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1. Introduction

In this paper we investigate the existence and decay properties of solutions for
the initial boundary value problem of the wave equation of the type

ϕtt(x, t)− ϕxx(x, t) = 0 in (0, L)× (0,+∞) (P)

where (x, t) ∈ (0, L)× (0,+∞). This system is subject to the boundary condi-
tions

ϕ(0, t) = 0 in (0,+∞)

mϕtt(L, t) + ϕx(L, t) = −γ∂α,ηt ϕ(L, t) in (0,+∞)

where m > 0 and γ > 0. The notation ∂α,ηt stands for the generalized Caputo
fractional derivative of order α, 0 < α < 1, with respect to the time variable
(see Choi and MacCamy [13] and E. Blanc, G. Chiavassa, and B. Lombard [7]).
It is defined as follows

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s)dw
ds

(s) ds, η ≥ 0.
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The system is finally completed with initial conditions

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x)

where the initial data (ϕ0, ϕ1) belong to a suitable function space.
The problem (P) describes the motion of a pinched vibration cable with tip

mass m > 0.
The problem of global existence and computing decay rates for the initial

boundary value problem

utt −∆u = 0 on Ω× (0,+∞),

u = 0 on Γ0 × (0,+∞),

∂u

∂ν
+m · νσ(t)g(ut) = 0 on Γ1 × (0,+∞),

u(x, 0) = ϕ0(x), ut(x, 0) = ϕ1(x) on Ω,

has attracted a lot of attention in recent years. The bibliography of works in
the direction is truly long (see [1, 11, 12, 15, 20, 21]) and many energy estimates
have been derived for arbitrary growing feedbacks (polynomial, exponential or
logarithmic decay). The decay rate of the energy (when t goes to infinity)
depends on the function σ and on the function H which represents the growth
at the origin of g.

In [30], B. Mbodje studies the decay rate of the energy of the wave equation
with a boundary fractional derivative control as in this paper. Using energy
methods, he proves strong asymptotic stability under the condition η = 0 and
a polynomial type decay rate E(t) ≤ C

t
if η 6= 0.

In [23], Z. H. Luo, B. Z. Guo and O. Morgul studied the decay rate of
the energy of the wave equation with a dynamic boundary condition with lin-
ear feedback control instead of linear feedback control of fractional derivative
type. Using frequency domain method, they proved that the system is only
asymptotically stable but not exponentially stable.

The boundary feedback under the consideration here are of fractional type
and are described by the fractional derivatives

∂α,ηt w(t) =
1

Γ(1− α)

∫ t

0

(t− s)−αe−η(t−s)dw
ds

(s) ds

The order of our derivatives is between 0 and 1. Very little is known in the liter-
ature. In addition to being nonlocal, fractional derivatives involve singular and
nonintegrable kernels (t−α, 0<α<1). This makes the problem more delicate.

It has been shown (see [31]) that, as ∂t, the fractional derivative ∂αt forces
the system to become dissipative and the solution to approach the equilibrium
state. Therefore, when applied on the boundary, we can consider them as
controllers which help to reduce the vibrations.
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In the recent years, fractional calculus has been applied successfully in var-
ious areas to modify many existing models of physical processes such as heat
conduction, diffusion, viscoelasticity, wave propagation, electronics etc. Caputo
and Mainardi [10] have established the relation between fractional derivative
and theory of viscoelasticity. The generalization of the concept of derivative
and integral to a non-integer order has been subjected to several approaches and
some various alternative definition of fractional derivative appeared in [17, 19].
One can refer to Podlubny [34] (see also [36]) for a survey of applications of
fractional calculus.

With the rapid development of polymer science and plastic industry, the
theoretical study and application in viscoelastic material has become an impor-
tant task for solid mechanics (see [3–5, 25]). The theory of viscoelasticity and
the solution for some boundary value problem of viscoelasticity were investi-
gated by Llioushin and Pobedria [22]. In our case, the fractional dissipations
may describe an active boundary viscoelastic damper designed for the purpose
of reducing the vibrations (see [30, 31]).

In [30], by redescribing the fractional derivative term by means of a suitable
diffusion equation, the original model is transformed into an augmented system
which can be more easily tackled by the energy method. This concept of diffu-
sive representation or realization in the sense of systems theory was introduced
by Staffans [37] and Desch and Miller [14] in the aim of transforming fractional
operators into classical input output dynamic systems (see also [32,33].

Our purpose in this paper is to give a global solvability in Sobolev spaces
and energy decay estimates of the solutions to the problem (P) with a dynamic
boundary control of fractional derivative type.

The organization of this paper is as follows. In Section 2, we show that the
above system can be replaced by an augmented one obtained by coupling the
wave equation with a suitable diffusion equation (as in [30]). In Section 3, we
introduce our functional analytic setting with a view of tackling the problem
later on. Sections 2 and 3 are closely related to the Sections 4 and 5 of ref-
erence [30] by Mbodje. In Section 4, existence and uniqueness of strong and
weak solutions of the system are proved, using the Hille–Yosida theorem. In
Section 5, we show the lack of exponential stability by spectral analysis. In Sec-
tion 6, we study asymptotic stability of the above model, once formulated as a
first-order system. Since no compactness property can be found a priori, thus
forbidding the use of LaSalle’s invariance principle, then a refined analysis of
the spectrum of the generator of the semigroup is carried out. The main results
are Theorems 6.1, 6.5 and 6.6. In Theorem 6.6, we show a polynomial type
decay rate depending on parameter α. The proof heavily relies on multiplier
method and Borichev–Tomilov theorem and will be proved in three steps.
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Finally, Section 7 is devoted to conclusions on the problems treated in this
paper and future works, including some possible generalizations and interesting
open questions.

2. Augmented model

This section is concerned with the reformulation of the model (P) into an aug-
mented system. For that, we need the following claims.

Theorem 2.1 (see [30]). Let µ be the function:

µ(ξ) = |ξ|
2α−1

2 , −∞<ξ<+∞, 0<α<1. (1)

Then the relationship between the “input” U and the “output” O of the system

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− U(t)µ(ξ) = 0, −∞<ξ<+∞, η≥0, t>0, (2)

φ(ξ, 0) = 0, (3)

O(t) = (π)−1 sin(απ)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ (4)

is given by
O = I1−α,ηU = Dα,ηU (5)

where

[Iα,ηf ](t) =
1

Γ(α)

∫ t

0

(t− τ)α−1e−η(t−τ)f(τ) dτ.

Proof. From (2) and (3), we have

φ(ξ, t) =

∫ t

0

µ(ξ)e−(ξ
2+η)(t−τ)U(τ) dτ. (6)

Hence, by using (4), we get

O(t) = (π)−1 sin(απ)e−ηt
∫ t

0

[
2

∫ +∞

0

|ξ|2α−1e−ξ2(t−s) dξ
]
eητU(τ) dτ. (7)

Thus,

O(t) = (π)−1 sin(απ)e−ηt
∫ t

0

[
(t− s)−αΓ(α)

]
eητU(τ) dτ

= (π)−1 sin(απ)

∫ t

0

[
(t− τ)−αΓ(α)

]
e−η(t−τ)U(τ) dτ,

(8)

which completes the proof. Indeed, we know that

(π)−1 sin(απ) =
1

Γ(α)Γ(1− α)
.
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Lemma 2.2. If λ ∈ Dη = C\]−∞,−η] then∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

π

sinαπ
(λ+ η)α−1.

Proof. Let us set

fλ(ξ) =
µ2(ξ)

λ+ η + ξ2
.

We have ∣∣∣∣ µ2(ξ)

λ+ η + ξ2

∣∣∣∣ ≤


µ2(ξ)

Reλ+ η + ξ2
or

µ2(ξ)

|Imλ|+ η + ξ2

Then the function fλ is integrable. Moreover

∣∣∣∣ µ2(ξ)

λ+ η + ξ2

∣∣∣∣ ≤


µ2(ξ)

η0 + η + ξ2
for all Reλ ≥ η0 > −η

µ2(ξ)

η̃0 + ξ2
for all |Imλ| ≥ η̃0 > 0

From [38, Theorem 1.16.1], the function fλ : Dη → C is holomorphic. For a real
number λ > −η, we have∫ +∞

−∞

µ2(ξ)

λ+ η + ξ2
dξ =

∫ +∞

−∞

|ξ|2α−1

λ+ η + ξ2
dξ

=

∫ +∞

0

xα−1

λ+ η + x
dx

= (λ+ η)α−1
∫ +∞

1

y−1(y − 1)α−1 dy (with y =
x

λ+η
+ 1)

= (λ+ η)α−1
∫ 1

0

z−α(1− z)α−1 dz (with z =
1

y
)

= (λ+ η)α−1B(1− α, α)

= (λ+ η)α−1Γ(1− α)Γ(α)

= (λ+ η)α−1
π

sin πα
.

Both holomorphic functions fλ and λ 7→ (λ + η)α−1 π
sinπα

coincide on the half
line ]− η,+∞[, hence on Dη following the principe of isolated zeroes.
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We are now in a position to reformulate system (P). Indeed, by using The-
orem 2.1, system (P) is equivalent to the following:

ϕtt − ϕxx = 0,

∂tφ(ξ, t) + (ξ2 + η)φ(ξ, t)− ϕt(L, t)µ(ξ) = 0,

ϕ(0, t) = 0,

mϕtt(L, t) + ϕx(L, t) = −ζ
∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ, ζ = (π)−1 sin(απ)γ,

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x).

(P′)

For the solution of problem (P’), we define the energy functional

E(t) =
1

2
‖ϕt‖22 +

1

2
‖ϕx‖22 +

m

2
|ϕt(L, t)|2 +

ζ

2

∫ +∞

−∞
|φ(ξ, t)|2 dξ. (9)

Lemma 2.3. Let (ϕ, φ) be a solution of the problem (P’). Then, the energy
functional defined by (9) satisfies

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ ≤ 0. (10)

Proof. Multiplying the first equation in (P’) by ϕt, integrating over (0, L) and

using integration by parts, we get 1
2
d
dt
‖ϕt‖22 − Re

∫ L
0
ϕxxϕtdx = 0. Then

d

dt

(
1

2
‖ϕt‖22+

1

2
‖ϕx‖22+

m

2
|ϕt(L, t)|2

)
+ ζReϕt(L, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0. (11)

Multiplying the second equation in (P’) by ζφt and integrating over (−∞,+∞),
to obtain:

ζ

2

d

dt
‖φ‖22 + ζ

∫ +∞

−∞
(ξ2+η)|φ(ξ, t)|2 dξ − ζReϕt(L, t)

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0. (12)

From (9), (11) and (12) we get

E ′(t) = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ, t)|2 dξ.

This completes the proof of the lemma.

3. Functional analytic setting

Let us introduce the semigroup representation of the (P’). We consider the
following condition of the right end contour of wave

v(t) = ϕt(L, t), for t > 0 (13)
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were v solve the equation

mvt(t) + ϕx(L, t) + ζ

∫ +∞

−∞
µ(ξ)φ(ξ, t) dξ = 0. (14)

Let U = (ϕ, ϕt, φ, v)T and rewrite (P’) as{
U ′ = AU,

U(0) = (ϕ0, ϕ1, φ0, v0),
(15)

where the operator A is defined by

A


ϕ
u
φ
v

 =


u
ϕxx

−(ξ2 + η)φ+ u(L)µ(ξ)

− 1
m
ϕx(L)− ζ

m

∫ +∞
−∞ µ(ξ)φ(ξ) dξ

 . (16)

We consider the following space

H1
L(0, L) = {ϕ ∈ H1(0, L), ϕ(0) = 0}

and and the Hilbert space

H = H1
L(0, L)× L2(0, L)× L2(−∞,+∞)× C

equipped with the inner product

〈U, Ũ〉H =

∫ L

0

(uũ+ ϕxϕ̃x) dx+ ζ

∫ +∞

−∞
φφ̃ dξ +mvṽ.

The domain of A is given by

D(A) =

(ϕ, u, φ, v)T ∈ H

∣∣∣∣∣∣∣∣∣∣
ϕ ∈ H2(0, L) ∩H1

L(0, L)

u ∈ H1
L(0, L), v ∈ C

− (ξ2 + η)φ+ u(L)µ(ξ) ∈ L2(−∞,+∞)

u(L) = v, |ξ|φ ∈ L2(−∞,+∞)

 (17)

4. Global existence

In this section we will give well-posedness results for problem (P’) using semi-
group theory. We show that the operator A generates a C0- semigroup in H.
We prove that A is a maximal dissipative operator. For this purpose we need
the following two lemmas.
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Lemma 4.1. The operator A is dissipative and satisfies, for any U ∈ D(A),

〈AU,U〉H = −ζ
∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ. (18)

Proof. For any U = (ϕ, u, φ, v)T ∈ D(A), Using (15), (10) and the fact that
E(t) = 1

2
‖U‖2H, estimate (18) easily follows.

Lemma 4.2. The operator λI −A is surjective for all λ > 0.

Proof. We need to show that for all F = (f1, f2, f3, f4)
T ∈ H, there exists

U = (ϕ, u, φ, v)T ∈ D(A) such that

λU −AU = F. (19)

Then, in terms of components, the above equation reads

λϕ− u = f1,

λu− ϕxx = f2,

λφ+ (ξ2 + η)φ− u(L)µ(ξ) = f3,

λv +
1

m
ϕx(L) +

ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = f4.

(20)

Suppose ϕ is found with the appropriate regularity. Then, (20)1 yields

u = λϕ− f1. (21)

It is clear that u ∈ H1
L(0, L). Furthermore, by (20) we can find φ as

φ =
f3(ξ) + µ(ξ)u(L)

ξ2 + η + λ
. (22)

By using (20) and (21) the function ϕ satisfying the following equation

λ2ϕ− ϕxx = f2 + λf1. (23)

Solving (23) is equivalent to finding ϕ ∈ H2 ∩H1
L(0, L) such that∫ L

0

(λ2ϕw − ϕxxw) dx =

∫ L

0

(f2 + λf1)w dx, (24)

for all w ∈ H1
L(0, L). Using integration by parts in (24) and taking into account

(22), we obtain
∫ L

0

(λ2ϕw + ϕxwx) dx+ (λm+ ζ̃)u(L)w(L)

=

∫ L

0

(f2 + λf1)w dx− ζ
∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξ w(L) +mf4w(L)

(25)
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where ζ̃ = ζ
∫ +∞
−∞

µ2(ξ)
ξ2+η+λ

dξ. Using again (21), we deduce that

u(L) = λϕ(L)− f1(L). (26)

Inserting (26) into (25), we get

∫ L

0

(λ2ϕw + ϕxwx) dx+ λ(λm+ ζ̃)ϕ(L)w(L)

=

∫ L

0

(f2 + λf1)w dx− ζ
∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξ w(L)

+ (λm+ ζ̃)f1(L)w(L) +mf4w(L).

(27)

Consequently, problem (27) is equivalent to the problem

a(ϕ,w) = L(w) (28)

where the bilinear form a : H1
L(0, L)×H1

L(0, L)→ C and the linear form
L : H1

L(0, L)→ C are defined by

a(ϕ,w) =

∫ L

0

(λ2ϕw + ϕxwx) dx+ λ(λm+ ζ̃)ϕ(L)w(L)

and

L(w) =

∫ L

0

(f2 + λf1)w dx− ζ
∫ +∞

−∞

µ(ξ)

ξ2 + η + λ
f3(ξ) dξ w(L)

+ (λm+ ζ̃)f1(L)w(L) +mf4w(L).

It is easy to verify that a is continuous and coercive, and L is continuous. So
applying the Lax–Milgram theorem, we deduce that for all w ∈ H1

L(0, L) prob-
lem (28) admits a unique solution ϕ ∈ H1

L(0, L). Applying the classical elliptic
regularity, it follows from (27) that ϕ ∈ H2(0, L). Therefore, the operator
λI −A is surjective for any λ > 0.

Consequently, using Hille–Yosida Theorem, we have the following existence
and uniqueness result.

Theorem 4.3. Let U0 ∈ H, then there exists a unique solution U ∈ C0(R+,H),
of problem (15). Moreover if U0 ∈ D(A), then

U ∈ C0(R+, D(A)) ∩ C1(R+,H).
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5. Lack of exponential stability

In order to state and prove our stability results, we need some Theorems.

Theorem 5.1 ([18, 35]). Let S(t) = eAt be a C0-semigroup of contractions on
Hilbert space H. Then S(t) is exponentially stable if and only if

ρ(A) ⊇ {iβ : β ∈ R} ≡ iR and lim
|β|→∞

‖(iβI −A)−1‖L(H) <∞.

Theorem 5.2 ([8]). Let S(t) = eAt be a bounded C0-semigroup on a Hilbert
space H. If

iR ⊂ ρ(A) and sup
|β|≥1

1

βδ
‖(iβI −A)−1‖L(H) < M

for some δ > 0, then there exist c such that

‖eAtU0‖2 ≤
c

t
2
δ

‖U0‖2D(A).

Theorem 5.3 ([2, 24]). Let A be the generator of a uniformly bounded C0.
semigroup {S(t)}t≥0 on a Hilbert space H. If:

(i) A does not have eigenvalues on iR.

(ii) The intersection of the spectrum σ(A) with iR is at most a countable set,

then the semigroup {S(t)}t≥0 is asymptotically stable, i.e., ‖S(t)z‖H → 0 as
t→∞ for any z ∈ H.

Our main result is the following

Theorem 5.4. The semigroup generated by the operator A is not exponentially
stable.

Proof. We will examine two cases.

Case 1. η = 0: We shall show that iλ = 0 is not in the resolvent set of
the operator A. Indeed, noting that (sinx, 0, 0, 0)T ∈ H, and denoting by

(ϕ, u, φ, v)T the image of (sinx, 0, 0, 0)T by A−1, we see that φ(ξ) = |ξ| 2α−5
2 sinL.

But, then φ 6∈ L2(−∞,+∞), since α ∈]0, 1[. And so (ϕ, u, φ, v)T 6∈ D(A).

Case 2. η 6= 0: We aim to show that an infinite number of eigenvalues of A
approach the imaginary axis which prevents the wave system (P) from being
exponentially stable. Indeed We first compute the characteristic equation that
gives the eigenvalues of A. Let λ be an eigenvalue of A with associated eigen-
vector U = (ϕ, u, φ, v)T . Then AU = λU is equivalent to

λϕ− u = 0,

λu− ϕxx = 0,

λφ+ (ξ2 + η)φ− u(L)µ(ξ) = 0,

λv +
1

m
ϕx(L) +

ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0

(29)
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From (29)1, (29)2 for such λ, we find

λ2ϕ− ϕxx = 0. (30)

Since v = u(L), using (29)3 and (29)4, we get

ϕ(0) = 0,(
λ+

ζ

m

∫ +∞

−∞

µ2(ξ)

ξ2 + λ+ η
dξ

)
u(L) +

1

m
ϕx(L)

=
(
λ+

γ

m
(λ+ η)α−1

)
λϕ(L) +

1

m
ϕx(L)

= 0.

(31)

The matrix of the system determining is not singular. Set X = (ϕ, ϕx)
T

d

dx
X = B̃X where B̃ =

(
0 1
λ2 0

)
. (32)

The characteristic polynomial of B̃ is s2 − λ2 = 0. We find the roots

t1(λ) = λ, t2(λ) = −λ.

Here and below, for simplicity we denote ti(λ) by ti. The solution ϕ is given by

ϕ(x) =
2∑
i=1

cie
tix. (33)

Thus the boundary conditions may be written as the following system:

M(λ)C(λ) =

(
1 1

h(t1)e
t1L h(t2)e

t2L

)(
c1
c2

)
=

(
0
0

)
(34)

where we have set

h(r) =
1

m
r + λ2 +

γ

m
λ(λ+ η)α−1.

Hence a non-trivial solution ϕ exists if and only if the determinant of M(λ)
vanishes. Set f(λ) = detM(λ), thus the characteristic equation is f(λ) = 0.

Our purpose in the sequel is to prove, thanks to Rouché’s Theorem, that
there is a subsequence of eigenvalues for which their real part tends to 0.

In the sequel, since A is dissipative, we study the asymptotic behavior of
the large eigenvalues λ of A in the strip −α0 ≤ R(λ) ≤ 0, for some α0 > 0 large
enough and for such λ, we remark that eti , i = 1, 2 remains bounded.
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Lemma 5.5. There exists N ∈ N such that

{λk}k∈Z∗,|k|≥N ⊂ σ(A) (35)

where

λk = i

(
kπ

L
+

1

mkπ

)
+

α̃

k3−α
+

β

k(3−α)
+ o

(
1

k3−α

)
, k≥N, α̃∈ iR, β∈R, β<0,

λk = λ−k if k≤−N.

Moreover for all |k| ≥ N , the eigenvalues λk are simple.

Proof. Step 1.

f(λ) = et2h(t2)− et1h(t1)

= −e−λLh(−λ)

(
e2λL +

− λ
m

+ λ2 + γ
m
λ(λ+ η)α−1

λ
m

+ λ2 + γ
m
λ(λ+ η)α−1

)

= −e−λLh(−λ)

(
e2λL − 1− 2

1 +mλ+ γ(λ+ η)α−1

)
.

(36)

We set

f̃(λ) = e2λL − 1− 2

1 +mλ+ γ(λ+ η)α−1

= f0(λ) +
f1(λ)

λ
+
f2(λ)

λ2
+ +

f3(λ)

λ3−α
+ o

(
1

λ3−α

) (37)

where

f0(λ) = e2λL − 1, (38)

f1(λ) =
2

m
, (39)

f2(λ) = − 2

m2
, (40)

f3(λ) = − 2γ

m2
. (41)

Note that f0, f1, f2 and f3 remain bounded in the strip −α0 ≤ R(λ) ≤ 0.

Step 2. We look at the roots of f0. From (38), f0 has one familie of roots that
we denote λ0k.

f0(λ) = 0 ⇔ e2λL = 1.

Hence

2λL = i2kπ, i.e., λ0k =
ikπ

L
, k ∈ Z.
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Now with the help of Rouché’s Theorem, we will show that the roots of f̃ are
close to those of f0. Changing in (37) the unknown λ by u = 2λL then (37)
becomes

f̃(u) = (eu − 1) +O

(
1

u

)
= f0(u) +O

(
1

u

)
.

The roots of f0 are uk = ik
L
π, k ∈ Z, and setting u = uk + reit, t ∈ [0, 2π],

we can easily check that there exists a constant C > 0 independent of k such
that |eu − 1| ≥ Cr for r small enough. This allows to apply Rouché’s Theo-
rem. Consequently, there exists a subsequence of roots of f̃ which tends to the
roots uk of f0. Equivalently, it means that there exists N ∈ N and a subsequence
{λk}|k|≥N of roots of f(λ), such that λk = λ0k+o(1) which tends to the roots ik

L
π

of f0. Finally for |k| ≥ N, λk is simple since λ0k is.

Step 3. From Step 2, we can write

λk = i
1

L
kπ + εk. (42)

Using (42), we get

e2λkL = 1 + 2Lεk + 2L2ε2k + o(ε2k). (43)

Substituting (43) into (37), using that f̃(λk) = 0, we get:

f̃(λk)=2Lεk+2L2ε2k+
2
m

kπi
L

+εk
−

2
m2

(kπi
L

+εk)2
+o(ε2k)=2Lεk+

2L
m

kπi
+o(εk)+o

(
1

k

)
=0

and hence

εk =
i

mkπ
.

Step 4. From Step 3, we can write

λk = i
1

L
kπ +

1

mkπ
i+ εk (44)

Using (44), we get

e2λkL = 1 +

(
2L

mkπ
i+ 2Lεk

)
+

1

2

(
2L

mkπ
i+ 2Lεk

)2

+ o(ε3k) (45)

Substituting (45) into (37), using that f̃(λk) = 0, we get:

f̃(λk) =

(
2L

mkπ
i+ 2Lεk

)
+

1

2

(
2L

mkπ
i+ 2Lεk

)2

+
2
m

kπi
L

+ 1
mkπ

i+ εk

−
2
m2

(kπi
L

+ 1
mkπ

i+εk)2
−

2γ
m2

(kπi
L

+ 1
mkπ

i+εk)(3−α)
+O(ε3k) +O

(
1

k3

)
= 2Lεk −

2γ

m2

(
L

kπi

)3−α

+ o(ε3k) + o

(
1

k3

)
= 0

(46)
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εk=
γ

m2Lα−2(kπi)3−α
+o

(
1

k3−α

)

=


− γ

m2Lα−2(kπ)3−α

(
cos(1−α)

π

2
−i sin(1−α)

π

2

)
+o

(
1

k3−α

)
for k�0

− γ

m2Lα−2(−kπ)3−α

(
cos(1−α)

π

2
−i sin(1−α)

π

2

)
+o

(
1

k3−α

)
for k�0

From this equation we obtain |k|3−αRλk ∼ β in that case, with

β = − γ

m2Lα−2π3−α cos(1− α)
π

2
.

The operator A has a non exponential decaying branch of eigenvalues. Thus
the proof is complete.

6. Asymptotic stability

Because of the unboundedness of the ξ-domain for the diffusive equation, the
resolvent ofA is not compact, and a major difficulty arises in the use of LaSalle’s
invariance principle to prove asymptotic stability. A refined analysis of the
spectrum of generator of the semigroup can be performed, which allows for the
use of the stability results of [2, 24]. A direct application of this result on the
pseudo-differentially damped linearized pendulum, can be found in [28].

6.1. Strong stability of the system. In this part, we use a general criteria
of Lemma 5.3 to show the strong stability of the C0-semigroup etA associated to
the wave system (P’) in the absence of the compactness of the resolvent of A.
Our main result is the following theorem:

Theorem 6.1. The C0-semigroup etA is strongly stable in H; i.e., for all
U0 ∈ H, the solution of (15) satisfies

lim
t→∞
‖etAU0‖H = 0.

For the proof of Theorem 6.1, we need the following two lemmas.

Lemma 6.2. A does not have eigenvalues on iR.

Proof. We make a distinction between iλ = 0 and iλ 6= 0.

Step 1. Solving for AU = 0 leads to U = 0, thanks to the boundary conditions
in (17). Hence, iλ = 0 is not is not an eigenvalue of A.
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Step 2. We will argue by contradiction. Let us suppose that there λ ∈ R, λ 6= 0
and U 6= 0, such that AU = iλU . Then, we get

iλϕ− u = 0,

iλu− ϕxx = 0,

iλφ+ (ξ2 + η)φ− u(L)µ(ξ) = 0,

iλv +
1

m
ϕx(L) +

ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0.

(47)

Then, from (18) we have
φ ≡ 0. (48)

From (47)3, we have
u(L) = 0. (49)

Hence, from (47)1 and (47)4 we obtain

ϕ(L) = 0 and ϕx(L) = 0. (50)

From (47)1 and (47)2, we have

−λ2ϕ− ϕxx = 0. (51)

Consider X = (ϕ, ϕx). Then we can rewrite (50) and (51) as the initial value
problem

d

dx
X = BX

X(0) = 0,
where B =

(
0 1
−λ2 0

)
(52)

By the Picard Theorem for ordinary differential equations the system (52) has
a unique solution X = 0. Therefore ϕ = 0. It follows from (47), that u = 0 and
v = 0, i.e., U = 0. Consequently, A does not have purely imaginary eigenvalues,
so the condition (i) of Theorem 5.3 holds.

The condition (ii) of Theorem 5.3 will be satisfied if we show that
σ(A) ∩ {iR} is at most a countable set. We have the following lemma.

Lemma 6.3. 1. If λ 6= 0, the operator λI −A is surjective.

2. If λ = 0 and η = 0, the operator λI−A is surjective. where R∗ = R\{0}.

Proof. Case 1: λ 6= 0 . Let F = (f1, f2, f3, f3)
T ∈ H be given, and let

X = (ϕ, u, φ, v)T ∈ D(A) be such that

(iλI −A)X = F. (53)
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Equivalently, we have

iλϕ− u = f1,

iλu− ϕxx = f2,

iλφ+ (ξ2 + η)φ− u(L)µ(ξ) = f3,

iλv +
1

m
ϕx(L) +

ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = f4.

(54)

We divide the proof into three steps, as follows:

Step 1. With the first two equations of (54), we get

λ2ϕ+ ϕxx = −(f2 + iλf1).

As ϕ(0) = 0, then

ϕ(x) = c1 sinλx− 1

λ

∫ x

0

(f2(σ) + iλf1(σ)) sinλ(x− σ) dσ (55)

and hence

ϕx(x) = c1λ cosλx−
∫ x

0

(f2(σ) + iλf1(σ)) cosλ(x− σ) dσ. (56)

Step 2. With the third equation of (54), we get

φ(ξ) =
u(L)µ(ξ) + f3(ξ)

iλ+ ξ2 + η
. (57)

Inserting (57) in the last equation of (54), we get(
iλ+

ζ

m

∫ +∞

−∞

µ2(ξ)

iλ+ξ2+η
dξ

)
u(L) +

1

m
ϕx(L) +

ζ

m

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ξ2+η
dξ = f4. (58)

Since ζ
m

∫ +∞
−∞

µ2(ξ)
iλ+ξ2+η

dξ = γ
m

(iλ+ η)α−1 and u(L) = iλϕ(L)− f1(L), we deduce
that

iλ
(
iλ+

γ

m
(iλ+ η)α−1

)
ϕ(L) +

1

m
ϕx(L)

=
(
iλ+

γ

m
(iλ+ η)α−1

)
f1(L) + f4 −

ζ

m

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ

(59)

Step 3. Using (55), (56) we can rewrite (59) as an equation in the unknown c1

λc1

[
iI sinλL+

1

m
cosλL

]
= J + If1(L) +

1

m

∫ L

0

(f2(σ) + iλf1(σ)) cosλ(L− σ) dσ

+ iI

∫ L

0

(f2(σ) + iλf1(σ)) sinλ(L− σ) dσ

(60)



Wave Equation with a Dynamic Boundary Dissipation 331

where

I = iλ+
γ

m
(iλ+ η)α−1, J = f4 −

ζ

m

∫ +∞

−∞

µ(ξ)f3(ξ)

iλ+ ξ2 + η
dξ.

We set

g(λ) = iI sinλL+
1

m
cosλL

= −λ sinλL+
1

m
cosλL+ i

γ

m
(iλ+ η)α−1 sinλL

= −λ sinλL+
1

m
cosλL+

γ

m
(λ2 + η2)

α−1
2 sin(1− α)θ sinλL

+ i
γ

m
(λ2 + η2)

α−1
2 cos(1− α)θ sinλL

where θ ∈]− π
2
, π
2
[ such that

cos θ =
η√

λ2 + η2
, sin θ =

λ√
λ2 + η2

It is clear that
g(λ) 6= 0 ∀λ ∈ R.

Hence iλ−A is surjective for all λ ∈ R∗.
Case 2: λ = 0 and η 6= 0 . The system (54) is reduced to the following

u = −f1,
ϕxx = −f2,

(ξ2 + η)φ− u(L)µ(ξ) = f3,

1

m
ϕx(L) +

ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = f4.

(61)

With the second equation of (54) we get

ϕ(x) = −
∫ x

0

∫ s

0

f2(r) dr ds+ Cx.

From (61)1, (61)3 and (61)4, we have

− γ
m
ηα−1f1(L) +

1

m
ϕx(L) = f4 −

ζ

m

∫ +∞

−∞

µ(ξ)f3(ξ)

ξ2 + η
dξ.

We find C =
∫ L
0
f2(r) dr + γηα−1f1(L) + mf4 − ζ

∫ +∞
−∞

µ(ξ)f3(ξ)
ξ2+η

dξ. Hence A is
surjective. The proof is thus complete.

Proof of Theorem 6.1. By Lemma 6.2, the operator A has no pure imaginary
eigenvalues and by Lemma 6.3 R(iλ−A) = H for all λ ∈ R∗ and R(iλ−A) = H
for λ = 0 and for all η > 0. Therefore, the closed graph theorem of Banach
implies that σ(A) ∩ iR = ∅ if η > 0 and σ(A) ∩ iR = {0} if η = 0.
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6.2. Residual spectrum of A.

Lemma 6.4. Let A be defined by (16). Then

A∗


ϕ
u
φ
v

 =


−u
−ϕxx

−(ξ2 + η)φ− u(L)µ(ξ)
1
m
ϕx(L) + ζ

m

∫ +∞
−∞ µ(ξ)φ(ξ) dξ

 (62)

with domain

D(A∗) =

(ϕ, u, φ, v)T ∈ H

∣∣∣∣∣∣∣∣∣∣
ϕ ∈ H2(0, L) ∩H1

L(0, L),

u ∈ H1
L(0, L), v ∈ C,

− (ξ2 + η)φ− u(L)µ(ξ) ∈ L2(−∞,+∞)

u(L) = v, |ξ|φ ∈ L2(−∞,+∞)

 (63)

Proof. Let U = (ϕ, u, φ, v)T and V = (ϕ̃, ũ, φ̃, ṽ)T . We have

〈AU, V 〉H = 〈U,A∗V 〉H.

〈AU, V 〉H =

∫ L

0

uxϕ̃x dx+

∫ L

0

ũϕxx dx+ ζ

∫ +∞

−∞
[−(ξ2 + η)φ+ u(L)µ(ξ)]φ̃ dξ

+m

(
− 1

m
ϕx(L)− ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ

)
ṽ

= −
∫ L

0

uϕ̃xx dx−
∫ L

0

ũxϕx dx+ ϕx(L)ũ(L) + ϕ̃x(L)u(L)

− ζ
∫ +∞

−∞
φ[(ξ2 + η)φ̃] dξ + ζu(L)

∫ +∞

−∞
µ(ξ)φ̃ dξ − ϕx(L)ṽ

− ζ
∫ +∞

−∞
µ(ξ)φ(ξ) dξṽ

As v = u(L) and if we set ṽ = ũ(L), we find

〈AU, V 〉H = −
∫ L

0

uϕ̃xx dx−
∫ L

0

ũxϕx dx− ζ
∫ +∞

−∞
φ[(ξ2 + η)φ̃+ µ(ξ)ũ(L)] dξ

+ v

(
ϕ̃x(L) + ζ

∫ +∞

−∞
µ(ξ)φ̃ dξ

)
.

Theorem 6.5. σr(A) = ∅, where σr(A) denotes the set of residual spectrum
of A.
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Proof. Since λ ∈ σr(A), λ ∈ σp(A∗) the proof will be accomplished if we can
show that σp(A) = σp(A∗). This is because obviously the eigenvalues of A are
symmetric on the real axis. From (62), the eigenvalue problem A∗Z = λZ for
λ ∈ C and 0 6= Z = (ϕ, u, φ, v) ∈ D(A∗) we have

λϕ+ u = 0,

λu+ ϕxx = 0,

λφ+ (ξ2 + η)φ+ u(L)µ(ξ) = 0,

λv − 1

m
ϕx(L)− ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = 0

(64)

From (64)1 and (64)2, we find

λ2ϕ− ϕxx = 0, (65)

As v = u(L) = −λϕ(L), we deduce from (64)3 and (64)4 that(
λ+

γ

m
(λ+ η)α−1 dξ

)
λϕ(L) +

1

m
ϕx(L) = 0 (66)

with the following conditions
ϕ(0) = 0. (67)

System (65)–(67) is the same as (30) and (31). Hence A∗ has the same eigen-
values with A. The proof is complete.

6.3. Polynomial stability (for η 6= 0). In this part, we prove that the sys-
tem (P’) is polynomially stable when η > 0. Note that in [27], an early example
of such refined decay estimate had been proved for Webster-Lokshin model
with constant coefficients in the case α = 1

2
and inferred for other values of α

by using a modal decomposition on a Riesz basis and the asymptotic of the
eigenfunctions of the ∂αt operator.

Theorem 6.6. The semigroup SA(t)t≥0 is polynomially stable and

‖SA(t)U0‖H ≤
1

t
1

4−2α

‖U0‖D(A).

Proof. An early example of such refined decay estimate had been proved for the
case α = 1

2
and inferred for other values of α in [27]. We will need to study the

resolvent equation (iλ−A)U = F , for λ ∈ R, namely

iλϕ− u = f1,

iλu− ϕxx = f2,

iλφ+ (ξ2 + η)φ− u(L)µ(ξ) = f3,

iλv +
1

m
ϕx(L) +

ζ

m

∫ +∞

−∞
µ(ξ)φ(ξ) dξ = f4,

(68)
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where F = (f1, f2, f3, f4)
T .

Step 1. Taking inner product in H with U and using (18) we get

|Re〈AU,U〉| ≤ ‖U‖H‖F‖H. (69)

This implies that

ζ

∫ +∞

−∞
(ξ2 + η)|ϕ(ξ, t)|2 dξ ≤ ‖U‖H‖F‖H. (70)

and, applying (68)1, we obtain

||λ||ϕ(L)| − |f1(L)||2 ≤ |u(L)|2.

We deduce that |λ|2|ϕ(L)|2 ≤ c|f1(L)|2 + c|u(L)|2. Moreover, from (68)4, we
have

ϕx(L) = −imλu(L)− ζ
∫ +∞

−∞
µ(ξ)φ(ξ) dξ +mf4.

Then

|ϕx(L)|2 ≤ 2m2|λ|2|u(L)|2 + 2m2f 2
4 + 2ζ2

∣∣∣∣∫ +∞

−∞
µ(ξ)φ(ξ) dξ

∣∣∣∣2
≤ 2m2|λ|2|u(L)|2 + 2m2f 2

4

+ 2ζ2
(∫ +∞

−∞
(ξ2 + η)−1|µ(ξ)|2 dξ

)∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ

≤ 2m2|λ|2|u(L)|2 + c‖U‖H‖F‖H + c′‖F‖2H.

(71)

From (68)3, we obtain

u(L)µ(ξ) = (iλ+ ξ2 + η)φ− f3(ξ). (72)

By multiplying (72)1 by (iλ+ ξ2 + η)−1µ(ξ), we get

(iλ+ ξ2 + η)−1u(L)µ2(ξ) = µ(ξ)φ− (iλ+ ξ2 + η)−1µ(ξ)f3(ξ). (73)

Hence, by taking absolute values of both sides of (73), integrating over the
interval ]−∞,+∞[ with respect to the variable ξ and applying Cauchy–Schwartz
inequality, we obtain

S|u(L)| ≤ U
(∫ +∞

−∞
(ξ2 + η)|φ|2 dξ

) 1
2

+ V
(∫ +∞

−∞
|f3(ξ)|2 dξ

) 1
2

(74)
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where

S =

∫ +∞

−∞
(|λ|+ ξ2 + η)−1|µ(ξ)|2 dξ = (|λ|+ η)α−1,

U =

(∫ +∞

−∞
(ξ2 + η)−1|µ(ξ)|2 dξ

) 1
2

,

V =

(∫ +∞

−∞
(|λ|+ ξ2 + η)−2|µ(ξ)|2 dξ

) 1
2

=
(

(1− α)
π

sinαπ
(|λ|+ η)α−2

) 1
2
.

Thus, by using again the inequality 2PQ ≤ P 2 +Q2, P ≥ 0, Q ≥ 0, we get

S2|u(L)|2 ≤ 2U2

(∫ +∞

−∞
(ξ2 + η)|φ|2 dξ

)
+ 2V2

(∫ +∞

−∞
|f3(ξ)|2 dξ

)
. (75)

We deduce that

|u(L)|2 ≤ c|λ|2−2α‖U‖H‖F‖H + c‖F‖2H. (76)

Step 2. Now, we use the classical multiplier method. Let us introduce the
following notation

Iϕ(α) = |u(α)|2 + |ϕx(α)|2, Eϕ(L) =

∫ L

0

q(s)Iϕ(s) ds.

Lemma 6.7. Let q ∈ H1(0, L). We have that

Eϕ(L) = [qIϕ]L0 +R (77)

where R satisfies
|R| ≤ CEϕ(L) + ‖q

1
2F‖2H.

for a positive constant C.

Proof. To get (77), let us multiply the equation (68)2 by qϕx, integrating on

(0, L) we obtain iλ
∫ L
0
uqϕx dx−

∫ L
0
ϕxxqϕx dx =

∫ L
0
f2qϕx dx or

−
∫ L

0

uq(iλϕx) dx−
∫ L

0

qϕxxϕx dx =

∫ L

0

f2qϕx dx.

Since iλϕx = ux + f1x taking the real part in the above equality results in

−1
2

∫ L
0
q d
dx
|u|2 dx− 1

2

∫ L
0
q d
dx
|ϕx|2 dx = Re

∫ L
0
f2qϕx dx+ Re

∫ L
0
uqf 1x dx.
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Performing an integration by parts we get
∫ L
0
q′(s)[|u(s)|2 + |ϕx(s)|2] ds =

[qIϕ]L0 +R where

R = 2Re

∫ L

0

f2qϕx dx+ 2Re

∫ L

0

uqf 1x dx.

If we take q(x) =
∫ x
0
ens ds = enx−1

n
(Here n will be chosen large enough) in

Lemma 6.7 we arrive at

Eϕ(L) = q(L)Iϕ(L) +R. (78)

Also, we have

|R| ≤
∫ L

0

q(x)(|u(s)|2 + |ϕx(s)|2) ds+

∫ L

0

q(x)(|f2(s)|2 + |f1x(s)|2) ds

≤ C
eLn

n
‖F‖2H +

c′

n

∫ L

0

q′(s)[|u(s)|2 + |ϕx(s)|2] ds
(79)

Using inequalities (78) and (79) we conclude that there exists a positive con-
stant C such that ∫ L

0

Iϕ(s) ds ≤ CIϕ(L) + C ′‖F‖2H. (80)

provided n is large enough.

Step 3. Since that∫ +∞

−∞
|φ(ξ)|2 dξ ≤ C

∫ +∞

−∞
(ξ2 + η)|φ(ξ)|2 dξ ≤ C‖U‖H‖F‖H.

Substitution of inequalities (71)and (76) into (80) we get that

‖U‖2H ≤ C(|λ|4−2α + |λ|2−2α + 1)‖U‖H‖F‖H + C ′(|λ|2 + 1)‖F‖2H.

So we have
‖U‖H ≤ C|λ|4−2α‖F‖H as |λ| → ∞.

Then, using Theorem 5.2 with δ = 4− 2α one has conclusion of Theorem. The
proof is now complete.

7. Conclusions and future works

7.1. Conclusions. We have studied the dynamic boundary stabilization of the
wave system with dissipation law of fractional derivative type. Using a spectral
analysis we have proved a non-uniform stability. Using Arendt-Batty Theorem,
we have proved the strong asymptotic stability. If η > 0, using a frequency
domain approach, we prove some polynomial energy decay rate depending on
parameter α.
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7.2. Future works. In Theorems 4.3, 6.1, 6.5, 6.6, our approach can be gener-
alized to multi-dimensional spaces. But it is difficult to use spectral analysis to
generalize Theorem 5.4. Instead we can show the lack of exponential stability
by proving that the second condition in Theorem 5.1 does not hold.

We can extend (paper in preparation) the results of this paper to more
general measure density instead of (1). Indeed we can consider

∫∞
−∞

µ2(ξ)
λ+η+ξ2

dξ

as Stieltjes function. By the help of Abelian/Tauberian theorem of Karamata,
we obtain many interesting cases that is resolvent growth slower or faster. We
use a general Borichev–Tomilov theorem (see [6]).

It seems to be interesting to study a global decaying solutions of hyperbolic
systems (strong and weakly) under control of fractional derivative type. We
think that the interaction of the hyperbolicity (order of multiplicity) and the
number of dissipative terms have an effect on the result.

It seems to be interesting to develop some energy methods to treat nonlinear
evolution under control of fractional derivative type. The problem of global
existence and energy decay for the following wave equation of Kirchhoff type is
open

ϕtt(x, t)−M(‖ϕx‖2L2(0,L))ϕxx(x, t) = 0 in (0, L)× (0,+∞)

ϕ(0, t) = 0 in (0,+∞)

M(‖ϕx‖2L2(0,L))ϕx(L, t) = −γ∂α,ηt ϕ(L, t) in (0,+∞)

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x) in (0, L).
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North-Holland 1973.

[10] Caputo, M. and Mainardi, F., A new dissipation model based on memory
mechanism. Pure Appl. Geophys. 91 (1971), 134 – 147.

[11] Cavalcanti, M. M., Cavalcanti V. D. and Lasiecka, I., Well-posedness and opti-
mal decay rates for the wave equation with nonlinear boundary damping-source
interaction. J. Diff. Equ. 236 (2007), 407 – 459.

[12] Chen, G., Control and stabilization for the wave equation in a bounded domain.
Part I. SIAM J. Control Optim., 17 (1979), 66 – 81.

[13] Choi, J. U. and Maccamy, R. C., Fractional order Volterra equations with
applications to elasticity. J. Math. Anal. Appl. 139 (1989), 448 – 464.

[14] Desch, W. and Miller, R. K., Exponential stabilization of Volterra integral
equations with singular kernels. J. Integral Equ. Appl. 1 (1988), 397 – 433.

[15] Haraux, A., Two remarks on dissipative hyperbolic problems. In: Nonlinear
Partial Differential Equations and Their Applications. Collège de France Sem-
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