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On Haar Systems for Groupoids

Anton Deitmar

Abstract. It is shown that a locally compact groupoid with open range map does
not always admit a Haar system. It then is shown how to construct a Haar system if
the stability groupoid and the quotient by the stability groupoid both admit one.

Keywords. Groupoid, Haar system

Mathematics Subject Classification (2010). Primary 28C10, secondary 22A22

1. Introduction

Topological groupoids occur naturally in encoding hidden symmetries like in
fundamental groupoids or holonomy groupoids of foliations, see [7], for instance.
In order to construct convolution algebras on groupoids [3, 9], one needs con-
tinuous families of invariant measures, so called Haar systems [12], see also
Section 2. These do not always exist. One known criterion is that a Haar sys-
tem can only exist if the range map is open ([13, Corollary to Lemma 2], see
also [15]).

A second criterion, which has been neglected in the literature, is the possi-
bility of failing support, i.e., it is possible that, although the range map is open,
the support condition of a Haar system cannot be satisfied, see Proposition 3.2.
We conjecture, however, that there should always be a Haar system for a locally
compact groupoid with open range map, if the groupoid is second countable.

We show how to construct Haar systems if the stability groupoid and its
quotient both admit one.

I thank Dana Williams for some very helpful comments.

2. Locally compact groupoids

Definition 2.1. By a bundle of groups we understand a continuous map π :
G→ X between locally compact Hausdorff spaces together with a group struc-
ture on each fibre Gx = π−1(x), x ∈ X such that the following maps are
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continuous:

ε : X → G identity,

m : G(2)→ G multiplication,

ι : G → G inverse ,

where G(2) is the set of all (x, y) ∈ G×G with π(x) = π(y).

Note that this implies that ε is a homeomorphism onto the image, so X
carries the subspace topology but also X carries the quotient topology induced
by the surjective map π. In all, the topology on X is determined by the one
on G.

Definition 2.2. Each fibre Gx, being a locally compact group, carries a Haar
measure which is unique up to scaling. A coherent system of Haar measures is a
family (µx)x∈X , where µx is a Haar measure on Gx such that for each φ ∈ Cc(G)
the map

x 7→
∫
Gx

φ dµx

is continuous.

Proposition 2.3. Let π : G → X be a bundle of groups over a paracompact
space X. There exists a coherent system of Haar measures µx on G if and only
if the map π is open.

Proof. This is [10, Lemma 1.3].

Definition 2.4. Let X be a set. By a groupoid over X we mean a category with
object class X (so it is a small category) in which each arrow is an isomorphism.
We write G for the set of arrows and we use the following notation

r, s : G→ X range and source maps,

ε : X → G identity,

G(2) ⊂ G×G set of composable pairs,

m : G(2) → G composition,

ι : G→ G inverse.

Definition 2.5. A topological groupoid is a groupoid G over X together with
topologies on G and X such that the structure maps r, s, ε,m, ι are continuous.
Here G×G carries the product topology and G(2) ⊂ G×G the subset topology.
Note that if X is Hausdorff, then G(2) = {(α, β) ∈ G × G : r(β) = s(α)} is a
closed subset of G×G.
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A locally compact groupoid is a topological groupoid such that G and X are
locally compact Hausdorff spaces.

From now on G is assumed to be a locally compact groupoid. We use the
notation

Gx = {g ∈ G : s(g) = x},
Gy = {g ∈ G : r(g) = y},
Gy

x = Gx ∩Gy.

As X is Hausdorff, all three sets are closed in G.
Note that a bundle of groups is a special case of a groupoid G with Gy

x = ∅
if x 6= y.

Definition 2.6. For a groupoid G the stability groupoid is defined to be the
subset

G′ =
{
g ∈ G : r(g) = s(g)

}
.

If G is a topological groupoid, then G′ is a closed subgroupoid.

Definition 2.7. On a groupoid G we install an equivalence relation

g ∼ h ⇔ r(g) = r(h) and s(g) = s(h).

we write [g] for the equivalence class, i.e., [g] = G
r(g)
s(g).

Now assume that (µx
x)x∈X is a coherent family of measures on the bundle

of groups G′ = {g ∈ G : r(g) = s(g)}. We then get invariant measures µ[g] on
the classes [g] by setting∫

[g]

φ(x) dµ[g](x) =

∫
G

s(g)
s(g)

φ(gx) dµ
s(g)
s(g)(x).

The invariance of the µx
x yields the well-definedness of the µ[g]. The uniqueness

of a Haar measure implies that µ[g] is, up to scaling, the unique Radon measure

on [g] being right-invariant under G
s(g)
s(g) or left-invariant under G

r(g)
r(g).

In the sequel, we shall identify a Radon measure with its positive linear
functional, so we write µ[g](φ) for the above integral.

Definition 2.8. We shall need the notion of a topological right-action of a
topological groupoid H on a topological space Z. This is given by the following
data: first there is a continuous surjection ρ : Z → X, where X is the base set
of H. We define

Z ∗H =
{

(z, h) : ρ(z) = r(h)
}
.
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This is a closed subset of Z × H and we consider it equipped with the corre-
sponding topology. Next the action is given by a map

Z ∗H → Z,

(z, h) 7→ zh,

such that ρ(zh) = s(h) and z · 1 = z as well as z(hh′) = (zh)h′ holds for all
(z, h), (z, hh′) ∈ Z ∗H.

Note that the action defines an equivalence relation on Z given by z ∼ zh
for h ∈ H. We naturally equip Z/H with the quotient topology.

Lemma 2.9. Assume the locally compact groupoid H acts on a locally compact
space Z and that H has open range map. Then the projection Z → Z/H is
open.

Proof. This is [6, Lemma 2.1]. However, in that paper the assertion was given
under a stronger definition of H-actions then the one we use, as it was assumed
that the map ρ : Z → X also be open. Lemma 2.1 and its proof in [6], however,
are valid under our weaker assumptions. For the convenience of the reader we
shall show this by reproducing the proof here: Let V ⊂ Z be open, in order to
show that its image in Z/H is open, it suffices to show that the union of orbits
V H =

{
vh : v ∈ V, (v, h) ∈ Z ∗H

}
is open in Z. So it suffices to show that any

net zi → vh with v ∈ V and h ∈ H eventually is in V H. But ρ(zi) converges
to ρ(vh) = s(h). As the range map of H is open, so is the source map s, hence
the set s(H) is open and we can find a net hi in H on the same index set, such
that ρ(zi) = s(hi) for all i ≥ i0 for some index i0. Further, the same applies
to open neighborhoods of h, so we can choose the net so that hi → h. Then
zih
−1
i converges to v and thus is eventually in V and zi = zih

−1
i hi is eventually

in V H.

Definition 2.10. An action of a groupoid H on a space Z is called free if
zh = z implies that h = 1s(g) and it is called proper, if the map Z ∗H → Z×Z,
(z, h) 7→ (zh, z) is proper.

For any groupoid G the action of G′ on G is easily seen to be free and
proper.

Lemma 2.11. Let G be a locally compact groupoid over a paracompact space
X and let (µx

x)x∈X be a coherent system of Haar measures on the groups Gx
x,

x ∈ X. Then for every φ ∈ Cc(G) the function

φ : g 7→ µ[g](φ)

is continuous.

Proof. Since the G′ action is free and proper, this is immediate from
[5, Lemma 2.9].
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3. Haar systems

Definition 3.1. A Haar system on the locally compact groupoid G is a family
(µx)x∈X of Radon measures on G with

(a) supp(µx) = Gx,

(b)
∫
G
φ(αg) dµy(g) =

∫
G
φ(g) dµx for every φ ∈ Cc(G) and every α ∈ Gx

y ,

(c) x 7→
∫
G
φ(g) dµx(g) is continuous on X for every φ ∈ Cc(G).

If a locally compact groupoid G admits a Haar system, then the range map,
and so the source map, too, is open, see [13, Corollary to Lemma 2], see also [15].

The question for the converse assertion, asked in [15], is answered in the
negative by the following proposition.

Proposition 3.2. There exists a locally compact, even compact, groupoid G,
whose range map is open, but no Haar system exists on G.

Proof. There are locally compact, even compact, Hausdorff spaces which cannot
be the support of any Radon measure. Here are two examples:

• Let X be the unit ball of a Hilbert space of uncountable dimension and
equip X with the weak topology. By the Banach-Alaoglu-Theorem, X
is a compact Hausdorff space. By [1, Corollary 7.14.59 of volume 2], the
set X cannot be the support of any Radon measure.

• (Williams) Let Y be an uncountable set with the discrete topology and let
X = Y ∪ {∞} be its one-point compactification. Then X cannot be the
support of any Radon measure. To see this, let m be a Radon measure
on X, then m(X) <∞, as X is compact. Further, m(Y ) =

∑
y∈Y m({y}),

as m is regular and the only compact subsets of Y are the finite sets. As
m(Y ) <∞, the set M of all y ∈ Y with m({y}) > 0 is countable, therefore
M 6= Y and m is supported in M ∪ {∞}.

Let now X be any locally compact Hausdorff space which is not the support
of a Radon measure. Let G = X ×X with the product topology and make g a
groupoid by setting (x, y)(y, z) = (x, z) and r(x, y) = x as well as s(x, y) = y.
Then the source map is a homeomorphism between Gx and X, so Gx cannot
be the support of any Radon measure, hence no Haar system exists.

Conjecture 3.3. Every second countable, locally compact groupoid with open
range map admits a Haar system.

Definition 3.4. Let G be a groupoid over X. We write E(G) ⊂ X×X for the
image of the map g 7→ (s(g), r(g)). Then E(G) is an equivalence relation on X.

We say that a groupoid G is a principal groupoid if Gx
x = {1x} for every

x ∈ X. This means that the groupoid is completely described by its equiva-
lence relation. Note, though, that for topological groupoids the topology on G
generally differs from the one on E(G) as a subset of X ×X.
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Lemma 3.5. Let G be a groupoid over a set X. Define an equivalence relation
on G by

g ∼ h ⇔ r(g) = r(h) and s(g) = s(h).

Then the set G = G/ ∼ becomes a groupoid, indeed a principal groupoid, by
setting [g][h] = [gh] whenever g and h are composable.

Proof. This is easily checked.

Theorem 3.6. Let G be a locally compact groupoid over a paracompact space X.
Suppose that the stability groupoid G′ has open range map.

(a) The groupoid G, when equipped with the quotient topology, is a locally
compact groupoid. The quotient map G→ G is open.

(b) If the range map of G is open, then so is the range map of G.

(c) If G admits a Haar system, then G admits a Haar system.

Proof. Ad (a): By Proposition 2.3, the groupoid G′ admits a coherent system
of Haar measures (µx

x)x∈X . Let g0 ∈ G and let φ ∈ C+
c (G) such that φ(g0) > 0.

Let

φ : g 7→
∫
G

r(g)
s(g)

φ(gh) dµ
r(g)
s(g)(h).

By Lemma 2.11 the map φ is continuous. It factors over G, hence defines a
continuous map of compact support on G. The set U = {x ∈ G : φ(x) > 0}
is an open neighborhood of [g0], so supp(φ) is a compact neighborhood of [g0].
Therefore G is locally compact.

If [g] 6= [h], then we can find φ, ψ ∈ C+
c (G) such that φ and ψ have disjoint

supports and φ(g), ψ(h) > 0. Considering the continuous function φ− ψ on G,
one sees that [h] and [g] have disjoint neighborhoods, so G is a Hausdorff space.
Together we infer that G is a locally compact groupoid.

The quotient map p : G→ G is open by Lemma 2.9.

Ad (b): As the range map of G is open and factors over the range map
of G, the range map of G is open as well.

Ad (c): If (mx) is a Haar system for G, then

φ 7→
∫
G

φ(g) dmx(g)

defines a Haar system on G.
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