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Abstract. We study Bojanov–Xu interpolation whose interpolation points are located on con-
centric circles in R2. We prove that the integral means of the interpolation polynomial over a
fixed circle or a fixed annulus are continuous functions of the radii of circles. We also give a
distribution of the radii such that the integral means are convergent.
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1. Introduction

Let Pd(Rk) be the space of all polynomials of degree at most d in Rk. Since it is a fi-
nite dimensional vector space dimPd(Rk) =

(d+k
k

)
, the convergence of polynomials

in Pd(Rk) can be regarded as the convergence of any norm in the space.

In one variable, the interpolation by polynomials is a well studied problem. The
Lagrange and Hermite interpolation polynomials of functions at given points always
exist. When the interpolated function is fixed, the interpolation polynomial is contin-
uous with respect to the interpolation points. Moreover, if an array of interpolation
points is suitably distributed, then the sequence of interpolation polynomials of a
sufficiently smooth function converges uniformly to the function.

Multivariate polynomial interpolation problems are more difficult. For example,
it is not easy to decide whether a given set of

(d+k
k

)
distinct points in Rk determines

the Lagrange interpolation uniquely. Furthermore, the above-mentioned continuity
property of Hermite interpolation is not true in the multivariate case without addi-
tional assumptions (see for instance [1, 6, 7]). In [3], the authors studied a bivari-
ate Hermite interpolation problem at equidistant points on concentric circles. They
proved that the problem has a unique solution.
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Let n be a positive integer, d = [n
2 ] + 1 and m = [n+1

2 ], where [x] is the integer
part of x. We will denote by Θm the set of angles

Θm :=
{

θi : θi =
2iπ

2m+1
, i = 0,1, . . . ,2m

}
.

For a well-defined function f , let ∂

∂ r be the normal derivative

∂ f
∂ r

(x,y) =
∂ f
∂x

(x,y)cosθ +
∂ f
∂y

(x,y)sinθ , (x,y) = (r cosθ ,r sinθ).

The restriction of f on the ray {(r cosθi,r sinθi) : r ≥ 0} is denoted by fi for
i = 0, . . . ,2m, i.e., fi(r) = f (r cosθi,r sinθi), r ≥ 0. The circle of radius r > 0 cen-
tered at the origin is denoted by S(r). We denote by Dkg the derivative of order k of
the univariate function g. The following Theorem 1.1 of [3] by Bojanov and Xu will
be used throughout this paper. We restate it using the notations presented above.

Theorem 1.1. Let 0 < r1 < r2 < · · ·< rλ ≤ 1 and let µ1,µ2, . . . ,µλ be positive inte-
gers such that

µ1 +µ2 + · · ·+µλ =
[n

2

]
+1.

Let {ali : ali = (rl cosθi, rl cosθi), 0 ≤ i ≤ 2m} be equidistant points on the cir-
cle S(rl). Then, for any function f such that Dµl−1 fi(rl) exists for 1 ≤ l ≤ λ and
0≤ i≤ 2m, there is a unique polynomial p ∈Pn(R2) such that(

∂ k p
∂ rk

)
(al j) =

(
∂ k f
∂ rk

)
(al j), 0≤ k ≤ µl−1, 1≤ l ≤ λ , 0≤ j ≤ 2m.

The unique polynomial p in Theorem 1.1 will be denoted by

H[{(r1,µ1), . . . ,(rλ ,µλ )}; f ]

and be called the Bojanov–Xu interpolation polynomial of f . If s1,s2, . . . ,sd ∈ (0,1]
are not assumed to be distinct, then we can write

{s1,s2, . . . ,sd}= {(r1,µ1), . . . ,(rλ ,µλ )},

where (ri,µi) means that ri is repeated µi times. This convention will be used again in
Section 2. Hence, we will write H[{s1, . . . ,sd}; f ] for H[{(r1,µ1), . . . ,(rλ ,µλ )}; f ].
If s1, . . . ,sd are distinct, then the interpolation polynomial becomes the bivariate La-
grange interpolation polynomial L[{s1, . . . ,sd}; f ]. It is worth pointing out that an
explicit formula or an error formula for H[{s1, . . . ,sd}; f ] has not been available yet.
In addition, we have not known whether the following map

(s1, . . . ,sd) 7−→H[{s1, . . . ,sd}; f ] ∈Pn(R2)
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is continuous when f is a given smooth function. It is of interest to know whether
there are weaker continuity properties of the interpolation polynomials. Moreover,
from the numerical analysis point of view, H[{s1, . . . ,sd}; f ] (resp. its mean values) is
expected to approximate f (resp. the corresponding mean values of f ) when the num-
ber of circles, say λ , is increasing. But it is difficult to find conditions on {s1, . . . ,sd}
such that H[{s1, . . . ,sd}; f ] converges uniformly to f . In this paper, we are concerned
with the following problem.
Problem. Let Pf be the integral mean of the Bojanov–Xu interpolation polynomial,

Pf ({s1, . . . ,sd})(r) =
1

2π

∫ 2π

0
H[{s1, . . . ,sd}; f ](r cosθ ,r sinθ)dθ , r ≥ 0.

1. Describe smoothness conditions on f such that Pf and the double integral of
H[·; f ] over an annulus are continuous with respect the radii sk’s.

2. Find conditions on the radii sk’s such that the integral means of the Lagrange
interpolation polynomials of sufficiently smooth functions over circles or an-
nulus converge to the corresponding integral means of the functions.

Note that Pf was first introduced in [3, Section 3]. Although a compact formula
for the Hermite interpolation is not known, the rotational invariance property of inter-
polation points make it possible to establish a formula for Pf . More precisely, we can
write Pf in term of the mean of 2m+1 univariate Hermite interpolation polynomials.
The continuity and convergence properties of integral means reduce to correspond-
ing properties of univariate interpolation. Theorems 3.2 and 3.3 give answers for the
first question. The case where some radii sk tend to 0 is treated separately. For the
second question, we prove in Theorems 4.1 and 4.5 that the convergence property
will hold when the Lebesgue constants of the sets {s2

k} grow polynomially in n. The
rate of convergence is also studied. Here, to obtain the positive answers for the two
problems in the case where some interpolation points are allowed to tend to the ori-
gin, we must make an assumption on the smoothness of the interpolated functions at
the origin.

Finally, we note that Bojanov and Xu extended their results to bivariate Birkhoff
interpolation at points that are located on several concentric circles. Hakopian and
Khalaf studied the poisedness of Bojanov–Xu type interpolation on conic sections
and obtained some interesting results. For a recent account of the theory of Hermite
interpolation, we refer the reader to [4, 9, 10, 12, 13]

2. Univariate Hermite interpolation
Let t1, . . . , tλ be λ distinct real numbers. Let µ1, . . . ,µλ be λ positive integers and
d = µ1 + · · ·+µλ . The following theorem is well-known.

Theorem 2.1. Given a function g for which Dµi−1g(ti) exists for i = 1, . . . ,λ . Then
there exists a unique p ∈Pd−1(R) such that

D j p(ti) = D jg(ti), 0≤ j ≤ µi−1, 1≤ i≤ λ .
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The polynomial p in Theorem 2.1 is denoted by H[{(t1,µ1), . . . ,(tλ ,µλ )};g] and
is called the Hermite interpolation polynomial. Its formula can be found in [2, The-
orem 1.1].

Theorem 2.2. The Hermite interpolation polynomial is given by

H[{(t1,µ1), . . . ,(tλ ,µλ )};g](t) =
λ

∑
k=1

µk−1

∑
i=0

Dig(tk)Hki(t),

where

Hki(t) =
1
i!

w(t)
(t− tk)µk−i

µk−i−1

∑
j=0

1
j!

(
(t− tk)µk

w(t)

)( j) ∣∣∣
t=tk

(t− tk) j

and

w(t) =
λ

∏
i=1

(t− ti)µi.

As Bojanov–Xu interpolation, it is convenient to use interpolation sets whose
elements are repeated. More precisely, any set A = {s1, . . . ,sd} ⊂R can be identified
with {(t1,µ1), . . . ,(tλ ,µλ )}, where the ti’s are pairwise distinct. Hence, we can write
H[A;g] instead of H[{(t1,µ1), · · · ,(tλ ,µλ )};g]. In the case where the si’s are pairwise
distinct, the interpolation polynomial becomes the ordinary Lagrange interpolation
polynomial and will be denoted by L[A;g]. The univariate Hermite interpolation is
continuous with respect to the interpolation points (see for instance [2, Theorem 1.4])

Theorem 2.3. Let I ⊂ R be an interval and g ∈Cd−1(I). Then the map

(t1, . . . , td) ∈ Id 7→H[{t1, . . . , td};g]

is continuous. In particular, if ti → t0 ∈ I for i = 1, . . . ,d, then H[{t1, . . . , td};g]→
Td−1

t0 (g), the univariate Taylor expansion of g at t0 to the order d−1.

Proposition 2.4. Let r1, . . . ,rλ be distinct real numbers in (0,a] and µ1, . . . ,µλ pos-
itive integers. Let g be a function defined on (0,a] such that Dµi−1g(ri) exists for
i = 1, . . . ,λ . Let g∗(r) = g(

√
r) and ĝ be the even extension of g, i.e., g(r) = ĝ(r) =

ĝ(−r) for 0 < r ≤ a. Then

H[(r1,µ1), . . . ,(rλ ,µλ ),(−r1,µ1), . . . ,(−rλ ,µλ ); ĝ](r)

= H[(r2
1,µ1), . . . ,(r2

λ
,µλ );g∗](r2).

(1)

Proof. Set d = µ1+ · · ·+µλ . Let us define P(t) = H[(t2
1 ,µ1), . . . ,(t2

λ
,µλ );g∗](t) and

Q(t) = P(t2). Then Q is an even polynomial of degree at most 2d− 2. Hence, it
suffices to check that

Q(i)(t j) = ĝ(i)(t j), Q(i)(−t j) = ĝ(i)(−t j), 1≤ j ≤ λ , 0≤ i≤ µ j−1.
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Since both Q and ĝ are even functions, we need only to prove the equalities for
derivatives at t j. Fix j ∈ {1, . . . ,λ}. For i= 0, by definition, we have Q(ti) = g∗(t2

i ) =
g(ti) = ĝ(ti). Next, we consider the case i > 0. For simplicity, we set ϕ(t) = t2. By
the Faà di Bruno formula [16], we obtain

Q(i)(t j) = (P◦ϕ)(i)(t j) = ∑
i!

k1! · · ·ki!
P(k)(ϕ(t j))

(
ϕ ′(t j)

1!

)k1

· · ·
(

ϕ(i)(t j)

i!

)ki

(2)

where, in the second line, k=k1+· · ·+ki and the sum is over all values of k1, . . . ,ki∈N
such that k1 +2k2 + · · ·+ iki = i. From the interpolation condition, we have

P(k)(ϕ(t j)) = P(k)(t2
j ) = (g∗)(k)(t2

j ) = (g∗)(k)(ϕ(t j)).

Substituting this into (2), we obtain

Q(i)(t j) = ∑
i!

k1! · · ·ki!
(g∗)(k)(ϕ(t j))

(
ϕ ′(t j)

1!

)k1

· · ·
(

ϕ(i)(t j)

i!

)ki

= (g∗ ◦ϕ)(i)(t j)

= g(i)(t j).

The proof is complete.

Let A = {s1, . . . ,sd} be a set of d distinct points in I = [a,b]. Let ∆(A, I) be
the norm of the Lagrange operator L[A; ·] : g ∈ C(I) 7→ L[A;g] ∈ C(I), where C(I)
is endowed with the sup norm. It is called the Lebesgue constant of A and can be
computed by using the fundamental Lagrange interpolation polynomials,

∆(A, I) = sup
r∈[a,b]

d

∑
i=1

∣∣∣∣∣ d

∏
j=1, j 6=i

r− s j

si− s j

∣∣∣∣∣ .
The Lebesgue constant is important for uniform approximation by interpolation poly-
nomials since it measures the stability of the interpolation process. Indeed, we have

sup
r∈I
|g(r)−L[A;g](r)| ≤ (1+∆(A, I))distI(g,Pd−1), (3)

where distI(g,Pd−1) = inf{supI |g− p| : p ∈Pd−1(R)}. This relation is known as
the Lebesgue inequality. By the second Jackson theorem in [15, Theorem 1.5], the
term distI(g,Pd−1) grows like o(d−M) as d→ ∞ when g ∈CM(I). More precisely,
there exists a constant C0 depending only on a,b and M such that

distI(g,Pd−1)≤
C0

dM ω

(
DMg;

1
d

)
, (4)

where ω(h; 1
d ) = sup{|h(r)−h(s)| : r,s ∈ [a,b], |r− s| ≤ 1

d} denotes the modulus of
continuity.
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Note that the Lebesgue constant is invariant under affine transformations of R.
Let `(r) = αr+β with α 6= 0, J = `(I) and B = `(A). Then it is easy to verify that

∆(A, I) = ∆(B,J).

Hence, from sets of points in [−1,1] whose Lebesgue constants grow slowly, we can
construct analogous sets in [a,b]. The Lebesgue constant of a set of d distinct points
grows at least like logd. It is well-known that zeros of orthogonal polynomials in
[−1,1] usually give the optimal growth. For example, the Lebesgue constants of
Chebyshev points {cos (2k+1)π

2d : k = 0, . . . ,d−1} ⊂ [−1,1] and Chebyshev–Lobatto
points {cos kπ

d : i = 0, . . . ,d} ⊂ [−1,1] grow like logd. Recently, Calvi and Phung
proved in [5] that the Lebesgue constant of the first d points of a ℜ-Leja sequence
grows like O(d3 logd). Latter, Chkifa gave some refinements of the estimate. For
more details we refer the reader to [5, 8]. Finally, we say that ∆(Ad, I) with Ad =
{r1d, . . . ,rdd} ⊂ I grows at most like a polynomial of degree N in d if there exists a
constant C > 0 such that ∆(Ad, I)≤CdN for d ≥ 1.

3. Some continuity properties

The notations in Section 1 will be used throughout this section. In particular,
d = [n

2 ]+1 and m = [n+1
2 ]. In addition, we also define

f ∗i (r) := fi(
√

r) = f
(√

r cos
2iπ

2m+1
,
√

r sin
2iπ

2m+1

)
, i = 0, . . . ,2m.

Normally, the Euclidean norm of x = (x,y) ∈ R2 is denoted by ‖x‖=
√

x2 + y2.
In [3], the authors gave a formula for Pf which contains fundamental interpola-

tion polynomials. The following result provides a useful formula for Pf .

Lemma 3.1. Under the assumptions of Theorem 1.1, we have

Pf ({(r1,µ1), . . . ,(rλ ,µλ )})(r) =
1

2m+1

2m

∑
i=0

H[{(r2
1,µ1), . . . ,(r2

λ
,µλ )}; f ∗i ](r

2).

Proof. The proof strongly relies on that given in [3, Proof of Theorem 3.1]. For
convenience, we repeat some arguments. We write

H[{(r1,µ1), . . . ,(rλ ,µλ )}; f ](r cosθ ,r sinθ) =
n

∑
k=0

rkqk(θ) := P̃(r,θ),

where qk(θ) are trigonometric polynomials of degree k given in [3, Relations (2.2)
and (2.3)]. Since P̃(r,θ) is a trigonometric polynomial of degree at most 2m in θ , we
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can use the quadrature formula for trigonometric polynomials in [18, Vol. 2, p. 8] to
obtain

Pf ({(r1,µ1), . . . ,(rλ ,µλ )})(r) =
1

2π

∫ 2π

0
P̃(r,θ)dθ =

1
2m+1

2m

∑
i=0

P̃(r,θi). (5)

To shorten notation, we write Pf (r) instead of Pf ({(r1,µ1), . . . ,(rλ ,µλ)})(r). Note that
q2i−1 only contains polynomials of odd degree. It follows that

∫ 2π

0 q2i−1(θ)dθ =0.
Hence, Pf (r) is an even polynomial in r of degree at most 2[n

2 ]. By the interpolation
conditions for H[·], for 0≤ k ≤ µl−1, 1≤ l ≤ λ , relation (5) gives

DkPf (rl)=
1

2m+1

2m

∑
i=0

∂ kP̃
∂rk (r,θi)

∣∣∣
r=rl

=
1

2m+1

2m

∑
i=0

∂ k f
∂rk (r,θi)

∣∣∣
r=rl

=
1

2m+1

2m

∑
i=0

Dkfi(rl). (6)

Let f̂i be the even extension of fi, i.e., f̂i(r) = f̂i(−r) = fi(r) for r ≥ 0. Then
(Dk f̂i)(−rl) = (−1)kDk fi(rl) for 1 ≤ l ≤ λ . Since Pf (r) is an even polynomial,
(DkPf )(−r) = (−1)kDkPf (r). From this we conclude from (6) that

DkPf (−rl) =
1

2m+1

2m

∑
i=0

Dk f̂i(−rl), 0≤ k ≤ µl−1, 1≤ l ≤ λ . (7)

Relations (6) and (7) give 2
[n

2

]
+ 2 interpolation conditions which determine Pf

uniquely. Using the formula for the Hermite interpolation polynomial in Theo-
rem 2.2, we obtain

Pf (r) =
1

2m+1

2m

∑
i=0

H[{(−r1,µ1), . . . ,(−rλ ,µλ ),(r1,µ1), . . . ,(rλ ,µλ )}; f̂i](r)

=
1

2m+1

2m

∑
i=0

H[{(r2
1,µ1), . . . ,(r2

λ
,µλ )}; f ∗i ](r

2),

where we use Proposition 2.4 in the second relation. The proof is complete.

Theorem 3.2. Let 0 < ρ1 < ρ2 ≤ 1 and A(ρ1,ρ2) = {x ∈ R2 : ρ1 ≤ ‖x‖ ≤ ρ2}.
Let f be defined on A(ρ1,ρ2) such that fi ∈Cd−1[ρ1,ρ2] for i = 0, . . . ,2m. Then the
following two maps are continuous

(s1, . . . ,sd) ∈ [ρ1,ρ2]
d 7−→ Pf ({s1, . . . ,sd})

and

(s1, . . . ,sd) ∈ [ρ1,ρ2]
d 7−→

∫
A(ρ1,ρ2)

H[{s1, . . . ,sd}; f ](x,y)dxdy.
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Proof. Let {slk}∞
k=1 be a sequence in [ρ1,ρ2] such that limk→∞ slk = sl for l = 1, . . . ,d.

By hypothesis, we have f ∗i ∈ Cd−1[ρ2
1 ,ρ

2
2 ] for i = 0, . . . ,2m. Hence, Theorem 2.3

gives
lim
k→∞

H[{s2
1k, . . . ,s

2
dk}; f ∗i ] = H[{s2

1, . . . ,s
2
d}; f ∗i ], i = 0, . . . ,2m.

By Lemma 3.1, we have

lim
k→∞

Pf ({s1k, . . . ,sdk}) =
1

2m+1
lim
k→∞

2m

∑
i=0

H[{s2
1k, . . . ,s

2
dk}; f ∗i ]

=
1

2m+1

2m

∑
i=0

H[{s2
1, . . . ,s

2
d}; f ∗i ]

= Pf ({s1, . . . ,sd}),

which proves the first assertion.
Taking the sup norm on Pn(R), we deduce that

Pf ({s1k, . . . ,sdk})−→ Pf ({s1, . . . ,sd})

uniformly on [ρ1,ρ2]. It follows that

lim
k→∞

∫
ρ2

ρ1

Pf ({s1k, . . . ,sdk})(r)rdr =
∫

ρ2

ρ1

Pf ({s1, . . . ,sd})(r)rdr.

The last relation can be rewritten into

lim
k→∞

∫
A(ρ1,ρ2)

H[{s1k, . . . ,sdk}; f ](x,y)dxdy =
∫

A(ρ1,ρ2)
H[{s1, . . . ,sd}; f ](x,y)dxdy,

which proves the continuity property of the second map.

Note that the hypothesis fi ∈ Cd−1[0,1] implies f ∗i ∈ Cd−1(0,1]∩C[0,1]. The
function f ∗i is not differentiable at 0 in general. Hence, the sequence of the Hermite
interpolation polynomials {H[{s2

1k, . . . ,s
2
dk}; f ∗i ]} can diverge when some sl’s equal 0

since the assumption on the smoothness of f ∗i is not provided. It follows that, to
get the continuity of the map (s1, . . . ,sd) ∈ [0,1]d 7→ Pf ({s1, . . . ,sd}) at 0, we must
assume that f ∗i is sufficiently smooth at 0.

For d ∈ N, let us set

Ed = {g : g∗ ∈Cd[0,1],g∗(r) := g(
√

r)}. (8)

Clearly, if h ∈ Cd[0,1], then the function g(t) := h(t2) belongs to Ed . The class Ed
was studied in [14, 17].

Theorem 3.3. Let f be a function defined on D = {x ∈ R2 : ‖x‖ ≤ 1} such that
fi ∈ Ed−1 for i = 0, . . . ,2m. Let {slk}∞

k=1 be a sequence in (0,1] such that
limk→∞ slk = sl ∈ [0,1] for l = 1, . . . ,d. Then the following two limits exist

lim
k→∞

Pf ({s1k, . . . ,sdk}) and lim
k→∞

∫
D
H[{s1k, . . . ,sdk}; f ](x,y)dxdy. (9)
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Furthermore, if s1 = · · ·= sd = 0 and f is n times differentiable at 0, then

lim
k→∞

Pf ({s1k, . . . ,sdk})(r) =
1

2π

∫ 2π

0
Tn

0( f )(r cosθ ,r sinθ)dθ

and
lim
k→∞

∫
D
H[{s1k, . . . ,sdk}; f ](x,y)dxdy =

∫
D
Tn

0( f )(x,y)dxdy.

Here Tn
0( f ) is the bivariate Taylor expansion of f at 0 to the order n.

Proof. By hypothesis, we have f ∗i ∈ Cd−1[0,1] for i = 0, . . . ,2m. Analysis similar
to that in the proof of Theorem 3.2 shows that two limits in (9) exist. To prove the
remaining assertions, we first write

Q̃(r,θ) := Tn
0( f )(r cosθ ,r sinθ) =

n

∑
k=0

rk pk(θ), r ≥ 0.

As in the proof of Lemma 3.1, we have

Q f (r) :=
1

2π

∫ 2π

0
Tn

0( f )(r cosθ ,r sinθ)dθ =
1

2m+1

2m

∑
i=0

Q̃(r,θi).

Moreover, Q f (r) is an even polynomial of degree at most 2[n
2 ]. By the property of

the Taylor polynomial, for 0≤ k ≤ n and 0≤ i≤ 2m, we have

∂ k

∂rk Q̃(r,θi)
∣∣
r=0=

∂ k

∂rkT
n
0( f )(r cosθi,r sinθi)

∣∣
r=0=

∂ k

∂rk f (r cosθi,r sinθi)
∣∣
r=0=Dk fi(0).

In fact, from the definition of the normal derivative and the property of the bivariate
Taylor polynomial, we have

∂ k

∂ rkT
n
0( f )(r cosθi,r sinθi)

∣∣
r=0 =

(
∂

∂x
cosθi +

∂

∂y
sinθi

)k
Tn

0( f )(r cosθi,r sinθi)
∣∣
r=0

=
k

∑
l=0

(
k
l

)
∂ kTn

0( f )(0,0)
∂ k−lx∂ ly

cosk−l
θi sinl

θi

=
k

∑
l=0

(
k
l

)
∂ k f (0,0)
∂ k−lx∂ ly

cosk−l
θi sinl

θi

=
(

∂

∂x
cosθi +

∂

∂y
sinθi

)k
f (r cosθi,r sinθi)

∣∣
r=0

=
∂ k

∂ rk f (r cosθi,r sinθi)
∣∣
r=0.

It follows that

DkQ f (0) =
1

2m+1

2m

∑
i=0

∂ k

∂ rk Q̃(r,θi)
∣∣
r=0 =

1
2m+1

2m

∑
i=0

Dk fi(0), 0≤ k ≤ n. (10)
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Since Q f (r) is a polynomial of degree at most 2[n
2 ], we have

Q f (r) = T2[ n
2 ]

0
(
Q f
)
(r) =

1
2m+1

2m

∑
i=0

T2[ n
2 ]

0 ( fi)(r). (11)

where we use (10) in the second equality. By the hypothesis that f ∗i ∈C[ n
2 ][0,1], we

can write
f ∗i (r) = T[ n

2 ]
0 ( f ∗i )(r)+o(r[

n
2 ]).

Consequently fi(r) = f ∗i (r
2) = T[ n

2 ]
0 ( f ∗i )(r

2) + o(r2[ n
2 ]). The last relation yields

T2[ n
2 ]

0 ( fi)(r) = T[ n
2 ]

0 ( f ∗i )(r
2). Now (11) becomes

Q f (r) =
1

2m+1

2m

∑
i=0

T[ n
2 ]

0 ( f ∗i )(r
2), (12)

On the other hand, from Theorem 2.3 and Lemma 3.1, we get

lim
k→∞

Pf ({s1k, . . . ,sdk})(r) =
1

2m+1
lim
k→∞

2m

∑
i=0

H[{s2
1k, . . . ,s

2
dk}; f ∗i ](r

2)

=
1

2m+1

2m

∑
i=0

Td−1
0 ( f ∗i )(r

2).

(13)

Combining (12) and (13) we obtain the desired relation,

lim
k→∞

Pf ({s1k, . . . ,sdk})(r) = Q f (r) =
1

2π

∫ 2π

0
Tn

0( f )(r cosθ ,r sinθ)dθ .

Now we can say that Pf ({s1k, . . . ,sdk}) converges to Q f (r) in the sup norm over [0,1].
Hence, in the polar coordinates, we have

lim
k→∞

∫ 1

0
Pf ({s1k, . . . ,sdk})(r)rdr =

1
2π

∫ 1

0
rdr

∫ 2π

0
Tn

0( f )(r cosθ ,r sinθ)dθ .

In other words

lim
k→∞

∫
D
H[{s1k, . . . ,sdk}; f ](x,y)dxdy =

∫
D
Tn

0( f )(x,y)dxdy.

The proof is complete.

The following example shows that the conclusions in Theorem 3.3 does not hold
when the hypothesis fi ∈ Ed−1 is omitted.
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Example 3.4. Let n = 2. Then d = 2 and m = 1. For 0 < s1 < s2 ≤ 1, L[{s1,s2}; f ]
interpolates f at 6 points lying on two circles S(s1) and S(s2) (each circle contains 3
equidistant points). We have

Pf ({s1,s2})(r) =
1
3

2

∑
i=0

L[{s2
1,s

2
2}; f ∗i ](r

2)

where fi(r) = f (r cos 2iπ
3 ,r sin 2iπ

3 ) for i = 0,1,2. Let us choose

g(r) =

rα sin
1
r2 if r > 0

0 if r = 0
and f (x) = g(‖x‖).

Then fi = g for i = 0,1,2. Hence

Pf ({s1,s2})(r) = L[{s2
1,s

2
2};g∗](r2) = g(s1)+

g(s2)−g(s1)

s2
2− s2

1
(r2− s2

1).

Assume that 2 < α < 4. Easy computations show that g /∈ E1 but g is differentiable in
[0,∞). Let us choose s1k =

1√
π

2 +2kπ
and s2k =

1√
π+2kπ

for k ≥ 1. Then limk→∞ s1k =

limk→∞ s2k = 0. Evidently, the coefficient of r2 in Pf ({s1k,s2k})(r) does not converge

when k→ ∞,

lim
k→∞

g(s2k)−g(s1k)

s2
2k− s2

1k
= ∞.

It follows that limk→∞ Pf ({s1k,s2k})(r) does not exist.

4. Some convergence properties

The notations and conventions in Sections 1-3 will be kept throughout this section.
As we have said, it is not easy to find radii {s1, . . . ,sd} such that the Bojanov–Xu in-
terpolation polynomials of smooth functions converge uniformly (or in the norm Lp)
when d → ∞. The main difficult in carrying out this construction is that we do not
know any compact formulas or error formulas for the interpolation polynomials. It
is to be expected that weaker convergence properties hold true. Here, we give a con-
dition on the distribution of the radii {s1, . . . ,sd} that guarantee the convergence of
the means of the interpolation polynomials. Note that we only work with Lagrange
interpolation. However, our method can be used for general Bojanov–Xu interpola-
tion.
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Theorem 4.1. Let M and N be positive integers with M≥N ≥ 1. Let 0< ρ1 < ρ2≤ 1
and f ∈CM(A(ρ1,ρ2)). Let Ad = {s1d, . . . ,sdd} be a set of distinct points in [ρ1,ρ2]
such that ∆({s2

1d, . . . ,s
2
dd}, [ρ2

1 ,ρ
2
2 ]) grows at most like a polynomial of degree N in d.

Then

sup
r∈[ρ1,ρ2]

∣∣∣∣Pf (Ad)(r)−
1

2π

∫ 2π

0
f (r cosθ ,r sinθ)dθ

∣∣∣∣= o
(

1
nM−N

)
and ∣∣∣∣∫A(ρ3,ρ4)

L[Ad; f ](x,y)dxdy−
∫

A(ρ3,ρ4)
f (x,y)dxdy

∣∣∣∣= o
(

1
nM−N

)
,

where ρ1 ≤ ρ3 < ρ4 ≤ ρ2.

Proof. For convenience, we define the following functions

F(r,θ) = f (r cosθ ,r sinθ) and F∗(r,θ) = f (
√

r cosθ ,
√

r sinθ).

They induce two types of modulus of continuity

ζ

(
1
n

)
= sup


∣∣∣∣ ∂ M

∂θ M F(r,θ)
∣∣
θ=θ1
− ∂ M

∂θ M F(r,θ)
∣∣
θ=θ2

∣∣∣∣
∣∣∣∣∣∣∣∣

θ1,θ2 ∈ [0,2π],

|θ1−θ2| ≤
1
n
,

ρ1 ≤ r ≤ ρ2


and

η

(
1
n

)
= sup


∣∣∣∣ ∂ M

∂ rM F∗(r,θ)
∣∣
r=s−

∂ M

∂ rM F∗(r,θ)
∣∣
r=t

∣∣∣∣
∣∣∣∣∣∣∣∣

s, t ∈ [ρ2
1 ,ρ

2
2 ],

|s− t| ≤ 1
n
,

θ ∈ [0,2π]

 .

We note that the moduli of continuity ζ and η can be written in terms of classical
modulus of continuity,

ζ

(
1
n

)
= sup

ρ1≤r≤ρ1

ω

(
∂ M

∂θ M F(r, ·); 1
n

)
, η

(
1
n

)
= sup

0≤θ≤2π

ω

(
∂ M

∂ rM F∗(·,θ); 1
n

)
.

Since f ∈CM(A(ρ1,ρ2)), ∂ M

∂θ M F(r,θ) is continuous on [ρ1,ρ2]× [0,2π] and hence is
uniformly continuous on [ρ1,ρ2]× [0,2π]. It follows that limn→∞ ζ (1

n) = 0. Simi-
larly, since ∂ M

∂ rM F∗(r,θ) is uniformly continuous on [ρ2
1 ,ρ

2
2 ]× [0,2π], η(1

n) tends to 0
when n→ ∞.

As f ∗i ∈ CM[ρ1,ρ2], the Jackson theorem in (4) shows that there exists a con-
stant C0 depending only on ρ1,ρ2 and M such that

distI( f ∗i ,Pd−1(R))≤
C0

dM ω

(
DM f ∗i ;

1
d

)
≤ 2M+1C0

nM ω

(
DM f ∗i ;

1
n

)
≤ 2M+1C0

nM η

(
1
n

)
,
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0≤ i≤ 2m, where ω(g; 1
n) denotes the ordinary modulus of continuity, I = [ρ2

1 ,ρ
2
2 ].

Combining above estimates with the Lebesgue inequality (3) for f ∗i and the hypoth-
esis on the growth of the Lebesgue constant, we obtain

sup
r∈[ρ1,ρ2]

∣∣ fi(r)−L[{s2
1d, . . . ,s

2
dd}; f ∗i ](r

2)
∣∣≤ C1

nM−N η

(
1
n

)
, 0≤ i≤ 2m,

where C1 is a constant independent of n. Lemma 3.1 now gives

sup
r∈[ρ1,ρ2]

∣∣∣∣∣ 1
2m+1

2m

∑
i=0

fi(r)−Pf (Ad)(r)

∣∣∣∣∣≤ C1

nM−N η

(
1
n

)
. (14)

From [11, Theorem 3, p. 57], for each ρ1 ≤ r ≤ ρ2, we can find a constant
C2 = C2(M) depending only on M and a trigonometric polynomial Tn of degree at
most n (depending on r) such that

sup
θ∈[0,2π]

|F(r,θ)−Tn(θ)| ≤
C2

nM ω

(
∂ M

∂θ N F(r,θ);
1
n

)
≤ C2

nM ζ

(
1
n

)
.

The above fact is known as the first Jackson theorem. It follows that∣∣∣∣∣ 1
2m+1

2m

∑
i=0

F(r,θi)−
1

2m+1

2m

∑
i=0

Tn(θi)

∣∣∣∣∣≤ C2

nM ζ

(
1
n

)
and ∣∣∣∣ 1

2π

∫ 2π

0
F(r,θ)dθ − 1

2π

∫ 2π

0
Tn(θ)dθ

∣∣∣∣≤ C2

nM ζ

(
1
n

)
.

On the other hand, using the quadrature formula for Tn, we obtain 1
2π

∫ 2π

0 Tn(θ)dθ =
1

2m+1 ∑
2m
i=0 Tn(θi). From what has already been proved, we deduce that∣∣∣∣∣ 1

2m+1

2m

∑
i=0

F(r,θi)−
1

2π

∫ 2π

0
F(r,θ)dθ

∣∣∣∣∣≤ 2C2

nM ζ

(
1
n

)
, ρ1 ≤ r ≤ ρ2. (15)

Combining (14) and (15) along with the setting F(r,θ) = f (r cosθ ,r sinθ), we ob-
tain

sup
r∈[ρ1,ρ2]

∣∣∣∣Pf (Ad)(r)−
1

2π

∫ 2π

0
f (r cosθ ,r sinθ)dθ

∣∣∣∣≤ C1

nM−N η

(
1
n

)
+

2C2

nM ζ

(
1
n

)
= o

(
1

nM−N

)
.

Using polar coordinates and the first assertion, we easily prove the estimate for the
double integral. The details are left to the reader.
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Corollary 4.2. Under the hypotheses of Theorem 4.1 except for the Lebesgue con-
stant, if the Lebesgue constant grows like logd, then the same estimates in Theo-
rem 4.1 hold in which o

( 1
nM−N

)
is replaced by o

( logn
nM

)
.

Proof. We keep the notations introduced in the proof of Theorem 4.1. Since the
Lebesgue constant ∆({s2

1d, . . . ,s
2
dd}, [ρ2

1 ,ρ
2
2 ]) grows like logd as d→ ∞, Lebesgue’s

inequality enables us to find C3 > 0 such that

sup
r∈[ρ1,ρ2]

∣∣ fi(r)−L[{s2
1d, . . . ,s

2
dd}; f ∗i ](r

2)
∣∣≤ C3 logn

nM η

(
1
n

)
, 0≤ i≤ 2m,

Hence, Lemma 3.1 yields an estimate which is analogous to (14):

sup
r∈[ρ1,ρ2]

∣∣∣∣∣ 1
2m+1

2m

∑
i=0

fi(r)−Pf (Ad)(r)

∣∣∣∣∣≤ C3 logn
nM η

(
1
n

)
.

Combining the last estimate with (15) we obtain

sup
r∈[ρ1,ρ2]

∣∣∣∣Pf (Ad)(r)−
1

2π

∫ 2π

0
f (r cosθ ,r sinθ)dθ

∣∣∣∣≤ C3 logn
nM η

(
1
n

)
+

2C2

nM ζ

(
1
n

)
= o

(
logn
nM

)
.

The proof is complete.

Corollary 4.3. Let f ∈C(A(ρ1,ρ2)) and Ad = {s1d, . . . ,sdd} ⊂ [ρ1,ρ2] such that

max
0≤i≤2m

sup
r∈[ρ1,ρ2]

∣∣ fi(r)−L[{s2
1d, . . . ,s

2
dd}; f ∗i ](r

2)
∣∣−→ 0 as n→ ∞.

Then the same estimates in Theorem 4.1 hold in which o
( 1

nM−N

)
is replaced by o(1).

Proof. By the hypothesis and Lemma 3.1, we get the following estimate

sup
r∈[ρ1,ρ2]

∣∣∣∣∣ 1
2m+1

2m

∑
i=0

fi(r)−Pf (Ad)(r)

∣∣∣∣∣= o(1). (16)

Let us set

φ

(
1
n

)
= sup

{∣∣F(r,θ1)−F(r,θ2)
∣∣ : θ1,θ2 ∈ [0,2π], |θ1−θ2| ≤

1
n
,ρ1 ≤ r ≤ ρ2

}
.

Since f ∈C(A(ρ1,ρ2)), we have limn→∞ φ(1
n) = 0.

By the Jackson theorem [11, Theorem 2, p. 56], for each ρ1≤ r≤ ρ2, we can find
a constant C4 > 0 and a trigonometric polynomial Sn of degree at most n (depending
on r) such that

sup
θ∈[0,2π]

|F(r,θ)−Sn(θ)| ≤C4φ

(
1
n

)
,
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It follows that ∣∣∣∣∣ 1
2m+1

2m

∑
i=0

F(r,θi)−
1

2m+1

2m

∑
i=0

Sn(θi)

∣∣∣∣∣≤C4φ

(
1
n

)
and ∣∣∣∣ 1

2π

∫ 2π

0
F(r,θ)dθ − 1

2π

∫ 2π

0
Sn(θ)dθ

∣∣∣∣≤C4φ

(
1
n

)
.

On the other hand, since Sn is a trigonometric polynomial of degree at most n, we
have

1
2π

∫ 2π

0
Sn(θ)dθ =

1
2m+1

2m

∑
i=0

Sn(θi).

Combining the above estimates, we obtain∣∣∣∣∣ 1
2m+1

2m

∑
i=0

F(r,θi)−
1

2π

∫ 2π

0
F(r,θ)dθ

∣∣∣∣∣≤ 2C4φ

(
1
n

)
, ρ1 ≤ r ≤ ρ2. (17)

From (16) and (17), we conclude that

sup
r∈[ρ1,ρ2]

∣∣∣∣Pf (Ad)(r)−
1

2π

∫ 2π

0
f (r cosθ ,r sinθ)dθ

∣∣∣∣= o(1)+2C4φ

(
1
n

)
= o(1),

and proof is complete.

The following result gives the rate of numerical approximation of the double
integral of smooth functions.

Corollary 4.4. Under the assumptions of Theorem 4.1, we have∣∣∣∣∣
[ n

2 ]+1

∑
l=1

Λl

2m

∑
i=0

f (sl cosθi,sl sinθi)−
∫

A(ρ3,ρ4)
f (x,y)dxdy

∣∣∣∣∣= o
(

1
nM−N

)
,

where Λl is given by

Λl =
4πrl

2m+1

∫
ρ4

ρ3

rg(r)dr
(r2− r2

l )g
′(rl)

, g(r) =
[ n

2 ]+1

∏
l=1

(r2− r2
l ).

Proof. The idea of the proof is inspired from [3]. Using [3, Corollary 3.2], we can
write

Pf (Ad)(r) =
[ n

2 ]+1

∑
l=1

Fl [`l(r)+ `l(−r)] , `l(r) =
[ n

2 ]+1

∏
j=1

r+ r j

rl + r j

[ n
2 ]+1

∏
j=1, j 6=l

r− r j

rl− r j
,
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where Fl =
1

2m+1 ∑
2m
i=0 f (rl cosθi,rl sinθi). It follows that

∫
A(ρ3,ρ4)

L[Ad; f ](x,y)dxdy = 2π

∫
ρ4

ρ3

Pf (Ad)(r)rdr

= 2π

[ n
2 ]+1

∑
l=1

Fl

∫
ρ4

ρ3

[`l(r)+ `l(−r)]rdr.
(18)

Since `l(r) =
g(r)

(r−rl)g′(rl)
with g(r) = ∏

[ n
2 ]+1

l=1 (r2− r2
l ), we have

∫
ρ4

ρ3

[`l(r)+`l(−r)]rdr =
∫

ρ4

ρ3

[
g(r)

(r−rl)g′(rl)
+

g(−r)
(−r−rl)g′(rl)

]
rdr =

∫
ρ4

ρ3

2rlrg(r)dr
(r2−r2

l )g
′(rl)

.

Substituting the last relation into (18), we obtain

∫
A(ρ3,ρ4)

L[Ad; f ](x,y)dxdy = 2π

[ n
2 ]+1

∑
l=1

Fl

∫
ρ4

ρ3

2rlrg(r)dr
(r2− r2

l )g
′(rl)

. (19)

The desired estimate follows directly from (19) and Theorem 4.1, and the proof is
complete.

Suppose that f ∈ CM(D) and F(r,θ) = f (r cosθ ,r sinθ). Let ζ1(·) denote the
modulus of continuity

ζ1

(
1
n

)
= sup


∣∣∣∣∂dM

∂θ M F(r,θ)
∣∣
θ=θ1
− ∂ M

∂θ M F(r,θ)
∣∣
θ=θ2

∣∣∣∣
∣∣∣∣∣∣∣∣

θ1,θ2 ∈ [0,2π],

|θ1−θ2| ≤
1
n
,

0≤ r ≤ 1

 .

Clearly, limn→∞ ζ1(
1
n) = 0. If we assume that ∂ M

∂ rM f (
√

r cosθ ,
√

r sinθ) is continuous
on [0,1]× [0,2π], then the modulus of continuity defined by

η1

(
1
n

)
= sup


∣∣∣∣ ∂ M

∂ rM F(
√

r,θ)
∣∣
r=s−

∂ M

∂ rM F(
√

r,θ)
∣∣
r=t

∣∣∣∣
∣∣∣∣∣∣∣∣

s, t ∈ [0,1],

|s− t| ≤ 1
n
,

θ ∈ [0,2π]

 .

has the same asymptotic behaviour, that is limn→∞ η1(
1
n) = 0. The moduli of conti-

nuity ζ1 and η1 can be also related to classical modulus of continuity. We can prove
the following result in much the same way as Theorem 4.1.
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Theorem 4.5. Let M and N be an positive integers with M ≥ N ≥ 1. Let f ∈CM(D)

such that ∂ M

∂ rM f (
√

r cosθ ,
√

r sinθ) exists and is continuous on [0,1]× [0,2π]. Let
Ad = {s1d, . . . ,sdd} be a set of distinct points in [0,1] such that the Lebesgue constant
∆({s2

1d, . . . ,s
2
dd}, [ρ2

1 ,ρ
2
2 ]) grows at most like a polynomial of degree N in d. Then

sup
r∈[0,1]

∣∣∣∣Pf (Ad)(r)−
1

2π

∫ 2π

0
f (r cosθ ,r sinθ)dθ

∣∣∣∣= o
(

1
nM−N

)
and∣∣∣∣∫A(ρ3,ρ4)

L[Ad; f ](x,y)dxdy−
∫

A(ρ3,ρ4)
f (x,y)dxdy

∣∣∣∣= o
(

1
nM−N

)
, 0≤ρ3<ρ4≤1.
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