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Legendre Forms in Reflexive Banach Spaces

Felix Harder

Abstract. Legendre forms are used in the literature for second-order sufficient op-
timality conditions of optimization problems in (reflexive) Banach spaces. We show
that if a Legendre form exists on a reflexive Banach space, then this space is already
isomorphic to a Hilbert space.
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1. Introduction

A Legendre form is a quadratic form Q : X → R (where X is a normed vector
space) that is sequentially weakly lower semi-continuous and has the property
that xn → x whenever xn ⇀ x and Q(xn)→ Q(x), see Definition 2.21.

Legendre forms have their origin in the calculus of variations. They are dis-
cussed in a Hilbert space setting in [5,6]. However, the definition of a Legendre
form naturally extends to Banach spaces. Most notably, in [1] they are defined
in arbitrary Banach spaces and used in reflexive Banach spaces. Legendre forms
are useful in reflexive Banach spaces for second-order sufficient optimality con-
ditions. For instance, if the second derivative corresponds to a quadratic form
Q(x) that is a Legendre form, then it suffices to show that Q(x) > 0 for all
x ∈ C \ {0} for some closed convex cone C ⊂ X (instead of the usual coercivity
of the second derivative), see [1, Lemma 3.75]. The condition that a certain
quadratic form is a Legendre form also plays an important role in many other
theorems in [1] that are formulated in the setting of a reflexive Banach space.
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1The term “Legendre form” is different from the object of the same name that appears in
the area of elliptic curves.
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It is well known that if a coercive quadratic form exists on a Banach spaceX,
then X is already Hilbertizable, i.e., isomorphic to a Hilbert space (see Propo-
sition 4.7). As a consequence, coercive quadratic forms do not exist on Banach
spaces that are not Hilbertizable.

The question arises whether Legendre forms (which can be interpreted as a
generalization of coercive quadratic forms) suffer from the same problem or if
there exist Legendre forms on Banach spaces that are not Hilbertizable.

For reflexive Banach spaces, we are able to prove the following theorem,
which answers this question.

Theorem 1.1. Let Q be a Legendre form on a reflexive Banach space X.
Then X is Hilbertizable.

This theorem will be proven in Section 4.
An important consequence of this result is that one should not attempt to

apply theorems in which the existence of a Legendre form is assumed to reflexive
Banach spaces that are not Hilbertizable. An example for such spaces would
be Lp(Ω) where p ∈ (1,∞) \ {2} and Ω ⊂ Rd is a measurable set. Some of
these theorems that are formulated in a reflexive Banach space and in which a
Legendre form appears in the conditions are [1, Theorem 3.128, Theorem 5.5],
[9, Theorem 5.7]. The reflexivity in these and other theorems is usually used
to obtain the weak sequential compactness of the closed unit ball, which plays
an important role in the proofs. Therefore the question whether there exist
Legendre forms in non-reflexive Banach spaces is less relevant for applications.

In this paper, we will proceed as follows. We start with introducing some
notation and giving precise definitions in Section 2. Then in Section 3 we
will give a brief overview of the established results regarding Legendre forms
in Hilbert spaces. In Section 4 we provide a proof of Theorem 1.1 and some
intermediate results. Finally, in Section 5 we address extended Legendre forms,
discuss the situation in non-reflexive Banach spaces, and give a conclusion.

2. Definitions and notation

We start with defining terminology that is related to quadratic forms.

Definition 2.1. LetX be a normed vector space. We call a functionQ : X → R
a quadratic form if there exists a bilinear form B : X ×X → R such that

Q(x) = B(x, x) ∀x ∈ X.

For a quadratic formQ we say that two subsets Y1, Y2 ⊂ X areQ-orthogonal,
denoted as Y1 ⊥Q Y2, if

Q(y1 + y2) = Q(y1) +Q(y2) ∀ y1 ∈ Y1, y2 ∈ Y2.
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We call Q coercive (or elliptic) if it is continuous and

Q(x) ≥ γ‖x‖2 ∀x ∈ X

for a constant γ > 0.
We say that Q is positive (or negative) if Q(x) > 0 (or Q(x) < 0) for all

x ∈ X \ {0}.
Note that a quadratic form does not need to be continuous. However, due

to Lemma 4.6 all quadratic forms that we use in Sections 3 and 4 turn out to
be continuous.

In the case that Q is a continuous quadratic form, it is always possible to
uniquely choose a continuous linear operator A : X → X∗ in such a way, that

Q(x) = 〈Ax, x〉X∗×X and 〈Ax, y〉X∗×X = 〈Ay, x〉X∗×X ∀x, y ∈ X (1)

holds. Hence, we set the convention that whenever there is a continuous
quadratic form Q, we denote by A the unique operator that is given by (1).
We note that if X is reflexive, we know that A is self-adjoint. Using the opera-
tor A it, it is easy to check that the equivalence

Y1 ⊥Q Y2 ⇔ 〈Ay1, y2〉X∗×X = 0 ∀ y1 ∈ Y1, y2 ∈ Y2
holds. This gives us an alternative description of Q-orthogonality. We will also
use the notation y1 ⊥Q Y2 for {y1} ⊥Q Y2 and in the same spirit we abbreviate
{y1} ⊥Q {y2} with y1 ⊥Q y2.

It can be shown that if a function Q : X → R is a quadratic form then the
parallelogram law

Q(x+ y) +Q(x− y) = 2Q(x) + 2Q(y) ∀x, y ∈ X

holds. The converse is true if we assume Q to be continuous. In this case, the
operator A : X → X∗ that satisfies (1) can be recovered by the polarization
identity

〈Ax, y〉X∗×X =
1

4
(Q(x+ y)−Q(x− y)).

Having discussed quadratic forms, we give the definition of a Legendre form.

Definition 2.2. Let X be a normed vector space. We call a quadratic form
Q : X → R a Legendre form if Q is sequentially weakly lower semi-continuous
and if xk ⇀ x and Q(xk)→ Q(x) imply xk → x for all sequences {xk}k∈N in X.

Note that as a consequence of Lemma 4.6 all Legendre forms are continuous
if X is a Banach space. In this case, it is possible to replace x with 0 in the
above definition, i.e., if a quadratic form Q on a Banach space is sequentially
weakly lower semi-continuous and (xk ⇀ 0 ∧ Q(xk) → 0) ⇒ xk → 0 holds for
all sequences {xk}k∈N ⊂ X, then Q is already a Legendre form.

Finally, we mention that for linear subspaces Y1, Y2, Z of a vector space X
we will use the notation Z = Y1 +̇ Y2 if Z = Y1 + Y2 and Y1 ∩ Y2 = {0}.
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3. Legendre forms in Hilbert spaces

In this section we give some results from the literature that discuss Legendre
forms in Hilbert spaces. Note that with the use of Theorem 1.1 these results
extend to reflexive Banach spaces.

The following theorem is due to [5, Theorem 11.6] and yields a good char-
acterization of Legendre forms in Hilbert spaces. Moreover, it is useful for
constructing examples of Legendre forms.

Theorem 3.1. A quadratic form Q on a Hilbert space X is a Legendre form if
and only if it can be expressed as

Q(x) = Q1(x)−Q2(x)

where Q1 is a coercive quadratic form and Q2 is a sequentially weakly continuous
quadratic form.

It can be shown that a quadratic form Q(x) = 〈Ax, x〉 in a Hilbert space is
weakly sequentially continuous if and only if A is compact, see [6, Theorem 1
in 6.2.3]. A consequence is that in a finite dimensional space all quadratic forms
are Legendre forms. We note that if A : X → X∗ is a compact operator, the
quadratic form Q(x) = 〈Ax, x〉 does not need to be weakly continuous. For
instance, the compact operator A : `2 → `2 given by Aen = 1

n
en for all n ∈ N

yields a sequentially weakly continuous quadratic form Q that is not weakly
continuous. Indeed, Q(x) = 1 for all x ∈ S := {

√
nen : n ∈ N} but Q(0) = 0

and 0 is in the weak closure (but not in the weak sequential closure) of S.

A simple combination of [5, Theorem 7.1, Theorem 11.3] yields a statement
that can give us an idea how to prove Theorem 1.1.

Theorem 3.2. Let Q be a Legendre form on a Hilbert space X. Then there is
an orthogonal and Q-orthogonal decomposition

X = Y+ +̇ Y0 +̇ Y−

with closed subspaces Y+, Y0, Y− ⊂ X such that Q is coercive on Y+, −Q is
coercive on Y−, and Q = 0 on Y0. Moreover, Y0 and Y− are finite-dimensional.

It should be noted that it is not possible to simply prove this result (without
orthogonality) in reflexive Banach spaces in a way that is analogous to the
original proof in Hilbert spaces. This is because the proof of [5, Theorem 7.1]
uses that a quadratic form can be expressed as a difference of two nonnegative
quadratic forms. However, this is not possible in the Banach spaces `p where
p ∈ (1, 2), see [7, Corollary 1.7].
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4. Legendre forms in reflexive Banach spaces

4.1. Basic results from functional analysis. In this section we will recall
some established results from the literature of functional analysis. We will need
those in Sections 4.2 and 4.3. Additionally, we provide a result that states that
lower semi-continuous quadratic forms are continuous, which yields a very basic
property of Legendre forms.

Lemma 4.1. A reflexive Banach space is finite dimensional if and only if every
weakly convergent sequence is norm-convergent.

This result follows from [8, Theorem 1.22] and the fact that every bounded
sequence has a weakly convergent subsequence.

The next result which states that finite-dimensional subspaces can be com-
plemented can be found in [8, Lemma 4.21].

Lemma 4.2. Let X be a Banach space with a closed subspace Y. If dimY<∞
or dim(X/Y )<∞ then there is a closed subspace Z⊂X such that X=Y +̇Z.

The following lemma will be useful when we want to generalize the property
“Hilbertizable” (which means that there exists a scalar product such that the
induced norm is equivalent to the original norm) to a larger space.

Lemma 4.3. Let X = Y +̇Z be a Banach space with closed subspaces Y, Z and
dimZ <∞. If Y is Hilbertizable, then X is Hilbertizable.

Proof. Because Z is finite dimensional, we know that Z is also Hilbertizable.
As the product of two Hilbertizable Banach spaces, Y × Z (which is al-

gebraically isomorphic to X) can be equipped with an inner product. As a
consequence of the open mapping theorem, it follows that Y ×Z equipped with
the norm ‖(y, z)‖ := ‖y‖ + ‖z‖ is even topologically isomorphic to X, i.e., the
norms are equivalent.

When we obtain intermediate results that are formulated in a reflexive Ba-
nach space, we often intend to apply these results to a closed subspace of a
reflexive Banach space. Similarly, we will often apply results where a Legendre
form is relevant to closed subspaces of a Banach space, where the Legendre form
is defined on the whole Banach space. The following two lemmas guarantee that
this is possible.

Lemma 4.4. A closed subspace of a reflexive Banach space is itself reflexive.

For this result, see [4, Corollary V.4.3].

Lemma 4.5. Let Q be a Legendre form on a normed vector space X and let Y
be a linear subspace of X. Then Q is also a Legendre form on Y .
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Proof. Every sequence {yn}n∈N in Y that converges in the weak topology on Y
to y ∈ Y , also converges in the weak topology on X. The claim follows.

The previous two lemmas will be used frequently without always referencing
them.

Finally, we give a result that shows that quadratic forms are continuous if
they are lower semi-continuous. A similar result is known for convex functions,
see [1, Proposition 2.111]. However, a quadratic form does not need to be
convex.

Lemma 4.6. Let Q be a quadratic form on a Banach space X. If Q is lower
semi-continuous then it is continuous.

Proof. Our first goal is to find x ∈ X, ε > 0 such that Q is bounded on B2ε(x).
In order to do this, consider the sets Cn := {y ∈ X : Q(y) ≤ n} for n ∈ N.
Because Q is lower semi-continuous, these sets are closed. Since X =

⋃
n∈NCn,

by Baire’s theorem one of the sets Cn has to contain a nonempty open set.
Therefore Q is bounded from above on some nonempty open set. Since Q is
lower semi-continuous, it is also locally bounded from below, i.e., for a given
x ∈ X we find δ > 0, C̃ > −∞ such that Q(y) > C̃ for all y ∈ Bδ(x).

Thus we know that there exist x ∈ X, ε > 0, C > 0 such that |Q(y)| < C
whenever ‖y − x‖ < 2ε. Using the parallelogram law, we have

|Q(z)| = 1

2
|Q(x+ z) +Q(x− z)− 2Q(x)| ≤ 2C ∀ z ∈ B2ε(0).

Now it follows from the definition of a quadratic form that there exists a bilinear
form B : X × X → R such that Q(x) = B(x, x) for all x ∈ X. Without loss
of generality we can assume that B is symmetric. Moreover, if y1, y2 ∈ Bε(0),
we have |B(y1, y2)| = 1

4
|Q(y1 + y2)−Q(y1 − y2)| ≤ C. Thus B is bounded in a

neighborhood of 0 and therefore continuous. The claim follows.

Because sequentially weakly lower semi-continuous functions are lower semi-
continuous, an important consequence of this lemma is that on a Banach space
every Legendre form is continuous.

4.2. Proving Hilbertizability under various assumptions. In this section,
we will prepare the proof of Theorem 1.1. We do this by proving results which
are similar to Theorem 1.1 but need additional assumptions. We start with
the statement that X is Hilbertizable if Q is coercive, see Proposition 4.7. We
then relax this assumption to positive quadratic forms in Proposition 4.8 and
then nonnegative quadratic forms in Proposition 4.10. In Section 4.3 we will
then provide a proof of Theorem 1.1 with the additional assumption that the
operator A is injective, see Proposition 4.14.

We start with formulating the following well-known result:
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Proposition 4.7. Let Q be a coercive quadratic form on a Banach space X.
Then X is Hilbertizable.

The proof uses that Q(·) 1
2 defines a norm on X which is equivalent to the

original norm, see, e.g., [1, p. 195].
In order to generalize the result to positive Legendre forms, it suffices to

show that a positive Legendre form is already coercive. This is done in the
proof of the next result.

Proposition 4.8. Let Q be a positive Legendre form on a reflexive Banach
space X. Then X is Hilbertizable.

Proof. Assume that Q is not coercive. Then there is a sequence {xn}n∈N in X
with Q(xn)→ 0 and ‖xn‖ = 1 for all n ∈ N.

Because {xn}n∈N is bounded in a reflexive Banach space, there is a weakly
convergent subsequence of {xn}n∈N. Without loss of generality, xn ⇀ x for
some x ∈ X. We have 0 ≤ Q(x) ≤ lim inf Q(xn) = 0. It follows that Q(x) = 0
and therefore xn ⇀ x = 0. Applying the definition of a Legendre form yields
xn → 0 which is a contradiction to ‖xn‖ = 1.

Thus, Q is coercive. Due to Proposition 4.7 it follows that X is Hilbertiz-
able.

So far we have investigated positive Legendre forms. Now we briefly turn
our attention to nonpositive Legendre forms and provide a lemma that will be
helpful later on.

Lemma 4.9. Let Q be a Legendre form on a reflexive Banach space X. If
Q ≤ 0 on X, then X is finite-dimensional.

Proof. Because −Q ≥ 0 is a quadratic form, it is convex, see, e.g., [1, Proposi-
tion 3.71]. Thus −Q is sequentially weakly lower semi-continuous. As a conse-
quence, Q is sequentially weakly continuous.

Let {xn}n∈N be an arbitrary sequence in X such that xn ⇀ x for some
x ∈ X. From xn ⇀ x it follows thatQ(xn)→ Q(x). Consequently, ‖xn−x‖ → 0.

Thus every sequence that converges weakly in X converges strongly in X.
Applying Lemma 4.1 yields the desired result.

With the help of Lemma 4.9 we are now able to extend the result of Propo-
sition 4.8 to nonnegative Legendre forms.

Proposition 4.10. Let Q be a Legendre form on a reflexive Banach space X.
If Q ≥ 0 on X, then X is Hilbertizable.

Proof. We define Y0 := {x ∈ X : Q(x) = 0}. In [1, Proposition 3.72] it is
shown that Y0 is a linear subspace of X. We observe that Y0 is also a closed
linear subspace. Therefore we can apply Lemma 4.9 to Y0, which yields that
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dimY0 <∞. This allows us to apply Lemma 4.2, which states that we can find
a closed subspace Y+ such that X = Y+ +̇ Y0. Because Q > 0 on Y+ \ {0}, we
know by Proposition 4.8 that Y+ is Hilbertizable. Applying Lemma 4.3 yields
the result.

4.3. Completion of the proof. Our next goal is to prove the statement
of Theorem 1.1 with the additional assumption that kerA = {0}, i.e., A is
injective. The idea for our proof will be to find closed subspaces Y−, Y+0 such
that X = Y+0+̇Y− where Q is negative on Y− and Q ≥ 0 on Y+0. The next three
lemmas will be a preparation for this, and we start with proving the existence
of a maximal closed subspace Y−.

Lemma 4.11. Let Q be a Legendre form on a reflexive Banach space X. Then
there exists a maximal closed subspace Y− (w.r.t. set inclusions) such that Q is
negative on Y−.

Proof. Suppose there is no maximal closed subspace with the desired prop-
erty. Then we can construct a sequence of linear subspaces (Zi)i∈N such that
Zi ( Zi+1 and Q is negative on Zi for all i ∈ N. If we define the Z :=

⋃
i∈N Zi

we have that Z is an infinite-dimensional closed subspace with Q ≤ 0 on Z. By
Lemma 4.9 this is a contradiction.

The following lemma allows us to show that a subspace Y− is not maximal
under certain conditions.

Lemma 4.12. Let Q be a quadratic form on a finite dimensional vector space
X := Y− +̇ lin(y) +̇ lin(x). We assume that Q is negative on Y−, Q(y) = 0,
y ⊥Q Y−, and 〈Ay, x〉 6= 0.

Then there is a linear subspace Ỹ− ) Y− such that Q is negative on Ỹ−.

Proof. Because Y− is finite dimensional, we can find a Q-orthogonal basis (yi)
d
i=1

of Y− with the property that Q(yi) = −1 for all i ∈ {1, . . . , d}. We define

zα := x+ αy +
d∑
i=1

〈Ax, yi〉yi

for α∈R. Then it can be shown that zα⊥QY− for all α∈R. Indeed, 〈Ayj, zα〉 =

〈Ayj, x〉+α〈Ayj, y〉+
∑d

i=1〈Ax, yi〉〈Ayj, yi〉 = 〈Ayj, x〉+〈Ax, yj〉〈Ayj, yj〉 = 0
is true for every basis vector yj of Y−. Now we will calculate Q(zα). We have

Q(zα) = 〈Azα, x+ αy〉 = Q(x+ αy) +
d∑
i=1

〈Ax, yi〉〈Ayi, x+ αy〉

= Q(x) + 2α〈Ax, y〉+
d∑
i=1

〈Ax, yi〉2.
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Due to 〈Ax, y〉 6= 0 we can choose α ∈ R such that Q(zα) < 0. Finally, if we set
Ỹ− := Y− +̇ lin(zα) it is easy to check Q < 0 on Ỹ− \{0} by using zα ⊥Q Y−.

If a subspace Y+0 +̇ Y− is not equal to the full space X, the next lemma
enables us to find an element outside of Y+0 +̇ Y− that is Q-orthogonal to that
linear subspace.

Lemma 4.13. Let Q be a Legendre form on a reflexive Banach space X. We
assume that A is injective. Let Y := Y+0+̇Y− be a subspace with closed subspaces
Y+0, Y− ⊂ X. Furthermore, we assume that Y− is a maximal closed subspace
(w.r.t. to set inclusions) with the property that Q is negative on Y−.

If X 6= Y , then there exists z ∈ X \ Y such that z ⊥Q Y .

Proof. Consider the set Y ⊥
Q

:= {x ∈ X : x ⊥Q Y }. First, we make the
assumption that Y ⊥

Q ⊂ Y holds.

Let x ∈ X \ Y be given. Note that because Y− is finite dimensional accord-
ing to Lemma 4.9 and the sum of a closed subspace and a finite dimensional
subspace is closed (see, e.g., [8, Theorem 1.42]) we know that Y is closed.
Therefore we can invoke Hahn-Banach to find x∗ ∈ X∗ such that 〈x∗, x〉 = 1
and 〈x∗, y〉 = 0 for all y ∈ Y .

Assume that there exists y ∈ X such that Ay = x∗. Then y ∈ Y ⊥Q
and thus

y ∈ Y . Therefore, Q(y) = 〈Ay, y〉 = 0 and y ⊥Q Y−. Since also 〈Ay, x〉 6= 0 is
true, we can apply Lemma 4.12 to Y−+̇lin(x)+̇lin(y). This yields a contradiction
to the maximality of Y−.

Thus we know that x∗ 6∈ range(A). However, using that A is injective and
self-adjoint, we also know that range(A) is dense in X∗. Thus, let {xn}n∈N be
a sequence in X such that Axn → x∗. We claim that ‖xn‖ → ∞ has to hold.
Indeed, if {xn}n∈N has a bounded subsequence, it must also have a weakly
convergent subsequence. A weak limit z ∈ X would have to satisfy Az = x∗,
which is a contradiction to x∗ 6∈ range(A).

We define the sequence {yn}n∈N via yn := 1
‖xn‖xn. Note that Ayn → 0

and ‖yn‖ = 1 for all n ∈ N. Because {yn}n∈N is bounded, it has a weakly
convergent subsequence. Hence, without loss of generality, yn ⇀ z for some
z ∈ X. Therefore, Ayn → 0 implies Az = 0, hence z = 0. We also know
that Q(yn) = 〈Ayn, yn〉 → 0. Using the definition of a Legendre form, we have
yn → 0, which is a contradiction to ‖yn‖ = 1.

Thus our initial assumption Y ⊥
Q ⊂ Y is false, and any z ∈ Y ⊥Q \Y satisfies

z ⊥Q Y .

Now we are able to prove Hilbertizability if A is injective.



386 F. Harder

Proposition 4.14. Let Q be a Legendre form on a reflexive Banach space X.
If A is injective then X is Hilbertizable.

Proof. First, we use Lemma 4.11 to choose a maximal closed subspace Y− such
that Q is negative on Y−.

We will apply Zorn’s Lemma to the collection of linear subspaces

F := {Z ⊂ X : Z closed subspace, Q ≥ 0 on Z,Z ⊥Q Y−}

with the ordering “⊂”. Let us check the requirements for Zorn’s Lemma. Due
to {0} ∈ F it is clear that F is nonempty. Let (Zi)i∈I be a given (totally
ordered) chain of sets Zi ∈ F for an arbitrary index set I. Then Z̃ :=

⋃
i∈I Zi

is an upper bound on that chain, and it is easy to see that Z̃ ∈ F . Thus the
requirements for Zorn’s Lemma are satisfied and F contains a maximal element.

We denote a maximal element of F by Z and assume that X 6= (Z +̇Y−).
We can apply Lemma 4.13 and find x∈X \(Z +̇Y−) such that x⊥Q (Z +̇Y−).
Consider the case Q(x)≥0. Then Q≥0 on the closed subspace Z +̇lin(x), which
is a contradiction to the maximality of Z. On the other hand, if Q(x)<0, then
Q< 0 holds on (Y− +̇ lin(x))\{0}, which is a contradiction to the maximality
of Y−. Thus our assumption is wrong and X=(Z +̇Y−).

Finally, we can combine Proposition 4.10 and Lemma 4.9 with Lemma 4.3,
which completes the proof.

Now it remains to generalize the result of Proposition 4.14 to arbitrary
Legendre forms Q and dropping the condition that A is injective.

Proof of Theorem 1.1. Using Lemma 4.9, it follows that kerA is finite dimen-
sional. By Lemma 4.2 there exists a closed subspace V of X with X = V +̇kerA.

Consider the restriction of Q to V and the corresponding self-adjoint oper-
ator AV : V → V ∗. We will show that kerAV = {0}. Indeed, let z ∈ kerAV be
given. Then for each v ∈ V, x0 ∈ kerA we have

0 = 〈AV z, v〉V ∗×V = 〈Az, v〉X∗×X + 〈Ax0, z〉X∗×X = 〈Az, v + x0〉X∗×X .

Thus 〈Az, x〉 = 0 for all x ∈ X = V +̇ kerA and therefore z ∈ kerA∩V = {0}.
Now, we can apply Proposition 4.14 in the subspace V , hence V is Hilber-

tizable. Thus we can apply Lemma 4.3 to X = V +̇ kerA, which completes the
proof.

We note that our proof yields a Q-orthogonal decomposition X = Z +̇ Y−
such that Q ≥ 0 on Z and Q is negative on Y−, which has similarities with
Theorem 3.2.
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5. Further remarks and conclusion

5.1. Extended Legendre forms. In [1, Definition 3.73] the concept of an
extended Legendre form is introduced.

Definition 5.1. An extended Legendre form is a continuous and sequentially
weakly lower semi-continuous function Q : X → R that has the properties
Q(tx) = t2Q(x) for all x ∈ X, t > 0 and

(Q(xn)→ Q(x) ∧ xn ⇀ x) ⇒ xn → x

for all sequences {xn}n∈N in X.

Note that an extended Legendre form does not have to be a quadratic form.
The question arises whether Theorem 1.1 holds for extended Legendre forms.
The following example shows that this is not the case.

Example 5.2. Let p ∈ (1,∞) \ {2} be given. Then the function

Q : Lp(0, 1)→ R, Q(x) = ‖x‖2Lp(0,1)

is an extended Legendre form on a reflexive Banach space.

Proof. Clearly, Q is continuous, sequentially weakly lower semi-continuous, and
has the property Q(tx) = t2Q(x) for x ∈ Lp(0, 1), t ∈ R.

Let {xn}n∈N be a sequence in Lp(0, 1) such that xn ⇀ x ∈ Lp(0, 1) and
‖xn‖2Lp(0,1) → ‖x‖2Lp(0,1). Then according to [2, Proposition 3.32] it follows that

xn → x (we can apply this proposition because Lp(0, 1) is uniformly convex,
see [3]).

5.2. Legendre forms in non-reflexive Banach spaces. In this subsection
we will give a counterexample to show that Theorem 1.1 does not hold for
non-reflexive Banach spaces. This will be done using the space `1.

Example 5.3. There exists a Legendre form on the Banach space `1, al-
though `1 is not Hilbertizable.

Proof. It is clear that `1 is not Hilbertizable. According to [4, Proposition V.5.2]
every weakly convergent sequence in `1 converges in norm. As a consequence,
every quadratic form on `1 is a Legendre form. It remains to show the existence
of a quadratic form on `1. This is indeed the case, the simplest example being
Q(x) = 0.

However, as already mentioned in the introduction, Legendre forms are
rarely relevant in non-reflexive Banach spaces such as `1, because there can be
bounded sequences without a weakly convergent subsequence.
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In the case, that a Banach space X has a separable predual space, the se-
quential version of the Banach-Alaoglu theorem guarantees that every bounded
sequence has a weakly-∗ convergent subsequence. In these Banach spaces it
would be more reasonable to redefine Legendre forms using weakly-∗ conver-
gent sequences instead of weakly convergent sequences in Definition 2.2. It is
an open question, whether one can show a result similar to Theorem 1.1 for
these adapted Legendre forms.

5.3. Conclusion. We were able to show that if a Legendre form is defined on a
reflexive Banach space, this space is already isomorphic to a Hilbert space. As
an example, Legendre forms cannot exist on `p or Lp(Ω), where p ∈ (1,∞)\{2}
and Ω ⊂ Rd is an open subset. As a simple consequence, the characterization of
Legendre forms in Hilbert spaces in Theorem 3.1 also holds in reflexive Banach
spaces.

Our results for Legendre forms in reflexive Banach spaces do not generalize
to non-reflexive Banach spaces or to extended Legendre forms.

Acknowledgment. This work is supported by the DFG grant WA 3636/4-1
within the Priority Program SPP 1962 (Non-smooth and Complementarity-
based Distributed Parameter Systems: Simulation and Hierarchical Optimiza-
tion).

References

[1] Bonnans, J. F. and Shapiro, A., Perturbation Analysis of Optimization Prob-
lems. Berlin: Springer 2000.

[2] Brezis, H., Functional Analysis, Sobolev Spaces and Partial Differential Equa-
tions. New York: Springer 2011.

[3] Clarkson, J. A., Uniformly convex spaces. Trans. Amer. Math. Soc. 40
(1936)(3), 396 – 414.

[4] Conway, J. B., A Course in Functional Analysis. Second edition. Grad. Texts
Math. 96. New York: Springer 1990.

[5] Hestenes, M. R., Applications of the theory of quadratic forms in Hilbert space
to the calculus of variations. Pacific J. Math. 1 (1951), 525 – 581.

[6] Ioffe, A. D. and Tihomirov, V. M., Theory of Extremal Problems. Translated
from the Russian by K. Makowski. Stud. Math. Appl. 6. Amsterdam: North-
Holland 1979.

[7] Kalton, N., Konyagin, S. V. and Veselý, L., Delta-semidefinite and delta-convex
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