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Stabilization of a Drude/Vacuum Model

Serge Nicaise

Abstract. We analyze the stability of a dispersive medium immersed in vacuum
(with Silver–Müller boundary condition in the exterior boundary) or vice versa. The
dispersive medium model corresponds to the coupling between Maxwell’s system and a
first order ordinary differential equation (of parabolic type). For a dispersive medium
coupled with vacuum, the ordinary differential equation will be set in a subset of
the full domain. We show that this model is well-posed and is strongly stable in a
closed subspace of the energy space. We further identify some sufficient conditions
that guarantee the exponential or polynomial decay of the associated energy in this
subspace.

Keywords. Dispersive media, stabilization

Mathematics Subject Classification (2010). Primary 35L15, secondary 93D15

1. Introduction

Dispersion is a well-known phenomenon that is characterized by the fact that
all frequencies of a polychromatic wave do not travel at the same speed through
the medium. One example is the Maxwell–Drude (or cold plasma) model
[10,18–20,28,29] given by

ε0ε∞Et − curlH = −J in Qm = Ωm × (0,+∞),

µ0Ht + curlE = 0 in Qm,

Jt + γJ = ε0ω
2
pE in Qm,

(1.1)

where E (resp. H) is the electric (resp. magnetic) field and J is the dipolar
current vector. The different positive parameters are ε0 the permittivity of the
free space, µ0 the permeability of the free space, ε∞ the permittivity at infinite
frequency, ωp the plasma frequency of the electrons and γ the electron-neutral
collision frequency. Here and below Et = ∂E

∂t
is the partial derivative of E with
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respect to the time t, while in this introduction n denotes the unit outer normal
vector along the boundary. Note that by renormalisation, we can assume that
ε0 = µ0 = 1.

In practical applications, the dispersive medium corresponds to a piece of
metal (gold or silver for instance). In this paper we are interested in two partic-
ular situations: first the case when a “small” piece of metal is immersed in the
whole free space, the resulting system being a coupling between the Maxwell–
Drude equation in Ωm with Maxwell’s system in R3 \Ωm; second, the case when
a “large” piece of metal contains vacuum. In both cases, to reduce the problem
to a bounded (or relatively small) domain (for computational purposes for in-
stance), two commonly used strategies can be mentioned: either use absorbing
boundary conditions or use a perfectly matched layer. Here we restrict ourselves
to the first strategy. In the first case we replace the problem set in the whole
space to a bounded domain Ω containing Ωm with absorbing boundary condi-
tions on the exterior boundary Γ, see [28, §6.2]. Therefore the final problem is
the next one

εEt − curlH = −1Ωm J̃ in Q = Ω× (0,+∞),

Ht + curlE = 0 in Q,

Jt + γJ = ω2
pE in Qm,

ET −H × n = 0 on Γ× (0,+∞),

E(x, 0) = E0(x), H(x, 0) = H0(x) in Ω,

J(x, 0) = J0(x) in Ωm,

(1.2)

where J̃ is any extension of J outside Ωm, 1Ωm is the characteristic function of
Ωm (equal to 1 in Ωm and 0 elsewhere),

ε =

{
ε∞ in Ωm,
1 in Ωe = Ω \ Ω̄m,

and ET = n× (E×n) is the tangential component of E along Γ× (0,+∞). The
boundary condition on Γ× (0,+∞) corresponds to the so-called Silver–Müller
boundary condition.

In the second situation, Ωe corresponds to vacuum, while we truncate the
original domain Ωm into a smallest one (still called Ωm for simplicity) and again
imposed Silver–Müller boundary condition on the boundary Γ of the truncated
domain. At the end, we arrive at the same problem (1.2), but contrary to the
first case, Ωm here surrounds Ωe.

Before going on, we notice that the original problem (1.2) implies some hid-
den constraints on the divergence of H, E and J . Namely, the second equation
in (1.2) yields

(divH)t = 0 in Q,
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therefore if we assume the divergence free property of H at t = 0, it will remain
valid for all t > 0. Similarly the first equation in (1.2) implies that

(divE)t = 0 in Qe = Ωe × (0,+∞),

consequently the divergence free property of E in Ωe at t = 0 will guarantee the
same property at all t > 0. Finally the first and third equations in (1.2) imply
that

ε∞(divE)t + div J = 0 in Qm,

(div J)t + γ div J = ω2
p divE in Qm,

or in matrix form
Dt = MD in Qm,

where D = (divE, div J)> and M is the 2× 2 matrix

M =

(
0 −ε−1

∞
ω2
p −γ

)
.

Hence for all t ≥ 0, one has D(t, ·) = etMD(t = 0, ·) and consequently if E and J
are divergence free in Ωe at t = 0, they will remain divergence free forever.

The model (1.1) is the simplest one among Maxwell’s equations for disper-
sive media, see [28] and it was shown in [24, Theorem 4.12] that it is poly-
nomially stable, namely that its energy decays like t−1 for sufficiently smooth
initial data. Mathematically it corresponds to the coupling between Maxwell’s
system in E and H with a first order ordinary differential equation of parabolic
type in J, and this last equation is responsible of this decay. On the other
hand, the full Maxwell system in Ω with the Silver–Müller boundary condition
(corresponding to (1.2) with Ωm = ∅) is exponentially stable under some ge-
ometrical conditions on Ω, see [15, 16, 26]. Therefore the natural question to
raise is whether the system (1.2) is stable or not, and if yes, determine the
decay rate of its energy. The main goal of this paper is to answer to these
questions. The strong stability (into a closed subspace of the energy space) is
obtained with the help of Arendt–Batty/Lyubich–Vũ theorem [2,22]. Here the
main difficulty relies on the non-compactness of the resolvent of the associated
operator, but eliminating some variables and perturbating the system, we can
fall into a compact perturbation argument. Our decay results are based on a
frequency domain approach [7, 13,27] and use the exponential decay of the full
Maxwell system with the Silver–Müller boundary condition.

The paper is organized as follows: in Section 2 we introduce some nota-
tions, some function spaces and prove some equivalences of norms. Section 3 is
devoted to the well-posedness of the problem, that is proved using semi-group
theory. The strong stability of the system is analyzed in Section 4, and finally
Section 5 is devoted to the exponential or polynomial decay of the energy under
appropriate sufficient conditions.
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In the whole paper, the notation A . B is used for the estimate A ≤ C B,
where C is a generic constant that does not depend on A and B. The notation
A ∼ B means that both A . B and B . A hold.

2. Preliminaries
In the whole paper Ω will be a non empty bounded and simply connected
domain of R3 with a connected and Lipschitz boundary Γ. As suggested in the
introduction, we consider two cases, illustrated in Figures 1 and 2 respectively:
Case A: We fix Ωm a non empty open subset of Ω with a Lipschitz and con-

nected boundary Σ such that Ω̄m ⊂ Ω and set Ωe = Ω \ Ω̄m, whose
boundary is made of two connected components Σ and Γ.

Case B: We fix Ωe a non empty open subset of Ω with a Lipschitz and con-
nected boundary Σ such that Ω̄e ⊂ Ω and set Ωm = Ω \ Ω̄e, whose
boundary is made of two connected components Σ and Γ.
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Figure 1: Illustration of the Case A
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Figure 2: Illustration of the Case B

In both cases, for a function u from Ω to C, we will denote by um (resp. ue), its
restriction to Ωm (resp. Ωe).

For a subset O of Ω or of its boundary and a real number s, Hs(O) is the
usual Sobolev space defined in O and for shortness we denote Hs(O) = Hs(O)3

and L2(O) = L2(O)3. Their norm (resp. semi-norm) will be denoted by ‖ · ‖s,O
(resp. | · |s,O); for s = 0, we drop the index 0 and for O = Ω, we also drop
the index Ω. The duality pairing between H−

1
2 (Σ) and H

1
2 (Σ) will be denoted

by 〈· ; · 〉Σ. As usual H1
0 (Ω) is the subspace of H1(Ω) with a zero trace on the

boundary. The unit outer normal vector along ∂Ω (resp. ∂Ωm, ∂Ωe) defined
almost everywhere will be denoted by n (resp. nm, ne).

We recall that
H(div,Ω) = {U ∈ L2(Ω) : div U ∈ L2(Ω)},
H(curl,Ω) = {U ∈ L2(Ω) : curl U ∈ L2(Ω)},
H0(curl,Ω) = {U ∈ H(curl,Ω) : U × n = 0 on ∂Ω},

XN(Ω) = H0(curl,Ω) ∩H(div,Ω),

W = {U ∈ H(curl,Ω) : U × n ∈ L2(Γ)},
W0 = {U ∈ H(curl,Ω) ∩H(div,Ω) : U × n ∈ L2(Γ)},
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are Hilbert spaces with their natural norm, in particular

‖U‖2
W = ‖U‖2 + ‖ curlU‖2 + ‖U × n‖2

Γ, ∀U ∈ W,
‖U‖2

W0
= ‖U‖2 + ‖ curlU‖2 + ‖ divU‖2 + ‖U × n‖2

Γ, ∀U ∈ W0.

Recall that the main theorem of [6] states that C∞(Ω̄)3 is dense in W and by a
density argument (see [25, Lemma 2.2]) we deduce that the next Green formula
holds:∫

Ω

(
curlE · H̄ − E · curl H̄

)
dx =

∫
Γ

ET · H̄ × n dσ, ∀E,H ∈ W. (2.1)

Furthermore, according to [8, Theorem 2], W0 is embedded into H
1
2 (Ω). From

our assumptions on Ω, we deduce the

Lemma 2.1. The semi-norm

|U |W0 = (‖ curl U‖2 + ‖ div U‖2 + ‖U × n‖2
Γ)

1
2 , ∀U ∈ W0,

is a norm in W0 equivalent to the natural one. In other words, we have

‖U‖ . |U |W0 , ∀U ∈ W0.

Proof. The proof is based on a contradiction argument, the compact embedding
ofW0 into L2(Ω) and the fact that the sole element U ∈ W0 such that |U |W0 = 0
is U = 0 as the boundary of Ω is connected (see [1, Proposition 3.18]).

In Case B, the boundary of Ωe is connected, and the space

KN(Ωe) = {U ∈ XN(Ωe) : curlU = 0 and divU = 0 in Ωe}

is then reduced to {0} (see [1, Proposition 3.18]). On the contrary in Case A,
as the boundary of Ωe is not connected, the space KN(Ωe) is not reduced to {0}
(see again [1, Proposition 3.18]), but is one-dimensional and spanned by ∇q0,
where q0 ∈ H1(Ωe) satisfies 

∆q0 = 0 in Ωe,

q0 = 1 in Σ,

q0 = 0 in Γ.

As Green’s formula yields

〈∇q0 · ne; 1〉Σ = 〈∇q0 · ne; q0〉Σ =

∫
Ωe

|∇q0|2 dx, (2.2)
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and since q0 is not identically equal to 0, we deduce that

〈∇q0 · ne; 1〉Σ > 0. (2.3)

For Σ smooth enough, this property can be alternatively obtained using Hopf
Lemma.

Below we also extend the function q0 by 1 in Ωm and denote this extension
by ϕ0, namely

ϕ0 =

{
1 in Ωm,
q0 in Ωe.

(2.4)

Clearly ϕ0 belongs to H1
0 (Ω).

For further uses, let us also introduce the spaces

Ỹτ = {U ∈ H(curl,Ω)| divUe ∈ L2(Ωe), divUm ∈ L2(Ωm) and U × n ∈ L2(Γ)},
Yτ = {U ∈ Ỹτ |〈Ue · n; 1〉Σ = 0},

that are Hilbert spaces with norm

‖U‖2
Yτ = ‖U‖2 + ‖ curlU‖2 + ‖ divUm‖2

Ωm + ‖ divUe‖2
Ωe + ‖U ×n‖2

Γ, ∀U ∈ Ỹτ .

Note that Yτ = Ỹτ in Case B, and that the space Yτ differs from the space
Y (Ω) defined in [9, p. 811] by the boundary conditions on Γ. Nevertheless, the
next Lemma gives a result similar to the one from [9, Lemma 2.2].

Lemma 2.2. The semi-norm

|U |Yτ =
(
‖Um‖2

Ωm+‖ curlU‖2+‖ divUm‖2
Ωm+‖ divUe‖2

Ωe+‖U×n‖
2
Γ

) 1
2 , ∀U ∈Yτ ,

is a norm in Yτ equivalent to the natural one. In other words, we have

‖Ue‖Ωe . |U |Yτ , ∀U ∈ Yτ . (2.5)

Proof. Fix U ∈ Yτ . As it is not divergence free in Ω, we subtract from it ∇ϕ,
with ϕ ∈ H1

0 (Ω) solution of∫
Ω

∇ϕ · ∇χdx =

∫
Ω

U · ∇χdx, ∀χ ∈ H1
0 (Ω).

As a consequence, V = U − ∇ϕ is divergence free in Ω, hence belongs to W0

and owing to Lemma 2.1 we have

‖V ‖ . |V |W0 . ‖ curlU‖+ ‖U × n‖Γ. (2.6)

Furthermore, in Case A, according to [9, Lemma 2.1], we have the estimate

|ϕ|1,Ωe . ‖ divUe‖Ωe + ‖ϕ‖
H

1
2 (Σ)/C

+ |〈Ve · n; 1〉Σ| , (2.7)
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where we recall that ‖ϕ‖
H

1
2 (Σ)/C

= infc∈C ‖ϕ − c‖
H

1
2 (Σ)

. On the contrary, in
Case B, we clearly have

|ϕ|1,Ωe . ‖ divUe‖Ωe + ‖ϕ‖
H

1
2 (Σ)/C

,

so that (2.7) still holds, since 〈Ve · n; 1〉Σ =
∫

Ωe
div Ve dx = 0. As

‖Ue‖Ωe.‖Ve‖Ωe+|ϕ|1,Ωe
.‖ curlU‖+‖U×n‖Γ+‖ divUe‖Ωe+‖ϕ‖H 1

2 (Σ)/C
+|〈Ve ·n;1〉Σ| , (2.8)

it remains to estimate the two last terms of this right-hand side. For the last
term, as mentioned before it is zero in Case B, while in Case A, as V is divergence
free, we have

〈Ve · n; 1〉Σ = 〈Ve · n; q0〉Σ =

∫
Ωe

Ve · ∇q0 dx,

and by Cauchy–Schwarz’s inequality, we deduce that |〈Ve · n; 1〉Σ| . ‖Ve‖Ωe .
Thanks to (2.6), we obtain

|〈Ve · n; 1〉Σ| . ‖ curlU‖+ ‖U × n‖Γ. (2.9)

For the term ‖ϕ‖
H

1
2 (Σ)/C

, by the trace theorem in H(curl,Ωm) (see [11,
Theorem I.2.11]), we have ‖ϕ‖

H
1
2 (Σ)/C

. ‖∇Tϕ‖H− 1
2 (Σ)

. ‖U × n‖
H− 1

2 (Σ)
+

‖V ×n‖
H− 1

2 (Σ)
. ‖U‖H(curl,Ωm) +‖V ‖H(curl,Ωm). Again by (2.6) and the fact that

curlV = curlU , we obtain

‖ϕ‖
H

1
2 (Σ)/C

. ‖Um‖Ωm + ‖ curlU‖+ ‖U × n‖Γ. (2.10)

The two estimates (2.9) and (2.10) in (2.8) directly lead to (2.5).

3. Well-posedness of the system

To prove an existence result for system (1.2), we re-write it in the following
framework: {

Ut = AU,
U(0) = U0,

(3.1)

where U is the vectorial unknown

U =

 E
H
J

 ,
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where E,H ∈ L2(Ω) and J ∈ L2(Ωm), and for smooth enough E, H and J

AU =

 ε−1(curlH − 1Ωm J̃)
− curlE
−γJ + ω2

pE

 . (3.2)

The existence of a solution to (3.1) is obtained by using semi-group the-
ory in the appropriate Hilbert setting described here below (see for instance
[17, 23]). The considerations on the divergence properties on E,H and J from
the introduction suggest introducing

J(Ω) = {U ∈ L2(Ω)| divU = 0},
Jm(Ω) = {U ∈ L2(Ω)| divU = 0 in Ωm ∪ Ωe},

and the Hilbert space

H = Jm(Ω)× J(Ω)× J(Ωm),

with the inner product(
(E,H, J), (E ′, H ′, J ′)

)
H :=

∫
Ω

(εE · Ē ′ +H · H̄ ′) dx+

∫
Ωm

ω−2
p J · J̄ ′ dx,

∀ (E,H, J), (E ′, H ′, J ′) ∈ H.
We now define the operator A as follows:

D(A) :=

{
(E,H, P ) ∈ H

∣∣∣∣ E,H ∈ W satisfying the Silver–Müller
boundary condition ET−H×n=0 on Γ.

}
(3.3)

and for all U = (E,H, P ) ∈ D(A), AU is given by (3.2).
Let us check that A generates a C0-semigroup of contractions on H.

Theorem 3.1. The operator A defined by (3.2) with domain (3.3) generates
a C0-semigroup of contractions (T (t))t≥0 on H. Therefore for all U0 ∈ H,
problem (3.1) has a weak solution U ∈ C([0,∞), H) given by U(t) = T (t)U0,
for all t ≥ 0. If moreover U0 ∈ D(Ak), with k ∈ N∗, problem (3.1) has a strong
solution U ∈ C([0,∞), D(Ak)) ∩ C1([0,∞), D(Ak−1)).

Proof. It suffices to show that A is a maximal dissipative operator, then by
Lumer–Phillips’ theorem it generates a C0-semigroup of contractions (T (t))t≥0

on H.
Let us first show the dissipativeness. Let U = (E,H, J)> ∈ D(A) be fixed.

Then by the definition of A, we have

(AU,U)H=

∫
Ω

(
(curlH−1Ωm J̃)·Ē− curlE ·H̄

)
dx+

∫
Ωm

ω−2
p (−γJ+ ω2

pE)·J̄ dx.
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Taking the real part of this identity, we find

<(AU,U)H = <
∫

Ω

(
curlH · Ē − curlE · H̄

)
dx− ω−2

p γ

∫
Ωm

|J |2 dx.

Using Green’s formula (2.1) and the Silver–Müller boundary condition
ET −H × n = 0 on Γ, the previous identity becomes

<(AU,U)H = −ω−2
p γ

∫
Ωm

|J |2 dx−
∫

Γ

|E × n|2 dσ ≤ 0. (3.4)

This shows that A is dissipative.
Let us go on with the maximality. Let λ > 0 be fixed. For (F,G,R)> ∈ H,

we look for U = (E,H, J)> ∈ D(A) such that

(λI −A)U = (F,G,R)>. (3.5)

According to (3.2) this is equivalent to

ελE − curlH + 1Ωm J̃ = εF, (3.6)
λH + curlE = G, (3.7)

λJ + γJ − ω2
pE = R. (3.8)

Assume for the moment that U exists. Then the first and second equations
allow to eliminate J and E since they are equivalent to

J =
1

λ+ γ
(ω2

pE +R) in Ωm, (3.9)

E = α(λ) curlH + α(λ)

(
εF − 1Ωm

1

λ+ γ
R̃

)
in Ω, (3.10)

where

α(λ) =

{ (
ε∞λ+

ω2
p

λ+γ

)−1

in Ωm,
λ−1 in Ωe.

(3.11)

Thus multiplying (3.7) by a test function H̄ ′ ∈ W and using Green’s formula
(2.1), we obtain∫

Ω

(
λH · H̄ ′ + E · curl H̄ ′

)
dx+

∫
Γ

ET · (H̄ ′ × n) dσ =

∫
Ω

G · H̄ ′ dx.

Using the Silver–Müller boundary condition and the expression (3.10), we arrive
at ∫

Ω

(
λH ·H̄ ′+α(λ) curlH · curlH̄ ′

)
dx+

∫
Γ

(H×n)·(H̄ ′×n) dσ=Lλ(H
′), (3.12)
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for all H ′ ∈ W , where we have set

Lλ(H
′) =

∫
Ω

(
G · H̄ ′ − α(λ)

(
εF − 1Ωm

1

λ+ γ
R̃

)
· curl H̄ ′

)
dx. (3.13)

As H is divergence free, we can add to the left-hand side of (3.12) the term∫
Ω

divH div H̄ ′ dx,

that is zero and find an augmented formulation:

aλ(H,H
′) = Lλ(H

′), ∀H ′ ∈ W0, (3.14)

where for all H,H ′ ∈ W0, we have set

aλ(H,H
′) =

∫
Ω

(
λH · H̄ ′ + α(λ) curlH · curl H̄ ′ + divH div H̄ ′

)
dx

+

∫
Γ

(H × n) · (H̄ ′ × n) dσ.

(3.15)

Clearly Lλ is a continuous and linear form on W0, while aλ is a continuous,
sesquilinear and coercive form on W0. Hence by Lax-Milgram lemma, problem
(3.14) has a unique solution H ∈ W0. As G is divergence free in Ω, H will be
also divergence free. Indeed for any h ∈ L2(Ω), as test-function in (3.14), we
take H ′ = ∇ψ, with ψ ∈ H1

0 (Ω) the unique variational solution of

∆ψ − λψ = h in Ω.

With such a choice, we find
∫

Ω

(
λH · ∇ψ̄ + divH∆ψ̄

)
dx =

∫
Ω
G · ∇ψ̄ dx.

As G is divergence free, by Green’s formula, the previous identity becomes∫
Ω

divH
(
−λψ̄ + ∆ψ̄

)
dx =

∫
Ω

divH h̄ dx = 0,

and since h is arbitrary in L2(Ω), we deduce that divH = 0 in Ω. Now since
any element H ′ of W can be written as

H ′ = H0 +∇ψ,

with ψ ∈ H1
0 (Ω) and H0 ∈ W0, (3.14) remains valid for test-functions in W ,

namely we have
aλ(H,H

′) = Lλ(H
′), ∀H ′ ∈ W. (3.16)

We would like to come back to problem (3.5), with H in hand. We thus
define E by (3.10) that clearly belongs to L2(Ω). Similarly we define J by (3.9)



Stabilization of a Drude/Vacuum Model 359

that belongs to L2(Ωm). First we notice that using (3.10) in (3.16), we get
equivalently∫

Ω

(
λH·H̄ ′+E ·curlH̄ ′

)
dx+

∫
Γ

(H×n)·(H̄ ′×n) dσ=

∫
Ω

G·H̄ ′dx, ∀H ′∈W. (3.17)

Hence taking test-functions H ′ ∈ D(Ω)3, we find that

λH + curlH = G in D′(Ω)3.

This implies that curlH belongs to L2(Ω) and that (3.5) holds. With this
regularity in hand, in (3.17), taking test-functions H ′ ∈ H1(Ω), using Green’s
formula (I.2.22) of [11] and the previous identity, we find that∫

Γ

(H × n) · (H̄ ′ × n) dσ − 〈E;H ′ × n〉
H− 1

2 (Γ)−H
1
2 (Γ)

= 0, ∀H ′ ∈ H1(Ω).

This implies that
H × n = ET in H−

1
2 (Γ),

and, as E × n belongs to L2(Γ), H × n as well and the Silver–Müller boundary
condition holds.

The surjectivity of λI −A finally holds because (3.6) and (3.8) yield

ελ divE = ε divF = 0 in Ωe,

ελ divE + div J = ε divF = 0 in Ωm,

(λ+ γ) div J − ω2
p divE = divR = 0 in Ωm.

Hence E is clearly divergence free in Ωe. On the other hand the second and
third identity can be written in the matrix form(

ελ 1
−ω2

p λ+ γ

)(
divE
div J

)
=

(
0
0

)
in Ωm.

That leads to divE = div J = 0 in Ωe since the determinant of the above 2× 2
matrix is equal to ελ(λ+ γ) + ω2

p and is clearly positive.

4. Strong stability

One simple way to prove the strong stability of (3.1) is to use the following
theorem due to Arendt–Batty and Lyubich–Vũ (see [2, 22]).

Theorem 4.1 (Arendt–Batty/Lyubich–Vũ). Let X be a reflexive Banach space
and (T (t))t≥0 be a C0-semigroup generated by A on X. Assume that (T (t))t≥0

is bounded and that no eigenvalues of A lie on the imaginary axis. If σ(A)∩ iR
is countable, then (T (t))t≥0 is stable.
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Since the resolvent of our operator is not compact, we have to analyze the
full spectrum on the imaginary axis. This is done in the next Lemmas.

Lemma 4.2. For all ξ ∈ R∗ := R \ {0}, we have

ker(iξ −A) = {0}.

Furthermore in Case A, 0 is an eigenvalue of A whose associated eigenvector
is (∇ϕ0, 0, 0)>, where ϕ0 is defined by (2.4), otherwise kerA = {0}.

Proof. Let ξ ∈ R and U = (E,H, J)> ∈ D(A) be such that (iξ −A)U = 0, or
equivalently

εıξE − curlH + 1Ωm J̃ = 0, (4.1)
ıξH + curlE = 0, (4.2)

(iξ + γ)J − ω2
pE = 0. (4.3)

By the dissipativeness of A (identity (3.4)), we get

J = 0 in Ωm, (4.4)
E × n = 0 on Γ. (4.5)

By (4.3) and the Silver–Müller boundary condition, we find

E = 0 in Ωm, (4.6)
H × n = 0 on Γ. (4.7)

We remark that (4.1) is now equivalent to

ıξE − curlH = 0, (4.8)

since, by (4.6), εE = E in Ω and recalling (4.4).
Now for ξ 6= 0, by (4.8), E = 1

iξ
curlH, and by (4.2), we arrive at

−ξ2H + curl curlH = 0 in Ω.

As (4.2) and (4.6) lead to H = 0 in Ωm, by Holmgren’s theorem, we conclude
that H = 0 in Ω and hence E = 0 in Ω.

In the case ξ = 0, owing to (4.4), the identities (4.1) and (4.2) reduce to

curlE = curlH = 0.

And by (4.5) and (4.7) (recalling that Ω is simply connected), there exist ϕ, ψ ∈
H1

0 (Ω) such that
E = ∇ϕ, H = ∇ψ.
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By the divergence free property of H, we directly get ψ = 0. For ϕ, by (4.6),
there exists a constant c ∈ C such that

ϕ = c in Ωm.

And by the divergence free property of E in Ωe, we deduce that ϕ = cϕ0 in
Case A, otherwise ϕ = 0.

Lemma 4.3. For all ξ ∈ R∗, iξ −A is surjective.

Proof. For any ξ ∈ R∗ and any (F,G,R)> ∈ H, we look for a unique solution
U = (E,H, J)> ∈ D(A) to

(iξ −A)U = (F,G,R)>,

or equivalently to (compare with (3.6)–(3.8))

εıξE − curlH + 1Ωm J̃ = εF, (4.9)
ıξH + curlE = G, (4.10)

ıξJ + γJ − ω2
pE = R. (4.11)

Following the arguments of the proof of Theorem 3.1, if a solution U ∈ D(A)
of (4.9)–(4.11) exists, then H belongs to W0 and is solution of

aıξ(H,H
′) = Lıξ(H

′), ∀H ′ ∈ W0, (4.12)

where aλ and Lλ have been defined in (3.15) and (3.13). Dropping the term
ıξH · H̄ ′ in aıξ, we get the sesquilinear form

a0,ıξ(H,H
′)=

∫
Ω

(
α(ıξ) curlH ·curlH̄ ′+ divH divH̄ ′

)
dx+

∫
Γ

(H×n)·(H̄ ′×n) dσ.

Multiplying a0,ıξ(H,H
′) by ıξeiθ with θ ∈ (−π

2
, π

2
), we get the form

b(H,H ′) = ıξeiθa0,ıξ(H,H
′),

and check that it is coercive for an appropriated choice of θ. Owing to
Lemma 2.1, it suffices to see that there exists θ ∈ (−π

2
, π

2
) such that

<b(H,H) ≥ C(ω)|H|2W0
, ∀H ∈ W0,

for some positive constant C(ω) (that may depend on ω). To obtain this esti-
mate, we only need to impose that

<
(
ıξeiθ

)
> 0 and <

(
ıξeiθα(ıξ)

)
> 0,
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that, in view of the definition (3.11) of α(ıξ), is equivalent to (as θ ∈ (−π
2
, π

2
))

<
(
ıξeiθ

)
> 0 and <

 ıξeiθ

εıξ +
ω2
p

ıξ+γ

 > 0.

After some computations, these two conditions are equivalent to

ξ sin θ < 0, ω2
pξγ sin θ < ξ2(2εγ2 − ω2

p) cos θ.

In the case ξ > 0, they yield the constraints

−π
2
< θ < min{0, arctan t0},

with t0 =
ξ(2εγ2−ω2

p)

ω2
pγ

; while in the case ξ < 0, they yield the constraints

max{0, arctan t0} < θ <
π

2
.

In both cases, such a θ exists.
Now we define the bounded operators B, A0,ıξ and Aıξ from W0 into W ′

0 as
follows:

〈BH,H ′〉 = b(H,H ′),

〈A0,ıξH,H
′〉 = a0,ıξ(H,H

′),

〈AıξH,H ′〉 = aıξ(H,H
′),

 ∀H,H ′ ∈ W0.

Coming back to the coerciveness of b, by Lax–Milgram Lemma, we deduce
that B is an isomorphism. Since ıξeiθ is different from 0, we get equivalently
that A0,ıξ is an isomorphism. But we notice that

Aıξ −A0,ıξ = ıξI,

where I is the identity operator. As W0 is compactly embedded into L2(Ω),
we deduce that Aıξ − A0,ıξ is a compact operator and consequently, Aıξ is a
Fredholm operator of index 0. Hence it will be an isomorphism if and only if it
is injective. Let us then finally show that

kerAıξ = {0}.

Indeed let H ∈ kerAıξ. Then it satisfies

aıξ(H,H
′) = 0, ∀H ′ ∈ W0.

Then the arguments of Theorem 3.1 show that if we define E (resp. J) by (3.10)
(resp. (3.9)) with λ = ıξ and (F,G,R) = 0, then the triple (E,H, J) belongs to
D(A) and to ker(ıξ −A). By Lemma 4.2, we conclude that H = 0.

Once Aıξ is an isomorphism from W0 into W ′
0, problem (4.12) has a unique

solution H ∈ W0, and again the arguments of Theorem 3.1 allow to show that
if we define E (resp. J) by (3.10) (resp. (3.9)) with λ = ıξ, then the triple
(E,H, J) belongs to D(A) and satisfies (4.9)–(4.11).
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To characterize the range of A, we introduce

H0 := {(E,H, J)> ∈ H : 〈Ee · ne; 1〉Σ = 0}.

Note that H0 = H in Case B, otherwise H0 is a closed subspace of H of codi-
mension 1.

Lemma 4.4. The range R(A) of A is equal to H0.

Proof. Let us first notice that R(A) is included in H0 in Case A. Indeed, for
U = (E,H, J)> ∈ D(A), AU belongs to H0 if and only if

〈(curlH − 1Ωm J̃)e · ne; 1〉Σ = 0,

or equivalently 〈(curlH)e · ne; 1〉Σ = 0. As curlH belongs to H(div,Ω), we
deduce that

〈(curlH)e · ne; 1〉Σ = 〈(curlH)m · ne; 1〉Σ = −
∫

Ωm

div(curlH) dx = 0,

this last identity following from Green’s formula and recalling that ne is pointing
outside Ωe.

Now for any (F,G,R)> ∈ H0, we look for a solution U = (E,H, J)> ∈ D(A)
to −AU = (F,G,R)> or equivalently to (compare with (3.6)–(3.8))

− curlH + 1Ωm J̃ = εF,

curlE = G,

γJ − ω2
pE = R.

Since neither E nor H can be eliminated, we perturb this problem into

− curlH + 1Ωm J̃ = εF, (4.13)
H + curlE = G, (4.14)

γJ − ω2
pE = R. (4.15)

In other words, we solve BU = (F,G,R)>, where B is defined by D(B) = D(A)
and

BU = −AU +RU, ∀U ∈ D(A),

with
R(E,H, J)> = (0, H,0)>.

If we show that B is an isomorphism from D(A) ∩H0 into H0, then I−RB−1

is a Fredholm operator from H0 into itself of index 0, since RB−1 is a compact
operator from H0 into itself because W0 is compactly embedded into L2(Ω).
Hence I−RB−1 is an isomorphism if and only if it is injective. Now we remark
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that V ∈ H0 belongs to ker(I − RB−1) if and only if U = B−1V belongs to
ker(B−R) = kerA. By Lemma 4.2, we deduce that U = 0 in Case B, while in
Case A, we deduce that U = c(∇ϕ0, 0, 0)>, for some c ∈ C. As U is also in H0,
due to (2.3) we deduce that c = 0. Consequently I −RB−1 is an isomorphism
from H0 into itself, in other words, for all (F,G,R)> ∈ H0, there exists a unique
solution V to

(I−RB−1)V = (F,G,R)>,

and therefore U = B−1V belongs to D(A) and satisfies

−AU = (B −R)U = (F,G,R)>,

which proves that R(A) = H0.
It then remains to analyze the operator B. For system (4.13)–(4.15), as-

suming that a solution (E,H, J) exists, we first eliminate J by the relation

J =
1

γ
(ω2

pE +R), (4.16)

to obtain

− curlH + 1Ωm

ω2
p

γ
Ẽ = εF − 1Ωm

1

γ
R̃.

Multiplying this identity by Ē ′ ∈ Yτ , integrating in Ω and using Green’s for-
mula (2.1), we get

−
∫

Ω

H · curl Ē ′ dx+

∫
Γ

(H×n) · Ē ′T dσ+

∫
Ωm

ω2
p

γ
E · Ē ′ dx =

∫
Ω

(εF −1Ωm

1

γ
R̃) ·E ′ dx

Using (4.14) and the Silver–Müller boundary condition, we arrive at∫
Ω

curlE · curl Ē ′ dx+

∫
Γ

ET · Ē ′T dσ +

∫
Ωm

ω2
p

γ
E · Ē ′ dx

=

∫
Ω

(
(εF − 1Ωm

1

γ
R̃) · E ′ +G · curl Ē ′

)
dx

As E is divergence free in Ωm and Ωe, we can add the terms
∫

Ωm
divEm div Ē ′m dx

+
∫

Ωe
divEe div Ē ′e dx, and find

b(E,E ′) = L(E ′), ∀E ′ ∈ Yτ , (4.17)

where for all E,E ′ ∈ Yτ , we set

b(E,E ′) =

∫
Ω

curlE · curl Ē ′ dx+

∫
Γ

ET · Ē ′T dσ +

∫
Ωm

ω2
p

γ
E · Ē ′ dx

+

∫
Ωm

divEm div Ē ′m dx+

∫
Ωe

divEe div Ē ′e dx,

L(E ′) =

∫
Ω

(
(εF − 1Ωm

1

γ
R̃) · E ′ +G · curl Ē ′

)
dx.
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Since B(E,E) & |E|2Yτ , by Lemma 2.2, the sesquilinear form b is coercive in Yτ ,
and by Lax–Milgram Lemma, problem (4.17) has a unique solution E ∈ Yτ . As
before, from this solution we have to come back to the original problem (4.13)–
(4.15). But first we have to check that E is divergence free in Ωm and Ωe. To
do so, we first notice that, in Case A, (4.17) remains valid for any test-functions
E ′ ∈ Ỹτ ; in other words,

b(E,E ′) = L(E ′), ∀E ′ ∈ Ỹτ . (4.18)

Indeed in Case A, any E ′ ∈ Ỹτ can be splitted up as

E ′ = F + δ∇ϕ0,

where δ ∈ C is chosen such that 〈Fe · n; 1〉Σ = 0, which yields

δ =
〈E ′e · n; 1〉Σ
〈∇ϕ0 · n; 1〉Σ

.

As ∇ϕ0 belongs to Ỹτ , we deduce that F is in Yτ . On one hand, as ∇ϕ0 is zero
on Ωm, one sees that b(E,∇ϕ0) = 0, on the other hand,

L(∇ϕ0) = ε

∫
Ωe

F · ∇ϕ0 dx = −ε
∫

Ωe

divFϕ0 dx+ 〈Fe · n; 1〉Σ = 0,

recalling that (F,G,R)> belongs to H0. The first identity implies that
b(E,E ′) = b(E,F ), hence by (4.17) with the test function F ∈ Yτ and then
the second identity we obtain

b(E,E ′) = b(E,F ) = L(F ) = L(E ′),

and prove (4.18).
Now we chose different test functions in (4.18):

1) For an arbitrary h ∈ L2(Ωe), in (4.18), take E ′ ∈ Ỹτ defined by

E ′ =

{
0 in Ωm,
∇ϕe in Ωe,

where ϕe ∈ H1
0 (Ωe) is the unique solution of

∆ϕe = h in Ωe.

Then (4.18) reduces to∫
Ωe

divEeh dx =

∫
Ωe

F · ∇ϕe dx = −
∫

Ωe

divFϕe dx+ 〈Fe · n;ϕe〉Σ = 0.
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As h was arbitrary, we find that

divEe = 0 in Ωe. (4.19)

2) For an arbitrary h ∈ L2(Ωm), in (4.18), take E ′ ∈ Ỹτ defined by

E ′ =

{
∇ϕm in Ωm,

0 in Ωe,

where ϕm ∈ H1
0 (Ωm) is the unique solution of

∆ϕm −
ω2
p

γ
ϕm = h in Ωm.

Then (4.18) reduces to∫
Ωm

ω2
p

γ
E · ∇ϕ̄m dx+

∫
Ωm

divEm∆ϕ̄m dx =

∫
Ωm

(ε∞F −
1

γ
R) · ∇ϕ̄m dx.

Recalling that F and R are divergence free in Ωm and using Green’s formula,
we get

∫
Ωm

divEmh dx = 0, and as h was arbitrary, we find that

divEm = 0 in Ωm. (4.20)

Using the two properties (4.19) and (4.20) in (4.18) and defining H by (see
(4.14))

H = G− curlE,

that is clearly divergence free in Ω (as G is) and J by (4.16), the identity (4.18)
becomes∫

Ω

(−H · curlĒ ′+1Ωm J̃ ·Ē ′) dx+

∫
Γ

ET ·Ē ′T dσ =

∫
Ω

εF ·Ē ′ dx, ∀E ′∈ Ỹτ . (4.21)

First by taking test functions E ′ ∈ D(Ω)3, we find that

− curlH + 1Ωm J̃ = εF in D′(Ω)3.

And since 1Ωm J̃ , εF are in L2(Ω), we deduce that H belongs to H(curl,Ω). This
last identity and the definitions of H and J show that (4.13)–(4.15) hold. The
only missing properties to have (E,H, J) ∈ D(A) are H × n ∈ L2(Γ) and the
Silver–Müller boundary condition. To prove that properties, we take in (4.21)
test functions E ′ ∈ H1(Ω), by Green’s formula [11, Theorem I.2.11], and the
previous identity we find that

−〈(H × n); Ē ′〉
H− 1

2 (Γ)−H
1
2 (Γ)

+

∫
Γ

ET · Ē ′ dσ = 0.

This proves that (H×n) = ET in H−
1
2 (Γ), since E ′ is arbitrary in H

1
2 (Γ). This

proves the Silver–Müller boundary condition and as ET is in L2(Γ), H × n as
well. The proof of the Lemma is complete.
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This result suggests to introduce the operator A0 from H0 into itself defined
by D(A0) = D(A) ∩H0 and

A0U = AU, ∀U ∈ D(A0).

Corollary 4.5. The operator A0 is strongly stable.

Proof. The three previous Lemmas yield

σ(A0) ∩ iR = ∅.

As A0 is also dissipative in H0, we then conclude by Theorem 4.1.

5. Stability results

Our stability results are based on a frequency domain approach, namely for the
exponential decay of the energy we use the following result (see [27] or [13]):

Lemma 5.1. A C0-semigroup (etL)t≥0 of contractions on a Hilbert space H is
exponentially stable, i.e., satisfies

‖etLU0‖ ≤ C e−ωt‖U0‖H , ∀U0 ∈ H, ∀ t ≥ 0,

for some positive constants C and ω if and only if

ρ(L) ⊃
{
iβ
∣∣ β ∈ R

}
≡ iR, (5.1)

and
sup
β∈R
‖(iβ − L)−1‖ <∞, (5.2)

where ρ(L) denotes the resolvent set of the operator L.

On the contrary the polynomial decay of the energy is based on the following
result stated in [7, Theorem 2.4] (see also [4, 5, 21] for weaker variants).

Lemma 5.2. A C0-semigroup (etL)t≥0 of contractions on a Hilbert space satis-
fies

‖etLU0‖ ≤ C t−
1
` ‖U0‖D(L), ∀U0 ∈ D(L), ∀ t > 1,

as well as

‖etLU0‖ ≤ C t−1‖U0‖D(L`), ∀U0 ∈ D(L`), ∀ t > 1,

for some constant C > 0 and for some positive integer ` if (5.1) holds and if

lim sup
|β|→∞

1

β`
‖(iβ − L)−1‖ <∞. (5.3)
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Since condition (5.1) was already treated in the previous section, it remains
to analyze the behaviour of the resolvent on the imaginary axis. Let us start
with the exponential decay.

Lemma 5.3. Suppose that the Maxwell system with Silver–Müller boundary
condition: 

ε∂tE = curlH, ∂tH = − curlE in Ω× (0,+∞),

div(εE) = divH = 0 in Ω× (0,+∞),

ET −H × n = 0 on Γ× (0,+∞),

(5.4)

is exponentially stable. Then the resolvent of the operator of A0 satisfies condi-
tion (5.2).

Proof. We use a contradiction argument, i.e., we suppose that (5.2) is false.
Then there exist a sequence of real numbers ξn → +∞ and a sequence of
vectors Un = (En, Hn, Jn)> in D(A0) with

‖Un‖H = 1, (5.5)

such that
‖(iξn −A)Un‖H → 0 as n→∞. (5.6)

By (3.2), this directly implies that

ıξnεEn − curlHn + 1Ωm J̃n → 0 in L2(Ω), as n→∞, (5.7)

ıξnHn + curlEn → 0 in L2(Ω), as n→∞, (5.8)

(ıξn + γ)Jn − ω2
pEn → 0 in L2(Ωm), as n→∞. (5.9)

By the dissipativeness of A (see (3.4)), we further have

ω−2
p γ

∫
Ωm

|Jn|2 dx+

∫
Γ

|En×n|2 dσ = <((ıξn−A)Un, Un)H≤‖(ıξn−A)Un‖H, (5.10)

and therefore by (5.6)

Jn → 0 in L2(Ωm), as n→∞, (5.11)

En × n→ 0 in L2(Γ), as n→∞. (5.12)

In order to use the exponential stability of (5.4), we need to correct En
since they do not satisfy div(εEn) = 0 on the whole Ω. Therefore we consider
ϕn ∈ H1

0 (Ω) such that∫
Ω

ε∇ϕn · ∇ψ dx =

∫
Ω

εEn · ∇ψ dx, ∀ψ ∈ H1
0 (Ω), (5.13)
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and set
Ẽn = En −∇ϕn,

that belongs to W and satisfies

div(εẼn) = 0 in Ω. (5.14)

By setting
Fn = ıξnεEn − curlHn + 1Ωm J̃n,

the identity (5.13) implies that∫
Ω

ε|∇ϕn|2 dx =
1

ıξn

∫
Ω

(Fn + curlHn − 1Ωm J̃n) · ∇ϕn dx

=
1

ıξn

∫
Ω

(Fn − 1Ωm J̃n) · ∇ϕn dx,

since by Green’s formula (2.1)
∫

Ω
curlHn · ∇ϕn dx = 0. Hence by Cauchy–

Schwarz’s inequality we find that

‖∇ϕn‖ .
1

ξn
(‖Fn‖+ ‖Jn‖Ωm).

By (5.7) and (5.11), we conclude that

‖ıξn∇ϕn‖ → 0 as n→∞. (5.15)

At this stage we remark that the pair (Ẽn, Hn) satisfies the Silver–Müller
boundary condition on Γ, the condition (5.14), divHn = 0 in Ω and Maxwell’s
equations (compare with (5.7) and (5.8)){

ıξnεẼn − curlHn = F̃n= Fn − 1Ωm J̃n − ıξnε∇ϕn,
ıξnHn + curl Ẽn = Gn= ıξnHn + curlEn.

(5.16)

With the help of (5.8), (5.11) and (5.15), we have

F̃n, Gn → 0 in L2(Ω), as n→∞. (5.17)

As by assumption, system (5.4) is exponentially stable, applying Lemma 5.1
to this system, its resolvent is uniformly bounded on the imaginary axis. In
other words, there exists a positive constant C independent of n such that the
solution (Ẽn, Hn) of (5.16) satisfies

‖Ẽn‖+ ‖Hn‖ ≤ C(‖F̃n‖+ ‖Gn‖).

The property (5.17) then yields ‖Ẽn‖+ ‖Hn‖ → 0. By (5.15), we conclude that

‖En‖+ ‖Hn‖ → 0, as n→∞,

and recalling (5.11), we arrive at a contradiction with (5.5).
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Remark 5.4. Due to [14, §5], system (5.4) is exponentially stable in Case B
and if Ωe and Ω are strictly star-shaped with respect to a point since for any
metals (experimentally ε∞ = 3.2629 for gold and ε∞ = 3.7362 for silver, see
[28, Appendix A])

ε∞ > 1.

This is physically reasonable since the speed of propagation is fast inside Ωe

and slow outside. In the opposite case, the exponential decay does not hold for
physical models even if Ωm and Ω are strictly star-shaped, since from [14, §5],
we need that ε∞ ≤ 1 which is never physically satisfied; the reason is that for
light rays in the slow metal that approach the vaccum boundary, there is total
reflection for rays that are incident close to tangency.

This remark motivates us to find weaker assumptions that yield a polyno-
mial decay.

Lemma 5.5. Assume that Maxwell’s system in Ω with constant coefficient and
the Silver–Müller boundary condition on ∂Ω is exponentially stable. Then the
resolvent of the operator of A0 satisfies condition (5.3) with ` = 4.

Proof. We again use a contradiction argument, i.e., we suppose that (5.3) is
false with ` ∈ N. Then there exist a sequence of real numbers ξn → +∞ and a
sequence of vectors Un = (En, Hn, Jn)> in D(A) satisfying (5.5) and

ξ`n ‖(iξn −A)Un‖H → 0 as n→∞. (5.18)

As before this directly implies that

Fn = ξ`n(ıξnεEn − curlHn + 1Ωm J̃n)→ 0 in L2(Ω), as n→∞, (5.19)

ξ`n(ıξnHn + curlEn)→ 0 in L2(Ω), as n→∞, (5.20)

ξ`n((ıξn + γ)Jn − ω2
pEn)→ 0 in L2(Ωm), as n→∞, (5.21)

By (5.10) and (5.18), we deduce that

ξ`/2n Jn → 0 in L2(Ωm), as n→∞, (5.22)

ξ`/2n (En × n)→ 0 in L2(Γ), as n→∞. (5.23)

The first property and (5.21) directly imply that

ξ
`
2
−1

n En → 0 in L2(Ωm), as n→∞. (5.24)

By using the trace estimate [11, (I.2.16)]:

‖U · nm‖H− 1
2 (Σ)

. ‖U‖Ωm + ‖ divU‖Ωm , ∀U ∈ H(div,Ωm),
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and recalling that En is divergence free in Ωm, we get that

ξ
`
2
−1

n (En)|Ωm · nm → 0 in H−
1
2 (Σ), as n→∞. (5.25)

On the other hand, Green’s formula [11, (I.2.17)] leads to

〈[εEn · n];ϕ〉Σ =

∫
Ω

εEn · ∇ϕdx, ∀ϕ ∈ H1
0 (Ω),

where [εEn ·n] = (En)|Ωm ·nm+(En)|Ωe ·ne means the jump of εEn ·n through Σ.
By using (5.19), we get

〈[εEn · n];ϕ〉Σ = (ıξn)−1

∫
Ω

(ξ−`n Fn + curlHn − 1Ωm J̃n) · ∇ϕdx, ∀ϕ ∈ H1
0 (Ω).

Hence by Green’s formula (2.1), we obtain

〈[εEn · n];ϕ〉Σ = (ıξn)−1

∫
Ω

(ξ−`n Fn − 1Ωm J̃n) · ∇ϕdx, ∀ϕ ∈ H1
0 (Ω),

and by Cauchy–Schwarz’s inequality and the definition of the norm of H−
1
2 (Σ),

we get
‖[εEn · n]‖

H− 1
2 (Σ)

. ξ−`−1
n ‖Fn‖+ ξ−1

n ‖Jn‖Ωm .

Owing to (5.19) and (5.22), we deduce that ξ
`
2

+1
n [εEn · n] → 0 in H−

1
2 (Σ), as

n→∞. This property combined with (5.25) yields

ξ
`
2
−1

n [En · n]→ 0 in H−
1
2 (Σ), as n→∞. (5.26)

As in the previous Lemma, we now correct En by ϕn ∈ H1
0 (Ω) solution of∫

Ω

∇ϕn · ∇ψ dx =

∫
Ω

En · ∇ψ dx = 〈[En · n];ψ〉Σ, ∀ψ ∈ H1
0 (Ω),

and set
Ẽn = En −∇ϕn.

that belongs to W and satisfies

div Ẽn = 0 in Ω. (5.27)

Owing to the property (5.26), ϕn clearly satisfies

ξ
`
2
−1

n ϕn → 0 in H1(Ω), as n→∞. (5.28)
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As before, the pair (Ẽn, Hn) satisfies the Silver–Müller boundary condition
on Γ, the condition (5.27), divHn = 0 in Ω and Maxwell’s equations with
contant coefficient{

ıξnẼn − curlHn = F̃n,

ıξnHn + curl Ẽn = Gn = ıξnHn + curlEn,
(5.29)

where F̃n = ξ−`n Fn − 1Ωm J̃n − ıξnε∇ϕn + ıξn1Ωm(1− ε∞)Ẽn.
Let us now check that the property (5.17) holds as long as ` ≥ 4. First by

(5.19), (5.20) and (5.22), we directly deduce that

ξ−`n ‖Fn‖+ ‖Gn‖+ ‖1Ωm J̃n‖ → 0, as n→∞,

for any ` ≥ 0. Now for the term ıξnε∇ϕn, we notice that

‖ıξnε∇ϕn‖ = ξn‖ε∇ϕn‖ ≤ Cξ
`
2
−1

n ‖∇ϕn‖,

for n large enough and a positive constant C independent of n as soon as ` ≥ 4.
Consequently under this hypothesis, by (5.28), we deduce that ‖ıξnε∇ϕn‖ → 0,
as n→∞. The same argument and (5.24) leads to

‖ıξn1Ωm(1− ε∞)Ẽn‖ → 0, as n→∞,

for ` ≥ 4. Alltogether, we have shown (5.17) for ` ≥ 4.
Applying Lemma 5.1 to system (5.4), we deduce that its resolvent is uni-

formly bounded on the imaginary axis. In other words, there exists a positive
constant C independent of n such that the solution (Ẽn, Hn) of (5.29) satisfies

‖Ẽn‖+ ‖Hn‖ ≤ C(‖F̃n‖+ ‖Gn‖).

By (5.17), we obtain

‖Ẽn‖+ ‖Hn‖ → 0, as n→∞,

and by (5.22) and (5.28), we arrive at a contradiction with (5.5).

Remark 5.6. Different sufficient conditions on Ω and its boundary that guaran-
tee that Maxwell’s system in Ω with constant coefficient and the Silver–Müller
boundary condition on ∂Ω is exponentially stable are available in the litera-
ture. Let us mention [15, 16], where the sufficient assumptions are that Ω is a
strictly star-shaped domain with a boundary of class C1 (piecewise smooth is
sufficient using the results from [12]), and [26], where the boundary of Ω has
to be smooth (of class C∞, that automatically satisfies the geometric control
condition (G.C.C.) from [3]).
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The previous lemmas allow to check the hypotheses of Lemma 5.1 or
Lemma 5.2 and then lead to the next stability results.

Theorem 5.7. 1. Under the assumption of Lemma 5.5, problem (3.1) is
polynomially stable in H0, in other words, there exists a positive con-
stant C such that in Case A, one has

‖U(t)− κ(∇ϕ0, 0, 0)>‖2
H ≤ C t−

1
2‖U0‖2

D(A), ∀ t > 1, (5.30)

for all U0 = (E0, H0, J0)> ∈ D(A), with

κ =

(∫
Ωe

|∇q0|2 dx
)−1

〈(E0)|Ωe · n ; 1〉Σ, (5.31)

otherwise
‖U(t)‖2

H ≤ C t−
1
2‖U0‖2

D(A), ∀ t > 1, (5.32)

for all U0 = (E0, H0, J0)> ∈ D(A).
2. On the contrary, under the assumption of Lemma 5.3, problem (3.1) is

exponentially stable in H0, i.e., there exist two positive constants C and ω
such that in Case A, one has

‖U(t)− κ(∇ϕ0, 0, 0)>‖2
H ≤ C e−ωtE(0), ∀ t ≥ 0,

for all U0 ∈ H, otherwise

‖U(t)‖2
H ≤ C e−ωtE(0), ∀ t ≥ 0,

for all U0 ∈ H.

Proof. By the proof of Lemma 4.5, we know that A0 satisfies (5.1). For point 1,
we notice that Lemmas 5.5 and 5.2 imply that for all Ũ0 ∈ D(A0), the solution Ũ
of {

Ũt = A0Ũ ,

Ũ(0) = Ũ0,
(5.33)

satisfies
‖Ũ(t)‖2

H ≤ C t−
1
2‖Ũ0‖2

D(A0), ∀ t > 1. (5.34)

This yields (5.32) in Case B. On the contrary in Case A, it is readily checked
that for any U0 ∈ D(A), the solution U of (3.1) can be written as

U(t) = Ũ(t) + κ(∇ϕ0, 0, 0)>,

once U0 = Ũ0 + κ(∇ϕ0, 0, 0)>, with κ chosen such that Ũ0 belongs to H0,
or equivalently such that 〈(E0 − κ∇ϕ0)|Ωe · n ; 1〉Σ = 0. By (2.2), we get the
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expression (5.31) for κ. As (∇ϕ0, 0, 0)> belongs to D(A), Ũ0 is indeed in D(A0).
Hence applying the estimate (5.34), we find (5.30) since

|κ| .
∣∣〈(E0)|Ωe · n; 1〉Σ

∣∣ =

∣∣∣∣∫
Ωe

E0 · ∇q0 dx

∣∣∣∣ . ‖U0‖H,

and therefore
‖Ũ0‖H ≤ ‖U0‖H, (5.35)

as well as

‖Ũ0‖D(A0) = ‖Ũ0‖H + ‖AŨ0‖H = ‖Ũ0‖H + ‖AU0‖H . ‖U0‖D(A).

Point 2 is proved similarly by using (5.35) and the exponential decay of the
solution of (5.33).
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