2
v(t)2 + αv(t)w(t) + w(t)

(
1 +

α

2
w(t)

)]
dx

≤
∫
D

ζ1

[
v(t) +

α

2
v(t)2

]
dx

≤ π

4

(√
2‖v(t)‖2 +

‖v(t)‖2
2

2

)
≤ π

[
(maxu0)+ + (maxu0)2

+

]
e−µ1t,

and the proof is complete.

We next derive a differential inequality for Eα. Though the proof is quite
similar to that performed in [2], we nevertheless recall it here not only for the
sake of completeness but also to shed some light on the importance of choosing
α > 0.

Lemma 2.2. Let p ≥ 1 and δ > 0. If

α :=
λε2

λε2 + 4δ2
∈ (0, 1), (2.5)

then
d

dt
Eα ≤ Fp,δ(Eα), t ∈ [0, Tm), (2.6)

where

Fp,δ(y) := µ1 +
4δλ

p(λε2 + 4δ2)

[
µ1ε

2

p
+

p

4δ
+
pµ1ε

2

p+ 1
y − 1

1 + y

]
(2.7)

for y > −1.
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Proof. It readily follows from (1.3a) that, for t ∈ [0, Tm),

d

dt
Eα =

∫
D

ζ1(1 + αu)(∂2
xu− λg(u)) dx

= −µ1Eα − α
∫
D

ζ1|∂xu|2 dx− λ
∫
D

ζ1(1 + αu)g(u) dx.

Since ζ1 ≥ 0 and 1 + αu ≥ 1− α in D, we conclude that, for t ∈ [0, Tm),

d

dt
Eα + µ1Eα + α

∫
D

ζ1|∂xu|2 dx ≤ −λ(1− α)

∫
D

ζ1g(u) dx. (2.8)

The next step is to estimate the last term on the right hand side of (2.8)
in terms of Eα. To this end, we recall the following results established in
[2, Lemma 9 and Lemma 10] which do not rely on the sign of u0. For t ∈ [0, Tm)
and p ∈ [1,∞), we have

4p

(p+ 1)2

∫
D

ζ1

1 + u
dx ≤ p

∫
Ω(u(t))

ζ1ψ
p−1
u |∂zψu|2 d(x, z) (2.9)

and∫
D

ζ1

(
1 + ε2|∂xu|2

)
γm dx

= p

∫
Ω(u(t))

ζ1ψ
p−1
u

[
ε2|∂xψu|2 + |∂zψu|2

]
d(x, z)

+
µ1ε

2

p+ 1

∫
Ω(u(t))

ζ1ψ
p+1
u d(x, z)− µ1ε

2

(p+ 1)(p+ 2)
− µ1 ε

2

p+ 1

∫
D

ζ1 u dx.

(2.10)

Since ψu ≥ 0 by the comparison principle, it follows from (2.9), (2.10), and the
non-negativity of ζ1 that, for t ∈ [0, Tm),∫

D

ζ1(1 + ε2|∂xu|2)γm dx

≥ p

∫
Ω(u(t))

ζ1ψ
p−1
u |∂zψu|2d(x, z)− µ1ε

2

(p+ 1)(p+ 2)
− µ1 ε

2

p+ 1

∫
D

ζ1u dx

≥ 4p

(p+ 1)2

∫
D

ζ1

1 + u
dx− µ1ε

2

p2
− µ1ε

2

p+ 1
Eα

≥ 4p

(p+ 1)2

∫
D

ζ1

1 + u+ α
2
u2

dx− µ1ε
2

p2
− µ1ε

2

p+ 1
Eα

≥ 1

p

∫
D

ζ1

1 + u+ α
2
u2

dx− µ1ε
2

p2
− µ1ε

2

p+ 1
Eα.
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Using Jensen’s inequality we end up with∫
D

ζ1(1 + ε2|∂xu|2)γm dx ≥ 1

p

1

1 + Eα
− µ1ε

2

p2
− µ1ε

2

p+ 1
Eα. (2.11)

We now deduce from Young’s inequality that, for any δ > 0,∫
D

ζ1(1+ε2|∂xu|2)γm dx ≤ δ

∫
D

ζ1(1+ε2|∂xu|2)γ2
m dx+

1

4δ

∫
D

ζ1(1+ε2|∂xu|2) dx.

Therefore, by (2.11),∫
D

ζ1g(u) dx =

∫
D

ζ1(1 + ε2|∂xu|2)γ2
m dx

≥ 1

δ

∫
D

ζ1(1 + ε2|∂xu|2)γm dx− 1

4δ2

∫
D

ζ1(1 + ε2|∂xu|2) dx

≥ 1

δp

1

1 + Eα
− µ1ε

2

δp2
− µ1ε

2

δ(p+ 1)
Eα −

1

4δ2
− ε2

4δ2

∫
D

ζ1|∂xu|2 dx.

Combining the above inequality with (2.8) gives

d

dt
Eα + µ1Eα + α

∫
D

ζ1|∂xu|2 dx

≤ −λ(1−α)

δp

[
1

1+Eα
− µ1ε

2

p
− p

4δ
− pµ1ε

2

p+1
Eα

]
+
λ(1−α)ε2

4δ2

∫
D

ζ1|∂xu|2 dx.

Owing to the choice (2.5) of α, we see that

α =
λ(1− α)ε2

4δ2
,

so that the terms involving |∂xu|2 cancel in the previous inequality, and we end
up with

d

dt
Eα ≤ −µ1Eα +

4δλ

p(λε2 + 4δ2)

[
µ1ε

2

p
+

p

4δ
+
pµ1ε

2

p+ 1
Eα −

1

1 + Eα

]
,

hence (2.6) as Eα > −1 by (2.1).

Proof of Theorem 1.1. Let p ≥ 1 and δ > 0. We investigate the properties of the
function Fp,δ defined in (2.7) and aim at finding values of the yet undetermined
parameters p ≥ 1 and δ > 0 which are suitable for our purpose. To begin with,
we set

α =
λε2

λε2 + 4δ2
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as in (2.5) and require that

λε2

λε2 + 4δ2
≤ 2

1 + (maxu0)+

,

that is,

δ ≥ χε

√
λ

2
, χε := ε

√
((maxu0)+ − 1)+

2
. (2.12)

Then, according to Lemma 2.1, the positive part of Eα(t) decays rapidly as time
increases, so that only the behavior of Fp,δ in a neighborhood of the interval
(−1, 0] is expected to matter in the following. We first notice that Fp,δ is
increasing on (−1,∞) with

Fp,δ(0) = µ1 +
4δλ

p(λε2 + 4δ2)

(
µ1ε

2

p
+

p

4δ
− 1

)
.

We now choose p = 1+2µ1ε
2 and δ = χ

√
λ

2
with χ := max{1, χε}, the parameter

χε being defined in (2.12). Then

Fp,δ(0) = µ1 +
2χ
√
λ

(1 + 2µ1ε2)(χ2 + ε2)

(
µ1ε

2

1 + 2µ1ε2
+

1 + 2µ1ε
2

2χ
√
λ
− 1

)
≤ µ1 +

2χ
√
λ

(1 + 2µ1ε2)(χ2 + ε2)

(
1 + 2µ1ε

2

2χ
√
λ
− 1

2

)
≤ µ1 +

χ

(1 + 2µ1ε2)(χ2 + ε2)

(
1 + 2µ1ε

2

χ
−
√
λ

)
≤ χ

(1 + 2µ1ε2)(χ2 + ε2)

(
1 + 2µ1ε

2

χ

(
1 + µ1(χ2 + ε2)

)
−
√
λ

)
.

Consequently, if
√
λ >

1 + 2µ1ε
2

χ

(
1 + µ1(χ2 + ε2)

)
,

then Fp,δ(0) < 0 and there is yp,δ > 0 such that

Fp,δ(yp,δ) < 0. (2.13)

Now, assume for contradiction that Tm = ∞. According to Lemma 2.1,
there is tp,δ > 0 such that Eα(t) ≤ yp,δ for t ≥ tp,δ and the monotonicity of Fp,δ
further entails that Fp,δ(Eα(t)) ≤ Fp,δ(yp,δ) for t ≥ tp,δ. We then infer from
Lemma 2.2 and (2.13) that

d

dt
Eα(t) ≤ Fp,δ(yp,δ) < 0, t ≥ tp,δ,

hence, after integration, Eα(t) ≤ Eα(tp,δ) +Fp,δ(yp,δ)(t− tp,δ) for t ≥ tp,δ. Thus,
there is T > tp,δ such that Eα(T ) < −1, which contradicts (2.1). Therefore, Tm
is finite and the proof of Theorem 1.1 is complete.
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