
Zeitschrift für Analysis und ihre Anwendungen c© European Mathematical Society
Journal of Analysis and its Applications
Volume 37 (2018), 299–314
DOI: 10.4171/ZAA/1615

Averaging of Nonclassical Diffusion
Equations with Memory and
Singularly Oscillating Forces

Cung The Anh, Dang Thi Phuong Thanh
and Nguyen Duong Toan

Abstract. We consider for ρ ∈ [0, 1) and ε > 0, the following nonclassical diffusion
equation with memory and singularly oscillating external force

ut −∆ut −∆u−
∫ ∞

0
κ(s)∆u(t− s)ds+ f(u) = g0(t) + ε−ρg1

(
t

ε

)
,

together with the averaged equation

ut −∆ut −∆u−
∫ ∞

0
κ(s)∆u(t− s)ds+ f(u) = g0(t)

formally corresponding to the limiting case ε = 0. Under suitable assumptions on the
nonlinearity and on the external force, we prove the uniform (w.r.t. ε) boundedness
as well as the convergence of the uniform attractor Aε of the first equation to the
uniform attractor A0 of the second equation as ε→ 0+.

Keywords. Nonclassical diffusion equation, uniform attractor, memory, singularly
oscillating force, boundedeness, convergence
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1. Introduction

Let ρ∈ [0, 1) be a fixed parameter, and let Ω be a bounded domain in RN(N≥3)
with smooth boundary ∂Ω. For every ε ∈ (0, 1] and any given τ ∈ R, we consider
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for t > τ the following semilinear nonclassical diffusion equation with memory
and a singularly oscillating external force,

ut −∆ut −∆u−
∫ ∞

0

κ(s)∆u(t− s)ds+ f(u) = gε(t), x ∈ Ω, t > τ

u(x, t) = 0, x ∈ ∂Ω, t > τ

u(x, τ) = uτ (x), x ∈ Ω

u(x, τ − s) = qτ (x, s), x ∈ Ω, s > 0

(1)

where

gε(t) = g0(t) + ε−ρg1

(
t

ε

)
.

Along with (1), we consider the equation
ut −∆ut −∆u−

∫ ∞
0

κ(s)∆u(t− s)ds+ f(u) = g0(t), x ∈ Ω, t > τ

u(x, t) = 0, x ∈ ∂Ω, t > τ

u(x, τ) = uτ (x), x ∈ Ω

u(x, τ − s) = qτ (x, s), x ∈ Ω, s > 0

(2)

without rapid and singular oscillations, which formally corresponds to the case
ε = 0 in (1). The speed of energy dissipation for equations (1) and (2) is faster
than for the usual nonclassical diffusion equation. The conduction of energy is
not only affected by present external forces but also by historic external forces.

In recent years, the existence and long-time behavior of solutions to non-
classical diffusion equations with memory has been addressed by a number of
authors (see [4, 10, 15, 16, 28–30]). In the most of existing papers dealing with
the memory relaxation, the function µ(s) := −κ′(s) is assumed to satisfy the
inequality

µ′(s) + δµ(s) ≤ 0,

which was introduced in the seminal paper [17] and commonly adopted there-
after, and the nonlinearity is assumed to be locally Lipschitz continuous and
satisfy a Sobolev growth condition

lim inf
|u|→∞

f(u)

u
> −λ1, |f ′(u)| ≤ C(1 + |u|

4
N−2 ),

where λ1 > 0 is the first eigenvalue of the operator −∆D in Ω with the homo-
geneous Dirichlet boundary condition.

In the case κ ≡ 0, we obtain the so-called nonclassical diffusion equation

ut −∆ut −∆u+ f(u) = g0(t) + ε−ρg1

(
t

ε

)
. (3)
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The nonclassical diffusion equation arises as a model to describe physical phe-
nomena, such as non-Newtonian flows, soil mechanics and heat conduction the-
ory (see, e.g., [1, 21,26]). In the past years, the existence and long-time behav-
ior of solutions to nonclassical diffusion equations has been studied extensively,
for both autonomous case [18, 23, 24, 27, 31, 32, 34] and non-autonomous case
[2,3,5,6,24,30], and even in the case with delays [8,9,25,35]. In [6], the authors
proved the uniform boundedness and the upper semicontinuity of uniform at-
tractors for equation (3) with the nonlinearity of Sobolev type and singularly
oscillating external forces. We also refer the reader to [11–13, 19, 22, 33] for
some other results for partial differential equations with singularly oscillating
external forces.

To study problem (1), we assume that the initial datum uτ ∈ H1
0 (Ω) is given,

the nonlinearity f and the external force g satisfy the following conditions:

(H1) f : R→ R is a continuously differentiable function such that

f ′(u) ≥ −α, (4)

|f ′(u)| ≤ C
(
1 + |u|p−1

)
, 1 ≤ p ≤ N + 2

N − 2
. (5)

We need some dissipation conditions. For p > 1, we assume that

f(u)u ≥ d0|u|p+1 − C0, (6)

while if p = 1 (the case of linear growth), in place of (6), we require a
weaker condition

f(u)u ≥ −βu2 − C1, 0 < β < λ1. (7)

Here α, β, d0, C, C0, C1 are positive constants, and λ1 > 0 is the first eigen-
value of the operator −∆ in Ω with the homogeneous Dirichlet boundary
condition.
A typical example of such a nonlinearity is

f(u) = k|u|p−1u

(
k > 0, 1 ≤ p ≤ N + 2

N − 2

)
, or f(u) = k sinu.

(H2) The external forces g0, g1∈L2
b(R;L2(Ω)), the space of translation bounded

functions in L2
loc(R;L2(Ω)), that is,

‖g0‖2
L2
b

:= sup
t∈R

∫ t+1

t

‖g0(y)‖2dy = M0,

‖g1‖2
L2
b

:= sup
t∈R

∫ t+1

t

‖g1(y)‖2dy = M1, (8)
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for some M0,M1 ≥ 0. A straightforward consequence of (8) is∫ t+1

t

∥∥∥g1

(y
ε

)∥∥∥2

dy = ε

∫ t+1
ε

t
ε

‖g1(y)‖2dy ≤ ε

(
1 +

1

ε

)
M1 ≤ 2M1,

so that
‖g1( ·

ε
)‖2
L2
b
≤ 2M1, ∀ε ∈ (0, 1].

Hence

‖gε‖2
L2
b
≤ 2‖g0‖2

L2
b

+ 2ε−2ρ‖g1( ·
ε
)‖2
L2
b
≤ 2M0 + 4M1ε

−2ρ.

(H3) The memory kernel κ is a nonnegative summable function of total mass∫∞
0
κ(s)ds = κ0 having the explicit form

κ(s) =

∫ ∞
s

µ(y)dy,

where µ ∈ L1(R) is a nonincreasing (hence nonnegative) piecewise ab-
solutely continuous function allowed to exhibit (infinitely many) jumps.
Moreover, we assume the existence of δ > 0 such that

µ′(s) + δµ(s) ≤ 0, (9)

for almost everywhere s ≥ 0.
It is noticed that the above condition of the memory term is slightly
weaker than the usual condition in [10, 17, 28–30] in the sense that µ can
be weakly singular at the origin. For instance, we can take

µ(s) = ke−ass1−b

with k ≥ 0 and a > 0, b > 1.

The paper is organized as follows. In Section 2, for convenience of the
reader, we recall some preliminary results which will be used later. Section 3
is devoted to proving the uniform boundedness of the uniform attractors Aε
with respect to ε. The convergence of the uniform attractors Aε as ε → 0 is
investigated in the last section.

Remark 1.1. It is noticed that all results obtained in the present paper are
still true in the cases N = 1, 2, with a simpler proof, and we do not need any
restriction on the growth exponent p ≥ 1 of the nonlinearity in (5) due to the
Sobolev embbeding H1

0 (Ω) ↪→ Lr(Ω) for all r ≥ 1 in these cases. However, for
the coherence of the presentation, in what follows we only deal with the case
N ≥ 3.
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2. Notations and preliminaries

In this section, we recall some notations about function spaces and preliminary
results.

As in [7, 17], a new variable which reflects the past history of equation (1)
is introduced, that is to be,

ηt(x, s) = η(x, t, s) =

∫ s

0

u(x, t− r)dr, s ≥ 0,

then we can check that

∂tη
t(x, s) = u(x, t)− ∂sηt(x, s), s ≥ 0.

Since µ(s) = −κ′(s), the first equation of (1) can be transformed into the
following systemut −∆ut −∆u−

∫ ∞
0

µ(s)∆ηt(s)ds+ f(u) = g0(t) + ε−ρg1

(
t

ε

)
,

ηtt = −ηts + u.

The associated initial-boundary conditions are

u(x, t) = 0, x ∈ ∂Ω, t > τ,

ηt(x, s) = 0, (x, s) ∈ ∂Ω× R+, t > τ,

u(x, τ) = uτ , x ∈ Ω,

ητ (x, s) = ητ (x, s) :=

∫ s

0

qτ (x, τ − r)dr, (x, s) ∈ Ω× R+.

Denoting
z(t) = (u(t), ηt), zτ = (uτ , η

τ ).

Let 〈·, ·〉 and ‖ · ‖ denote the L2(Ω)-inner product and L2(Ω)-norm, re-
spectively. In view of (9), let L2

µ(R+;H1
0 (Ω)) be the Hilbert space of functions

ϕ : R+ → L2(Ω) endowed with the inner product

〈ϕ1, ϕ2〉1,µ =

∫ ∞
0

µ(s) 〈∇ϕ1(s),∇ϕ2(s)〉 ds,

and let ‖ϕ‖1,µ denote the corresponding norm. We introduce the Hilbert space

H1 = H1
0 (Ω)× L2

µ(R+;H1
0 (Ω)),

which is endowed with the inner product

〈w1, w2〉H1
= 〈∇ψ1,∇ψ2〉+ 〈ϕ1, ϕ2〉1,µ ,
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where wi = (ψi, ϕi) ∈ H1 for i = 1, 2. The norm induced on H1 is

‖(ψ, ϕ)‖2
H1

= ‖ψ‖2
H1

0 (Ω) +

∫ ∞
0

µ(s)‖∇ϕ(s)‖2ds.

Integrating by parts and using (H3), we have

〈ηt, ηts〉1,µ =
1

2

∫ ∞
0

µ(s)
d

ds
‖∇ηt‖2ds = −1

2

∫ ∞
0

µ′(s)‖∇ηt‖2ds ≥ δ

2
‖ηt‖2

1,µ, (10)

for any ηt ∈ C([τ, T ];L2
µ(R+, H1

0 (Ω))).
If g is translation bounded in L2

loc(R;L2(Ω)), we denote byHw(g) the closure
of the set {g(· + h)|h ∈ Ω} in L2

loc(R;L2(Ω)) with the weak topology. Under
the assumptions (H1)–(H3) above, the following result was proved in [30].

Theorem 2.1. Assume that conditions (H1)–(H3) hold. Then for any fixed
positive number ε, the family of processes {U ε

σ(t, τ)}σ∈Hw(gε) generated by prob-
lem (1) possesses a uniform attractor Aε in the space H1. Moreover,

Aε =
⋃

σ∈Hw(gε)

Kεσ(s), ∀s ∈ R, (11)

where Kεσ(s) is the kernel section at time s of the process U ε
σ.

In this paper, we will prove the following facts concerning the family of
uniform attractors {Aε}ε∈[0,1] of the processes generated by (1) and (2):

(i) The family Aε is uniformly (w.r.t. ε) bounded in H1:

sup
ε∈(0,1]

‖Aε‖H1 <∞;

(ii) The uniform attractor Aε converges to A0 as ε → 0+ in the standard
Hausdorff semi-distance in H1:

lim
ε→0+
{distH1(Aε,A0)} = 0.

3. Uniform boundedness of the uniform attractors

We now give a sufficient condition to ensure that the family Aε is bounded
in H1 uniformly with respect to ε ∈ (0, 1]. Such a condition only involves the
function g1, which introduces singular oscillations in the external force. To this
end, setting G(t, τ) =

∫ t
τ
g1(s)ds, t ≥ τ , we assume that

sup
t≥τ,τ∈R

(
‖G(s, τ)‖2

H−1 +

∫ t+1

t

‖G(s, τ)‖2ds

)
≤ `2. (12)
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Remark 3.1. Condition (12) takes place, for instance, when

g1 ∈ L∞(R;H−1(Ω)) ∩ L2
loc(R;L2(Ω))

is a time periodic function of period T > 0 with zero mean, that is,∫ T

0

g1(s)ds = 0.

Other examples of quasiperiodic and almost periodic in time functions satisfy-
ing (12) can be found in [14].

Proposition 3.2. Assume that g1 ∈ L2
b(R;L2(Ω)) satisfies (12). Then, the

solution (v, ηt1) to the problem
vt −∆vt −∆v −

∫ ∞
0

µ(s)∆ηt1(s)ds = g1

(
t

ε

)
,

∂tη
t
1 = −∂sηt1 + v,

v|∂Ω = 0, ηt1|∂Ω = 0,

(v(τ), ητ1 ) = (0, 0),

(13)

with ε ∈ (0, 1], satisfies the inequality

‖v(t)‖2
H1

0 (Ω) + ‖ηt1‖2
1,µ ≤ C`2ε2, ∀t ≥ τ, (14)

where C is a constant independent of g1.

Proof. Without loss of generality, we may assume τ = 0. Denoting

V (t) =

∫ t

0

v(y)dy and η1
t =

t∫
0

ηy1(s)dy.

Integrating (13) in time from 0 to t, we see that the function V (t) solves the
problem

Vt −∆Vt −∆V −
∫ ∞

0

µ(s)∆η1
t(s)ds = Gε(t), V |∂Ω = 0, V |t=0 = 0, (15)

where

Gε(t) =

∫ t

0

g1

(s
ε

)
ds = ε

∫ t
ε

0

g1(s)ds = εG

(
t

ε
, 0

)
.

It follows from (12) that

sup
t≥0
‖Gε(t)‖H−1 ≤ `ε, (16)
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and

sup
t≥0

∫ t+1

t

‖Gε(s)‖2ds ≤ 2`2ε2.

Indeed, (16) is straightforward, whereas∫ t+1

t

‖Gε(s)‖2ds=ε3

∫ t+1
ε

t
ε

‖G(s, 0)‖2ds≤ε3

(
1+

1

ε

)
sup
t≥0

(∫ t+1

t

‖G(s, 0)‖2ds

)
≤2`2ε2.

Multiplying (15) by V in L2(Ω), then using Young’s inequality and (10), we get

d

dt
y(t) + α1y(t) ≤ 2

λ1

‖Gε(t)‖2,

where y(t) = ‖V ‖2 + ‖∇V ‖2 + ‖η1
t‖2

1,µ, 0 < α1 < min{1, δ, λ1
2
}. Hence by the

Gronwall inequality, we deduce that

‖V ‖2 + ‖∇V ‖2 + ‖η1
t‖2

1,µ ≤ C

∫ t

0

e−α1(t−s)‖Gε(s)‖2ds,

where we have used the fact that V (0) = 0 and η1
0 = 0. Since∫ t

0

e−α1(t−s)‖Gε(s)‖2ds

=

∫ t

t−1

e−α1(t−s)‖Gε(s)‖2ds+

∫ t−1

t−2

e−α1(t−s)‖Gε(s)‖2ds+ · · ·

≤
∫ t

t−1

‖Gε(s)‖2ds+ e−α1

∫ t−1

t−2

‖Gε(s)‖2ds+ · · ·

≤ 1

1− e−α1
sup
t≥0

∫ t+1

t

‖Gε(s)‖2ds

≤ C`2ε2,

(17)

so
‖V ‖2 + ‖∇V ‖2 + ‖η1

t‖2
1,µ ≤ C`2ε2. (18)

On the other hand, multiplying (15) by Vt, we obtain

‖Vt‖2 + ‖∇Vt‖2 ≤ |〈Gε(t), Vt〉H−1,H1
0
|+ |〈∇V,∇Vt〉|+

∣∣∣∣∫ ∞
0

µ(s)〈∇η1
t,∇Vt〉ds

∣∣∣∣ .
Applying the Hölder and Cauchy inequalities, we have

‖Vt‖2 + ‖∇Vt‖2 ≤ C(ε0)‖Gε(t)‖2
H−1 + ε0‖Vt‖2

H1
0

+ ε0‖∇Vt‖2 + C(ε0)‖∇V ‖2

+ C(ε0)‖η1
t‖2

1,µ + ε0

∫ ∞
0

µ(s)ds‖∇Vt‖2.
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Choosing ε0 small enough, then using (16), (18), and noting that µ ∈ L1(R+),
we deduce that

‖Vt‖2 + ‖∇Vt‖2 ≤ C`2ε2, i.e., ‖v‖2 + ‖∇v‖2 ≤ C`2ε2. (19)

Multiplying the second equation in (13) by ηt1 in L2
µ(R+;H1

0 (Ω)), then using (10)
and the Cauchy inequality, we get

d

dt
‖ηt1‖2

1,µ +
δ

2
‖ηt1‖2

1,µ ≤
2

δ
‖v‖2

H1
0 (Ω) ≤ C`2ε2.

Hence using the Gronwall inequality we obtain

‖ηt1‖2
1,µ ≤ C`2ε2. (20)

Combining (19) and (20), we get (14) as desired.

Theorem 3.3. Let conditions (H1)–(H3) and (12) hold. Then the uniform
attractors Aε are uniformly (w.r.t. ε) bounded in H1, that is,

sup
ε∈(0,1]

‖Aε‖H1 <∞.

Proof. Let z(t) = (u, ηt) be the solution to (1) with the initial datum zτ ∈ H1.
For ε > 0, we consider the problem

vt −∆vt −∆v −
∫ ∞

0

µ(s)∆ηt1(s)ds = ε−ρg1

(
t

ε

)
,

∂tη
t
1 = −∂sηt1 + v,

v|∂Ω = 0, ηt1|∂Ω = 0,

(v(τ), ητ1 ) = (0, 0).

(21)

Proposition 3.2 provides the estimate

‖v(t)‖2
H1

0 (Ω) + ‖ηt1‖2
1,µ ≤ C`2ε2(1−ρ), ∀t ≥ τ. (22)

Then, the function (w(t), ηt2) = z(t)−−(v(t), ηt1) clearly satisfies the problem
wt −∆wt −∆w −

∫ ∞
0

µ(s)∆ηt2(s)ds+ f(w) = −(f(u)− f(w)) + g0(t),

∂tη
t
2 = −∂sηt2 + w,

w|∂Ω = 0, ηt2|∂Ω = 0,

w|t=τ = uτ , η
τ
2 = ητ .
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Multiplying the first equation by w, then using (10) and the second equation,
we obtain

1

2

d

dt

(
‖w‖2 + ‖∇w‖2 + ‖ηt2‖2

1,µ

)
+ ‖∇w‖2 +

δ

2
‖ηt2‖2

1,µ +

∫
Ω

f(w)wdx

= −
∫

Ω

(f(u)− f(w))wdx+

∫
Ω

g0(t)wdx.

We consider two cases:

Case 1: p > 1. Using the dissipation condition (6) and the Cauchy inequality,
we have

1

2

d

dt

(
‖w‖2 + ‖∇w‖2 + ‖ηt2‖2

1,µ

)
+ ‖∇w‖2 +

δ

2
‖ηt2‖2

1,µ + d0‖w‖p+1
Lp+1 − C

≤ ε0‖w‖2 +

∫
Ω

|f(u)− f(w)||w|dx+ C(ε0)‖g0(t)‖2.

We estimate the second term on the right-hand side as follows∫
Ω

|f(u)− f(w)||w|dx

≤ C

∫
Ω

(1 + |w|p−1 + |v|p−1)|v||w|dx

≤ C‖w‖‖v‖+ C‖w‖pLp+1‖v‖Lp+1 + C‖v‖pLp+1‖w‖Lp+1

≤ ε0‖w‖2 + C(ε0)‖v‖2 + ε0‖w‖p+1
Lp+1 + C(ε0)‖v‖p+1

Lp+1

≤ ε0‖w‖2 + ε0‖w‖p+1
Lp+1 + C(ε0)

(
‖v‖2 + ‖v‖p+1

H1
0

)
,

where we have used the Hölder and Young inequalities, and the embeddding
H1

0 (Ω) ↪→ Lp+1(Ω) due to the condition p ≤ N+2
N−2

. Therefore,

d

dt
(‖w‖2 + ‖∇w‖2 + ‖ηt2‖2

1,µ) + ‖∇w‖2 + (λ1 − 2ε0)‖w‖2 + δ‖ηt2‖2
1,µ

+ 2(d0 − ε0)‖w‖p+1
Lp+1

≤ C
(

1 + ‖g0(t)‖2 + ‖v‖2
H1

0
+ ‖v‖p+1

H1
0

)
.

(23)

Case 2: p = 1. Using the dissipation condition (7), we have

1

2

d

dt

(
‖w‖2 + ‖∇w‖2 + ‖ηt2‖2

1,µ

)
+ ‖∇w‖2 +

δ

2
‖ηt2‖2

1,µ

≤ β‖w‖2 + C1|Ω|+ ε0‖w‖2 + C

∫
Ω

|v||w|dx+ C(ε0)‖g0(t)‖2

≤ (β + 2ε0)‖w‖2 + C1|Ω|+ C(ε0)‖v‖2 + C(ε0)‖g0(t)‖2,
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where we have used the fact that p − 1 = 0 in the second line of the above
estimate of

∫
Ω
|f(u)− f(w)||w|dx and the Hölder inequality. Hence

d

dt

(
‖w‖2 + ‖∇w‖2 + ‖ηt2‖2

1,µ

)
+ 2ε0‖∇w‖2 + 2(λ1(1− ε0)− β − 2ε0)‖w‖2 + δ‖ηt2‖2

1,µ

≤ C
(

1 + ‖g0(t)‖2 + ‖v‖2
H1

0

)
.

(24)

From (23) and (24), by choosing ε0 small enough and using (22), in both cases
we have for some α2 > 0 and for all t ≥ τ ,

d

dt
y(t) + α2y(t) ≤ C

(
1 + ‖g0(t)‖2 + `2ε2(1−ρ) + `p+1ε(p+1)(1−ρ)

)
,

where y(t) = ‖w‖2 + ‖∇w‖2 + ‖ηt2‖2
1,µ. Hence, by the Gronwall inequality, we

obtain

y(t) ≤ Ce−α2(t−τ)y(τ) + C
(
1 +M2

0 + `2ε2(1−ρ) + `p+1ε(p+1)(1−ρ)
)
,

where we have used the fact that (see (17) for a similar proof)∫ t

τ

e−α2(t−s)‖g0(s)‖2ds ≤ 1

1− e−α2
‖g0‖2

L2
b
.

Recalling that z(t) = (w, ηt1) + (v, ηt2) and using (22) once again, we have for all
t ≥ τ ,

‖z(t)‖2 ≤ Ce−α2(t−τ)‖zτ‖2 + C
(
1 +M2

0 + `2ε2(1−ρ) + `p+1ε(p+1)(1−ρ)
)
. (25)

Hence, the processes {Uε(t, τ)} have a bounded absorbing set B∗, which is
independent of ε (because ρ < 1). Since Aε ⊂ B∗, the proof is complete.

4. Convergence of the uniform attractors

The main result of this section is to establish the upper semicontinuity of the
uniform attractors Aε at ε = 0.

Theorem 4.1. Let (H1)–(H3) and (12) hold. Then, for every ρ ∈ [0, 1), the
uniform attractor Aε converges to A0 with respect to the Hausdorff semidistance
in H1 as ε→ 0+, i.e.,

lim
ε→0+
{distH1(Aε,A0)} = 0.
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In order to prove this theorem, we make a comparison between some par-
ticular solutions to (1) corresponding to ε > 0 and ε = 0, respectively, starting
from the same initial data. We denote

uε(t) = Uε(t, τ)uτ ,

with uτ belonging to the absorbing set B∗ found in the previous section.
From (25), we have the uniform bound:

‖uε(t)‖2
H1

0
≤ R2

1 for some R1 > 0. (26)

In particular, for ε = 0, since uτ ∈ B∗, we get

‖u0(t)‖2
H1

0
≤ R2

0, (27)

for some R0 > 0.
On the other hand, to prove the convergence of the uniform attractors, we

actually need consider whole family of equations

ût −∆ût −∆û+ f(û)−
∫ ∞

0

µ(s)∆η̂t(s)ds = ĝε(t), (28)

with the external force ĝ = ĝε ∈ Hw(gε). To this end, we observe that every
function ĝ1 ∈ Hw(g1) fulfills the inequality (12).

For any ε ∈ [0, 1], we denote

ûε(t) = Uĝε(t, τ)uτ ,

where uτ belongs to the absorbing set B∗ found in the previous section. Then

ẑε(t) = (ûε(t), η̂tε) = Uĝε(t, τ)ẑτ ,

is the solution to (28) with the external force ĝε = ĝ0 + ε−ρĝ1( ·
ε
) ∈ Hw(gε).

Due to Theorem 3.3, along with the estimate of Theorem 2.1 to handle the case
ε = 0, we have the uniform bound

sup
ε∈[0,1]

‖ẑε(t)‖H1 ≤ C, ∀t ≥ τ.

Next, we define the deviation

z(t) = ẑε(t)− ẑ0(t) = (r(t), ζt).

Lemma 4.2. For every ε ∈ (0, 1], we have the estimate

‖z(t)‖2 ≤
(
C`2ε2(1−ρ) +R3`ε

1−ρ) eC(t−τ), ∀t ≥ τ,

for some positive constant C independent of ε, τ, ĝε.
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Proof. Let (v(t), ηt1) be the solution to the auxiliary problem (21) with null
initial datum (vτ , η

τ
1 ) = (0, 0).

The difference (w(t), ηt2) = z(t)− (v(t), ηt1) clearly satisfies the equations

wt −∆wt −∆w −
∫ ∞

0

µ(s)∆ηt2(s)ds+ f(uε)− f(u0) = 0,

∂tη
t
2 = −∂sηt2 + w,

with initial condition (w(τ), ητ2 ) = (0, 0). Taking the scalar product the first
equation by w, we obtain

d

dt

(
‖w‖2 + ‖∇w‖2 + ‖ηt2‖2

1,µ

)
+ 2‖∇w‖2 + δ‖ηt2‖2

1,µ + 2(f(uε)− f(u0), w + v)

≤ 2
∣∣(f(uε)− f(u0), v)

∣∣ ,
thus

d

dt

(
‖w‖2 + ‖∇w‖2 + ‖ηt2‖2

1,µ

)
+ 2‖∇w‖2 + δ‖ηt2‖2

1,µ + 2

∫
Ω

f ′(ξ)(w + v)2dx

≤ 2

∫
Ω

(|f(uε)|+ |f(u0)|)|v|dx.

Exploiting conditions (4) and (5), we readily obtain

d

dt

(
‖w‖2 + ‖∇w‖2 + ‖ηt2‖2

1,µ

)
≤ 2α‖w + v‖2 + C

∫
Ω

(1 + |uε|p + |u0|p)|v|dx,

where we have used the fact that |f(u)| ≤ C(1 + |u|p). Using the Hölder
inequality, we get

d

dt

(
‖w‖2 + ‖∇w‖2 + ‖ηt2‖2

1,µ

)
≤ Cα‖w‖2 + Cα‖v‖2 + C‖v‖2 +

(
‖uε‖pLp+1 + ‖u0‖pLp+1

)
‖v‖Lp+1 .

Exploiting the embedding H1
0 (Ω) ↪→ Lp+1(Ω), (22), (26) and (27), we have

d

dt
y(t) ≤ Cy(t) + C`2ε2(1−ρ) +R3`ε

1−ρ,

where

y(t) = ‖w‖2 + ‖∇w‖2 + ‖ηt2‖2
1,µ and R3 = C (Rp

0 +Rp
1) .

Since (w(τ), ητ2 ) = (0, 0), the Gronwall inequality leads to

‖w‖2 + ‖∇w‖2 + ‖ηt2‖2
1,µ ≤

(
C`2ε2(1−ρ) +R3`ε

1−ρ) eC(t−τ), ∀t ≥ τ.

The desired conclusion follows then by comparison.
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Proof of Theorem 4.1. For ε > 0, let zε ∈ Aε. Thus, in view of (11), there
exists a complete bounded trajectory ẑε(t) of (28), with the external force

ĝε = ĝ0 + ε−ρĝ1( ·
ε
) ∈ Hw(gε), where ĝ0 ∈ Hw(g0), ĝ1 ∈ Hw(g1),

such that ẑε(0) = zε.
By Lemma 4.2 with t = 0,

‖zε − Uĝ0(0, τ)ẑε(τ)‖H1 ≤
(
C`ε1−ρ +R

1
2
3 `

1
2 ε

1−ρ
2

)
eCτ , ∀τ ≤ 0.

On the other hand, it is known (see, e.g., [14]) that the set A0 attracts
Uĝ0(t, τ)B∗, uniformly not only with respect to τ ∈ R, but also with respect to
ĝ0 ∈ Hw(g0). Then, for every δ > 0, there is τ = τ(δ) ≤ 0 independent of ε
such that

distH1

(
Uĝ0(0, τ)ẑε(τ),A0

)
≤ δ.

Using the triangle inequality we get

distH1

(
zε,A0

)
≤
(
C`ε1−ρ +R

1
2
3 `

1
2 ε

1−ρ
2

)
eCτ + δ.

Because zε ∈ Aε is arbitrary, we reach the conclusion

lim sup
ε→0+

{distH1(Aε,A0)} ≤ δ.

Letting δ → 0 we complete the proof.
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