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Optimal Decay Rate of Solutions to
Timoshenko System with Past
History in Unbounded Domains
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Abstract. In this paper, we investigate the Cauchy problem for the Timoshenko
system in thermo-elasticity, where the heat conduction is given by the Gurtin–Pipkin
thermal law in one-dimensional space. We show an optimal decay rate of the L2–
norm of the solution with the rate of (1 + t)−

1
8 which is better than (1 + t)−

1
12 found

in [6]. We also extend the recent results in [7, 8] and showed that those results are
only particular cases of the one obtained here. Also, we prove that the decay rate is
controlled by a crucial stability number αg which depends on the parameters of the
system.
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1. Introduction

In classical thermoelasticity, the heat conduction is given by Fourier’s law, which
assumes that the heat flux is proportional to the gradient of the temperature,
written in one-dimensional space as

q(x, t) = −κθx(x, t), (1)

where κ > 0 is the thermal conductivity. Equation (1) represents an instanta-
neous response to changes in the gradient of the temperature visible in the heat
flux.
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Equation (1) together with the energy equation of the heat

θt(x, t) + qx(x, t) = 0, (2)

leads to the diffusion equation (the heat equation)

θt(x, t)− κθxx(x, t) = 0. (3)

It is well known that the diffusion equation (3) has the unphysical property
that if a sudden change of temperature is made at some point on the body, it
will be felt instantly everywhere. Thus, we may say that diffusion gives rise to
infinite speed of propagation. The attempt to correct the “paradox of instan-
taneous propagation of thermal disturbances” predicted by Fourier’s theory of
heat conduction has inspired the work of searching for new constitutive rela-
tions. Consequently, a number of modifications of the basic assumption on the
relation between the heat flux and the temperature have been made. Among
these, Cattaneo’s law, Gurtin’s and Pipkin’s theory, Jeffreys’s law, Green’s and
Naghdi’s theory and others. The common feature of these theories is that all
lead to hyperbolic differential equation and permit transmission of heat flow as
thermal waves at finite speed. The most obvious and simple generalization of
Fourier’s law is the Cattaneo (or Cattaneo–Maxwell) equation

τqqt(x, t) + q(x, t) = −κθx(x, t). (4)

Equation (4) together with (3) leads to the damped wave equation (known as
the telegraph equation):

θtt(x, t)−
κ

τq
θxx(x, t) +

1

τq
θt(x, t) = 0. (5)

Equation (5) is hyperbolic and it transmits waves of temperature with a finite
speed equals to

√
κ τ−1q . From the mathematical point of view, it is much easier

to deal with the diffusion equation (3) than the damped wave equation (5), since
equation (3) is a parabolic equation and has a smoothing effect. For this reason,
and as we will see later, it is quit hard to treat problems involving Cattaneo’s
law of heat conduction, compared to those involving Fourier’s law. Another
important law of heat conduction is the Jeffreys law:

τqqt(x, t) + q(x, t) = −κθx(x, t)− τqκ1θtx(x, t). (6)

Equation (6) together with (2) leads to the equation

θtt(x, t)−
κ

τq
θxx(x, t) +

1

τq
θt(x, t)− κ1θtxx(x, t) = 0. (7)
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It is clear that if κ1 = 0, then equation (6) reduces to the telegraph equation (5).
On the other hand if κ1 = κ, then equation (7) reduces to a diffusion equation

φt(x, t) = κ1φxx(x, t), φ(x, t) = θt(x, t) +
κ

τqκ1
θ(x, t). (8)

Note that for τq sufficiently small, the Cattaneo equation (4) can be seen
as a first-order approximation of a more general constitutive relation (single-
phase-lagging model; Tzou [12]),

q(x, t+ τq) = −κθx(x, t). (9)

Equation (9) states that the temperature gradient established at a point x at
time t gives rise to a heat flux vector at x at a later time t + τq. The delay
time τq is interpreted as the relaxation time due to the fast-transient effects of
thermal inertia (or small-scale effects of heat transport in time) and is called
the phase-lag of the heat flux.

In [13], Tzou proposed a new theory of heat conduction which describes
the interactions between phonons and electrons on the microscopic level as
retarding sources causing a delayed response on the macroscopic scale. The
physical meanings and the applicability of the dual-phase-lag model have been
supported by the experimental results [14]. In this theory, the Fourier law is
replaced by an approximation of the equation

q(x, t+ τq) = −κθx(x, t+ τθ), τq > 0, τθ > 0, (10)

where τq is the phase lag of the heat flux and τθ is the phase lag of the gradient
of the temperature. According to equation (10), the temperature gradient at
a point x of the material at time t + τθ corresponds to the heat flux density
vector at x at time t + τq. The delay time τθ is interpreted as being caused by
the micro-structural interactions such as phonon-electron interaction or phonon
scattering, and is called the phase-lag of the temperature gradient (Tzou [13]).

If the two phase lags are equal, that is τq = τθ, then, the relation (10) is
identical with the classical Fourier law (1). While in the absence of the phase lag
of the temperature gradient, τθ = 0 and by taking the first-order approximation
for q, then equation (10) reduces to the Cattaneo law (4). In addition, for
τθ = κ1

κ
τq, and by taking the first order approximation for q and for θ, then we

can recover Jeffreys’s equation (6). Unfortunately, we cannot use the general
form (10) as a more general heat conduction law since its combination with the
classical energy equation (2) leads to an ill-posed problem (see [3]). However, as
we have seen above, if we replace the delay expressions in (10) by their Taylor
expansions at different orders, we obtain several heat conduction theories that
will lead to well-posed equations.
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The Cattaneo equation (4) can also be expressed as an integral over the
history of the temperature gradient as

q (t) = − κ
τq

∫ t

−∞
e
s−t
τq θx(s) ds. (11)

A more general form of equation (11) has been given by Gurtin and Pipkin [4]:

q (t) = −κ
∫ t

−∞
g (t− s) θx (s) ds, (12)

where g (s) is the heat flux relaxation function. In (12), the heat flux is de-
termined by the integral over the history of the temperature gradient weighted
against the relaxation function g(s) called the heat flux kernel. The coupling
between (12) and the energy equation (2), gives

θt −
1

β

∫ ∞
0

g(s)θxx(t− s) ds = 0, β =
1

κ
.

Many different constitutive models arise from different choices of g(s).
Equation (11) can easily be recovered from (12) by assuming

g (s) =
1

τq
e
− s
τq .

If we assume that θx is constant for all time and let κ =
∫∞
0
g (s) ds, then

equation (12) reduces to the classical Fourier law (1). Also, the heat flux law
of Jeffreys’s type

q (t) = −κθx (t)− κ1
τq

∫ t

−∞
θx (s) e

s−t
τq ds,

can be seen by letting

g (s) = δ (s) +
κ1
τqκ

e
− s
τq

in (12), where δ is the Dirac function. See [5] for more details.
So, it is a quite natural and more general to investigate the the more general

Gurtin and Pipkin heat conduction law (12). In this paper, we are interested
on the coupling of the Timoshenko beam equations with the Gurtin and Pipkin
heat conduction. Namely, we consider the system

ϕtt − (ϕx − ψ)x = 0,

ψtt − a2ψxx − (ϕx − ψ) + δθx = 0,

θt −
1

β

∫ ∞
0

g(s)θxx(t− s) ds+ δψtx = 0,

(13)
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where the time variable t ∈ (0,∞), the space variable x ∈ R, a and δ are
strictly positive fixed constants. The constant β > 0 is equal to 1

κ
, where κ is

the thermal conductivity as defined below. The memory kernel g(s) is a convex
summable function on [0,∞) with total mass of

1 =

∫ ∞
0

g(s) ds.

The functions ϕ(x, t), ψ(x, t) and θ(x, t) are the transverse displacement, the
rotation angle of the beam and the temperature difference, respectively. The
system (13) is supplied with the following initial conditions:{

ϕ(x, 0) = ϕ0(x), ϕt(x, 0) = ϕ1(x), ψ(x, 0) = ψ0(x),

ψt(x, 0) = ψ1(x), θ(x, 0) = θ0(x), θt(x, 0) = θ1(x).
(14)

Before, going on, let us recall some results related to our problem. The
Timoshenko–Fourier system

ϕtt − (ϕx − ψ)x = 0,

ψtt − a2ψxx − (ϕx − ψ) + δθx = 0,

θt − θxx + δψtx = 0

(15)

was first studied by Said-Houari and Kasimov in [9] and [10], where the authors
proved in [10] that the solution W = (ϕt, ψt, aψx, ϕx − ψ, θ)T decays with the
rate:

‖∂kxW (t) ‖L2 ≤ C (1 + t)−
1
12
− k

6 ‖W0‖L1 + Ce−ct‖∂kxW0‖L2 , (16)

for a = 1, and

‖∂kxW (t) ‖L2 ≤ C (1 + t)−
1
12
− k

6 ‖W0‖L1 + C (1 + t)−
`
2 ‖∂k+`x W0‖L2 , (17)

for a 6= 1. While, in [9], they showed that the same decay estimates can be ob-

tained with the optimal decay rate (1+ t)−
1
4
− k

2 instead of (1+ t)−
1
12
− k

6 , provided
that an additional frictional damping term of the form λψt(x, t) is considered in
the second equation of (15). They also investigated the Timoshenko–Cattaneo
system

ϕtt − (ϕx − ψ)x = 0,

ψtt − a2ψxx − (ϕx − ψ) + δθx = 0,

θt + qx + δψtx = 0,

τqqt + q + θx = 0.

(18)

and showed in [10] that the same decay rates as (16) and (17) hold for the
solution of (18), but the decay rate is controlled by a new number (found first
in [11])

α = (τq − 1)(1− a2)− τqδ2 (19)
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rather than by a. In fact, they proved that the estimate (16) is obtained under
the assumption α = 0 which is exactly the assumption a = 1 for τq = 0
(Timoshenko–Fourier system). The decay rates in [10] has been improved
recently in [7], for the Timoshenko–Fourier and in [8] for the Timoshenko–
Cattaneo. In both cases, the authors showed an optimal decay rate of the
L2-norm of the solution of the form (1 + t)−

1
8 . Their method was based on re-

finement of the Lyapunov functionals in [10] and on the eigenvalues expansion
technique.

The authors of this paper considered system (13) in [6], and proved that
the same number

αg :=

(
β

g(0)
− 1

)
(1− a2)− δ2 β

g(0)
, (20)

which controls the behavior of the solution in bounded domains [2], also plays
a role in unbounded situation and affects the decay rate of the solution. In
addition, we showed the decay estimates of the solution for αg = 0 and αg 6= 0

and proved that the L2-norm of the solution decays with the rate (1 + t)−
1
12 for

initial data with suitable regularity properties.
The goal of this paper is first: to improve the decay rate obtained in [6]. In

fact we showed that the L2-norm of the solution decays with the optimal rate
(1 + t)−

1
8 rather than (1 + t)−

1
12 . Second, this result extends those in [7, 8] and

showed that they are only particular case of the one obtained here.
This paper is organized as follows: In Section 2, we state the problem.

Section 3 is devoted to the energy method in the Fourier space and to the
construction of the Lyapunov functionals. In Section 4, we prove the main
estimates of the solution in the energy space.

2. Statement of the problem

We are studying the Cauchy problem of the Timoshenko system with Gurtin–
Pipkin heat conduction for the heat flux

ϕtt − (ϕx − ψ)x = 0,

ψtt − a2ψxx − (ϕx − ψ) + δθx = 0,

θt −
1

β

∫ ∞
0

g(s)θxx(t− s) ds+ δψtx = 0.

(21)

Following [1], we introduce the new variable

η(x, t, s) =

∫ s

0

θ(x, t− σ) dσ =

∫ t

t−s
θ(x, σ) dσ, s ≥ 0, t ≥ 0. (22)
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Differentiating (22) with respect to t yields that η satisfies the supplementary
equation

ηt(s) = −ηs(s) + θ(t), η(0) = 0, ∀ t ≥ 0, (23)

which has to be added to system (21). Then, we define the operator Tη = −η′.
From (23), we get the following equation:

ηt = Tη + θ. (24)

Also, we define µ(s) = −g′(s) and assume that µ satisfies the following two
assumptions:

(M1) µ is a nonnegative nonincreasing and absolutely continuous function
on R+ such that

µ(0) = lim
s→0

µ(s) ∈ (0,∞).

(M2) There exists ν > 0 such that the differential inequality

µ′(s) + νµ(s) ≤ 0

holds for almost every s > 0.

With all these new variables, we rewrite system (21) as:

ϕtt − (ϕx − ψ)x = 0,

ψtt − a2ψxx − (ϕx − ψ) + δθx = 0,

θt −
1

β

∫ ∞
0

µ(s)ηxx(s) ds+ δψtx = 0,

ηt = Tη + θ.

(25)

To rewrite the system as a first-order (with respect to t) differential system, we
define new variables, as follows:

v = ϕx − ψ, u = ϕt, z = aψx, y = ψt.

Hence, system (21) takes the form

vt − ux + y = 0,

ut − vx = 0,

zt − ayx = 0,

yt − azx − v + δθx = 0,

θt −
1

β

∫ ∞
0

µ(s)ηxx(s) ds+ δyx = 0,

ηt = Tη + θ.

(26)
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Now, we define the solution

U(x, t) = (v, u, z, y, θ, η)T . (27)

Hence, the initial conditions can be written as

U0(x) = U(x, 0) = U0(v0, u0, z0, y0, θ0, η0)
T . (28)

Now, we may define

g(0) =

∫ ∞
0

µ(s) ds. (29)

Lemma 2.1. The following inequality holds:∣∣∣∣ ∫ ∞
0

µ(s)η̂(s, t) ds

∣∣∣∣2 ≤ g(0)

∫ ∞
0

µ(s)|η̂(s, t)|2ds. (30)

Proof. We have by using Hölder’s inequality

∣∣∣∣ ∫ ∞
0

µ(s)η̂(s, t) ds

∣∣∣∣2 =

∣∣∣∣ ∫ ∞
0

(µ(s))
1
2 (µ(s))

1
2 η̂(s, t) ds

∣∣∣∣2
≤
∣∣∣∣( ∫ ∞

0

µ(s) ds

) 1
2
(∫ ∞

0

µ(s)(η̂(s, t))2ds

) 1
2
∣∣∣∣2

=

(∫ ∞
0

µ(s) ds

)∫ ∞
0

µ(s)|η̂(s, t)|2ds

= g(0)

∫ ∞
0

µ(s)|η̂(s, t)|2ds.

This completes the proof of Lemma 2.1.

Before closing this section, we introduce the following lemma, which will be
used later in the proof of our main result and it can be proved as in [6].

Lemma 2.2. For all k ≥ 0, c ≥ 0, there exists a constant C > 0 such that for
all t ≥ 0 the following estimate holds:∫

|ξ|≤1
|ξ|ke−c|ξ|4tdξ ≤ C(1 + t)−

k+1
4 , ξ ∈ R. (31)
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3. The energy method in the Fourier space

Our goal in this section is to obtain some decay estimates of the Fourier image
of the energy of (26). To achieve this, we use the energy method in the Fourier
space and build some appropriate Lyapunov functionals, which lead eventually
to our desired estimates.

Applying the Fourier transform to (26), we get

v̂t − iξû+ ŷ = 0, (32)

ût − iξv̂ = 0, (33)

ẑt − aiξŷ = 0, (34)

ŷt − aiξẑ − v̂ + δiξθ̂ = 0, (35)

θ̂t +
ξ2

β

∫ ∞
0

µ(s)η̂(s, t) ds+ δiξŷ = 0, (36)

η̂t = T η̂ + θ̂. (37)

Together with the initial data, written in terms of the solution vector
Û(ξ, t) = (v̂, û, ẑ, ŷ, φ̂, ρ̂, θ̂, η̂)T (ξ, t), as

Û(ξ, 0) = Û0(ξ). (38)

The energy functional Ê(ξ, t) associated to the system (32)–(38) is defined as
follows:

Ê(ξ, t) =
1

2

{
|v̂|2 + |û|2 + |ẑ|2 + |ŷ|2 + |θ̂|2 +

ξ2

β

∫ ∞
0

µ(s)|η̂(t, s)|2 ds
}
. (39)

Lemma 3.1. Let (v̂, û, ẑ, ŷ, θ̂, η̂) be the solution of (32)–(38), then the energy
Ê (ξ, t) given by (39) is a nonincreasing function and satisfies, for all t ≥ 0,

d

dt
Ê(ξ, t) =

ξ2

2β

∫ ∞
0

µ′(s)|η̂(t, s)|2ds. (40)

Proof. Multiplying equation (32) by ¯̂v, equation (33) by ¯̂u, equation (34) by ¯̂z,

equation (35) by ¯̂y and equation (36) by
¯̂
θ and taking the real parts, we get

1

2

d

dt
(|v̂|2 + |û|2 + |ẑ|2 + |ŷ|2 + |θ̂|2) = −Re

{
ξ2

β
¯̂
θ(t, ξ)

∫ ∞
0

µ(s)η̂(t, s)ds

}
. (41)

Taking the conjugate of equation (37), then multiplying the resulting equation
by µ(s)η̂(ξ, t, s) and taking the integration with respect to s, we obtain∫ ∞

0

µ(s)η̂(ξ, t, s)¯̂ηt(ξ, t, s) ds

= −
∫ ∞
0

µ(s)η̂(ξ, t, s)¯̂ηs(ξ, t, s) ds+

∫ ∞
0

µ(s)η̂(ξ, t, s)
¯̂
θ(ξ, t) ds.
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Hence, we have

− Re

{
ξ2

β

∫ ∞
0

µ(s)η̂(ξ, t, s)
¯̂
θ(ξ, t) ds

}
= −Re

{
ξ2

β

∫ ∞
0

µ(s)η̂(ξ, t, s)¯̂ηt(ξ, t, s) ds

}
− Re

{
ξ2

β

∫ ∞
0

µ(s)η̂(ξ, t, s)¯̂ηs(ξ, t, s) ds

}
= −1

2

d

dt

{
ξ2

β

∫ ∞
0

µ(s)|η̂(ξ, t, s)|2 ds
}

− Re

{
ξ2

β

∫ ∞
0

µ(s)η̂(ξ, t, s)¯̂ηs(ξ, t, s) ds

}
.

(42)

Integrating the second term in the right-hand side of (42) by parts and using
the assumption (M1) and (22), we have

−ξ
2

β
Re

{∫ ∞
0

µ(s)¯̂ηs(ξ, t, s)η̂(ξ, t, s) ds

}
=
ξ2

2β

∫ ∞
0

µ′(s)|η̂(ξ, t, s)|2ds.

Hence, collecting (41) and (42), then (40) holds.

Proposition 3.2. Let Û(ξ, t) = (v̂, û, ẑ, ŷ, θ̂, η̂) be the solution of (32)–(38) and

αg =

(
β

g(0)
− 1

)
(1− a2)− β

g(0)
δ2. (43)

Then, there exist two positive constants, C and c, such that for all t ≥ 0:

Ê(ξ, t) ≤ CÊ(ξ, 0)e−cρ(ξ)t, (44)

where

ρ(ξ) =


ξ4

(1 + ξ2)2
, if αg = 0,

ξ4

(1 + ξ2)4
, if αg 6= 0.

(45)

We are going to prove Proposition 3.2 by means of several lemmas. Follow-
ing [10], we define the functional

B1(ξ, t) = Re

{
− β

g(0)
v̂ ¯̂y − β

g(0)
aû¯̂z +

(
1

δ2
− a2

δ2
+

β

g(0)

)
δ

¯̂
θû

}
+

1− a2

δg(0)
Re

(
iξ

∫ ∞
0

µ(s)η̂(s)¯̂v ds

)
.

(46)

Then, we have the following lemma, which has been proved in [6, Lemma 3.2].
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Lemma 3.3. The functional B1(ξ, t) satisfies

d

dt
B1(ξ, t)−

β

g(0)
|ŷ|2 +

β

g(0)
|v̂|2

=
αg
δβ

Re

(
ξ2 ¯̂u

∫ ∞
0

µ(s)η̂(s)ds

)
+ αg Re(iξ ¯̂uŷ)

+
1−a2

δg(0)
Re

(
iξ

∫ ∞
0

µ(s)ŷ ¯̂η(s, t) ds

)
+

1−a2

δg(0)
Re

(
iξ

∫ ∞
0

µ′(s)η̂(s)¯̂v ds

)
,

(47)

where

αg :=

(
β

g(0)
− 1

)
(1− a2)− δ2 β

g(0)
. (48)

Following [8], we introduce the functional

B2(ξ, t) = Re

{
− δiξû¯̂v − δξ2

(
v̂ ¯̂y + a¯̂zû

)
− ¯̂
θû− iξ ¯̂

θŷ − (a2 − 1)ξ2
¯̂
θû

}
. (49)

Then, we have the following lemma.

Lemma 3.4. The functional B2(ξ, t) satisfies

d

dt
B2(ξ, t)+δξ2|û|2

= (1−a2−δ2) Re(iξ3 ¯̂vθ̂)−aRe(ξ2ẑ
¯̂
θ)+δξ2|θ̂|2+Re

(
ξ2

β
¯̂u

∫ ∞
0

µ(s)η̂(s, t) ds

)
+(a2−1) Re

(
ξ4

β
¯̂u

∫ ∞
0

µ(s)η̂(s, t) ds

)
+Re

(
iξ3

β
¯̂y

∫ ∞
0

µ(s)η̂(s, t) ds

)
.

(50)

Proof. Multiplying equation (32) by −¯̂y and equation (35) by −¯̂v, adding the
results and taking the real part, we have

− d

dt
Re(v̂ ¯̂y)− |ŷ|2 + |v̂|2 = −Re(iξû¯̂y)− Re(aiξ ¯̂vẑ) + Re(δiξθ̂¯̂v). (51)

Multiplying equation (33) by −a¯̂z and equation (34) by −a¯̂u, adding the results
and taking the real part, we find

− d

dt
Re(aû¯̂z) = −Re(aiξv̂ ¯̂z)− Re(a2iξ ¯̂uŷ). (52)

Multiplying equation (33) by δ
¯̂
θ and equation (36) by δ ¯̂u, adding the results

and taking the real part, we obtain

d

dt
Re(δ

¯̂
θû) = Re(δiξ

¯̂
θv̂)− Re

(
δξ2

β
¯̂u

∫ ∞
0

µ(s)η̂(s) ds

)
− Re(δ2iξ ¯̂uŷ). (53)
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Next, multiplying (32) and (33) by−iξ ¯̂u and iξ ¯̂v, respectively. Then, adding
the results and taking the real part, we obtain

d

dt
Re
(
iξû¯̂v) + ξ2|v̂|2 = ξ2|û|2 + Re(iξ ¯̂uŷ). (54)

Multiplying equation (35) and (36) by iξ
¯̂
θ and −iξ ¯̂y, respectively. Adding the

results and taking the real part, we obtain

− d

dt
Re
(
iξ

¯̂
θŷ
)
− Re

(
iξ3

β
¯̂y

∫ ∞
0

µ(s)η̂(s, t) ds

)
+ δξ2|ŷ|2 + Re(aξ2

¯̂
θẑ)− Re(iξ

¯̂
θv̂)− δξ2|θ̂|2 = 0.

(55)

Now, computing δξ2((51) + (52))− 1
δ

(
1 + (a2 − 1)ξ2

)
(53)− δ(54) + (55), then,

we obtain (50). This completes the proof of Lemma 3.4.

Now, we need to eliminate the term (1 − a2 − δ2)ξ3 Re(i¯̂vθ̂) in (50), to do
so we define the functional

B3(ξ, t) = B2(ξ, t) +
ξ2

g(0)
(1− a2 − δ2) Re

(
i¯̂v

∫ ∞
0

µ(s)η̂(s, t) ds

)
.

and we have the following lemma.

Lemma 3.5. The functional B3(ξ, t) satisfies:

d

dt
B3(ξ, t) + δξ2|û|2

= −aξ2 Re(ẑ
¯̂
θ) + δξ2|θ̂|2 +

ξ3

g(0)
(1− a2 − δ2) Re

(
i¯̂v

∫ ∞
0

µ′(s)η̂(s, t) ds

)
+
ξ2

β
Re

(
¯̂u

∫ ∞
0

µ(s)η̂(s, t) ds

)
+ ξ4

αg
β

Re

(
¯̂u

∫ ∞
0

µ(s)η̂(s, t) ds

)
+ ξ3

(αg − a2)
β

Re

(
i¯̂y

∫ ∞
0

µ(s)η̂(s, t) ds

)
,

(56)

Proof. We multiply (32) and (37) by −iξµ(s)¯̂η(s, t) and iξµ(s)¯̂v, respectively.
Adding the results and taking the integration with respect to s then, taking the
real part, we have

d

dt
Re

(
iξ ¯̂v

∫ ∞
0

µ(s)η̂(s, t) ds

)
= Re

(
ξ2
∫ ∞
0

µ(s)û¯̂η(s, t) ds

)
+ Re

(
iξ

∫ ∞
0

µ(s)ŷ ¯̂η(s, t) ds

)
+ Re

(
iξ

∫ ∞
0

µ(s)T η̂¯̂v ds

)
+ Re

(
iξ

∫ ∞
0

µ(s)θ̂¯̂v ds

)
.

(57)
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Furthermore, using (38), the last term in the above identity can be written

as Re
(
iξ
∫∞
0
µ(s)

¯̂
θv̂ ds

)
= Re

(
iξ

¯̂
θv̂
∫∞
0
µ(s) ds

)
= g(0) Re(iξ

¯̂
θv̂). Also, an inte-

gration by parts leads to Re
(
iξ
∫∞
0
µ(s)T η̂¯̂v ds

)
= Re

(
iξ
∫∞
0
µ′(s)η̂(s, t)¯̂v ds

)
.

Hence, (57) can be rewritten as

d

dt
Re

(
iξ ¯̂v

∫ ∞
0

µ(s)η̂(s, t) ds

)
= Re

(
ξ2
∫ ∞
0

µ(s)û¯̂η(s, t) ds

)
+ Re

(
iξ

∫ ∞
0

µ(s)ŷ ¯̂η(s, t) ds

)
+ Re

(
iξ

∫ ∞
0

µ′(s)η̂(s, t)¯̂v ds

)
+ g(0) Re(iξ

¯̂
θv̂).

(58)

Now, we compute ξ2

g(0)
(1−a2−δ2)(58)+(50), then we have (56). This completes

the proof of Lemma 3.5.

Define the functional

B4(ξ, t) = Re(iξŷ
¯̂
θ). (59)

Then, we have the following lemma, where its proof has been given in
[6, Lemma 3.4]

Lemma 3.6. The functional B4(ξ, t) can be estimated as follows:

d

dt
B4(ξ, t)+(δ−ε1)ξ2|ŷ|2

≤ε′1
ξ2

1+ξ2
|ẑ|2+C(ε′1)(1+ξ2)|θ̂|2+ε′1ξ2|v̂|2+C(ε1)ξ

2g(0)

∫ ∞
0

ξ2µ(s)|η̂(s, t)|2ds,
(60)

where ε1 and ε′1 are two arbitrary positive constants.

Following [8], we define the functional

B5(ξ, t) = −δξRe
(
i¯̂yẑ) + a

(
− ξRe

(
i
¯̂
θŷ
)
− Re

( ¯̂
θû
))
− δ

a
Re
(
a¯̂zû
)
. (61)

Thus, we have the following lemma.

Lemma 3.7. The functional B5(ξ, t) satisfies:

d

dt
B5(ξ, t) + δaξ2|ẑ|2

= aδξ2|θ̂|2 + (δ2 − a2)ξ2 Re(¯̂zθ̂) +
aξ3

β
Re

(
i¯̂y

∫ ∞
0

µ(s)η̂(s, t) ds

)
+
aξ2

β
Re

(
¯̂u

∫ ∞
0

µ(s)η̂(s, t) ds

)
.

(62)
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Proof. Multiplying (34) by iξ ¯̂y and (35) by −iξ ¯̂z, we get

d

dt
Re
(
iξ ¯̂yẑ) + aξ2|ŷ|2 − aξ2|ẑ|2 = −Re(iξv̂ ¯̂z)− δξ2 Re(iξθ̂ ¯̂z) (63)

Now, computing −δ(63)− a
δ
(53) + δ

a
(52) + a(55), then (62) holds.

As in [6], define the functional, then we have (see [6, Lemma 3.5])

B6(ξ, t) = −ξ2 Re

(
θ̂

∫ ∞
0

µ(s)¯̂η(s, t) ds

)
. (64)

Lemma 3.8. Let Û(ξ, t) be the solution of (32)–(38). Then, the functional
B6(ξ, t) satisfies for all t ≥ 0,

d

dt
B6(ξ, t) + (g(0)− ε6)ξ2|θ̂|2

≤ ε5
ξ4

1 + ξ2
|ŷ|2 + C(ε5)(1 + ξ2)g(0)

∫ ∞
0

ξ2µ(s)|η̂(s, t)|2 ds

+ C(ε6)g
′(0)

∫ ∞
0

ξ2µ′(s)|η̂(s, t)|2 ds,

(65)

where ε5 and ε6 are arbitrary positive constants.

3.1. Proof of Proposition 3.2. We divide the proof of Proposition 3.2 into
two cases, according to the value of αg.

Case one: αg = 0. Set αg = 0 in (47), then, we obtain

d

dt
B1(ξ, t)−

β

g(0)
|ŷ|2 +

β

g(0)
|v̂|2

=
1−a2

δg(0)
Re

(
iξ

∫ ∞
0

µ(s)ŷ ¯̂η(s, t) ds

)
+

1−a2

δg(0)
Re

(
iξ

∫ ∞
0

µ′(s)η̂(s)¯̂v ds

)
.

(66)

Now, applying Young’s inequality, we find, for any ε3 > 0,∣∣∣∣Re

(
iξ

∫ ∞
0

µ(s)¯̂η(s, t)ŷ ds

)∣∣∣∣ ≤ ε3|ŷ|2 + C(ε3)ξ
2

∣∣∣∣ ∫ ∞
0

µ(s)η̂(s) ds

∣∣∣∣2
≤ ε3|ŷ|2 + C(ε3)g(0)

∫ ∞
0

ξ2µ(s)|η̂(s, t)|2 ds

and∣∣∣∣Re

(
iξ

∫ ∞
0

µ′(s)η̂(s)¯̂v ds

)∣∣∣∣ ≤ ε3|v̂|2 + C(ε3)ξ
2

∣∣∣∣ ∫ ∞
0

µ′(s)η̂(s) ds

∣∣∣∣2
≤ ε3|v̂|2 + C(ε3)g

′(0)

∫ ∞
0

ξ2µ′(s)|η̂(s, t)|2 ds.



Optimal Decay Rate of Solutions to Timoshenko System 449

Hence, taking the above estimates into account, then (66) can be estimated as:

d

dt
B1(ξ, t) +

(
β

g(0)
− ε3

)
|v̂|2

≤ C(ε3)

(
|ŷ|2 + g′(0)

∫ ∞
0

ξ2µ′(s)|η̂(s, t)|2 ds+ g(0)

∫ ∞
0

ξ2µ(s)|η̂(s, t)|2 ds
)
.

(67)

Also, substituting αg = 0 in (56) we have

d

dt
B3(ξ, t) + δξ2|û|2

= −aξ2 Re(ẑ
¯̂
θ) + δξ2|θ̂|2 +

ξ3

g(0)
(1− a2 − δ2) Re

(
i¯̂v

∫ ∞
0

µ′(s)η̂(s, t) ds

)
+
ξ2

β
Re

(
¯̂u

∫ ∞
0

µ(s)η̂(s, t) ds

)
− ξ3a

2

β
Re

(
i¯̂y

∫ ∞
0

µ(s)η̂(s, t) ds

)
.

(68)

Next, we define the functional

B7(ξ, t) = B3(ξ, t) + aB5(ξ, t).

Adding the above estimates (68) and (62), we get

d

dt
B7(ξ, t) + δξ2|û|2 + δa2ξ2|ẑ|2

= a(δ2 − a2 − 1)ξ2 Re(ẑ
¯̂
θ) + δ(a2 + 1)ξ2|θ̂|2

+
ξ3

g(0)
(1− a2 − δ2) Re

(
i¯̂v

∫ ∞
0

µ′(s)η̂(s, t) ds

)
+
a2 + 1

β
ξ2 Re

(
¯̂u

∫ ∞
0

µ(s)η̂(s, t) ds

)
.

(69)

Applying Young’s inequality, we have |a(δ2 − a2 − 1) Re(ξ2ẑ
¯̂
θ)| ≤ ε2ξ

2 |ẑ|2 +
C(ε2)ξ

2|θ̂|2. Also, Young’s inequality together with (30) gives∣∣∣∣a2+1

β
Re

(
ξ2 ¯̂u

∫ ∞
0

µ(s)η̂(s, t) ds

)∣∣∣∣ ≤ ε′2ξ
2|û|2 + C(ε′2)g(0)

∫ ∞
0

ξ2µ(s)|η̂(s, t)|2 ds,

Similarly, ∣∣∣∣ 1

g(0)
(1− a2 − δ2) Re

(
iξ3 ¯̂v

∫ ∞
0

µ′(s)η̂(s, t) ds

)∣∣∣∣
≤ ε′2

ξ4

1 + ξ2
|v̂|2 + C(ε′2)(1 + ξ2)g′(0)

∫ ∞
0

ξ2µ′(s)|η̂(s, t)|2ds.
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Inserting the above estimates into (69), then we get

d

dt
B7(ξ, t) + (δ − ε′2)ξ2|û|2 + (δa2 − ε2)ξ2|ẑ|2

≤ C(ε2)ξ
2|θ̂|2 + ε′2

ξ4

1 + ξ2
|v̂|2 + C(ε′2)(1 + ξ2)g(0)

∫ ∞
0

ξ2µ(s)|η̂(s, t)|2ds

+ C(ε′2)(1 + ξ2)g′(0)

∫ ∞
0

ξ2µ′(s)|η̂(s, t)|2ds,

(70)

Now, we are ready to define the Lyapunov functional

L1(ξ, t) =
γ1

1 + ξ2
B7(ξ, t) + γ2

ξ2

(1 + ξ2)2
B4(ξ, t)

+
γ3

1 + ξ2
B6(ξ, t) + γ4

ξ4

(1 + ξ2)2
B1(ξ, t),

(71)

where γ1, γ2, γ3 and γ4 are positive constants to be fixed later.
On the other hand, assumption (M2), leads to∫ ∞

0

ξ2µ(s)|η̂(s, t)|2 ds ≤ 1

ν

∫ ∞
0

(−µ′(s))ξ2|η̂(s, t)|2 ds. (72)

Consequently, taking the derivative of L1(ξ, t) with respect to t, using (60),
(65), (67) and (70) and keeping in mind (72), we get

d

dt
L1(ξ, t) +

ξ4

(1 + ξ2)2

[
(δ − ε1)γ2 − ε5γ3 − C(ε3)γ4

]
|ŷ|2

+
ξ4

(1 + ξ2)2

[(
β

g(0)
− ε3

)
γ4 − ε′2γ1 − ε′1γ2

]
|v̂|2

+
ξ2

1 + ξ2

[
(g(0)− ε6)γ3 − C(ε2)γ1 − C(ε′1)γ2

]
|θ̂|2

+
ξ2

1 + ξ2
(δ − ε′2)γ1|û|2 +

ξ2

1 + ξ2

[
(δa2 − ε2)γ1 − ε′1γ2

]
|ẑ|2

− C1

∫ ∞
0

(−µ′(s))ξ2|η̂(s, t)|2 ds

≤ 0,

(73)

where C1 is a generic positive constant that depends on εi, γj and ν, yet is
independent on t and ξ. Now, we choose the constants in (73) very carefully in
order to make all the coefficients (except the last one) in (73) positive. Let us
fix ε1, ε2, ε

′
2, ε3 and ε6 small enough such that

ε1 < δ, ε2 < δa2, ε′2 < δ, ε3 <
β

g(0)
, ε6 < g(0).
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We take γ1 = 1 and choose γ4 large enough such that γ4 >
ε′2

β
g(0)
−ε3

. Now, take γ2

large enough such that γ2 >
C(ε3)γ4
δ−ε1 . Next, choose ε′1 small enough such that

ε′1 < min

(δa2 − ε2)
γ2

,

(
β
g(0)
− ε3

)
γ4 − ε′2

γ2


Furthermore, we select γ3 large enough such that γ3 >

C(ε2)+C(ε3)γ2
g(0)−ε6 . Finally, we

choose ε5 small enough such that

ε5 <
(δ − ε1)γ2 − C(ε′1)γ4

γ3
.

Consequently, we deduce that there exists a positive constant η1 > 0 such that

d

dt
L1(ξ, t) + η1Q1(ξ, t) ≤ C1

∫ ∞
0

(−µ′(s))ξ2|η̂(s, t)|2 ds, (74)

where

Q1(ξ, t) =
ξ4

(1 + ξ2)2
(
|v̂|2 + |ŷ|2

)
+

ξ2

1 + ξ2

(
|û|2 + |ẑ|2 + |θ̂|2

)
. (75)

It is straightforward to see that

Q1(ξ, t) ≥
ξ4

(1 + ξ2)2

(
|v̂|2 + |ŷ|2 + |û|2 + |ẑ|2 + |θ̂|2

)
. (76)

Now, we define the Lyapunov functional

L1(ξ, t) = NÊ(ξ, t) + L1(ξ, t), (77)

where N is a large positive constant that will be chosen later on. Using (40)
and (74), the functional L1(ξ, t) satisfies the estimate

d

dt
L1(ξ, t) + η1Q1(ξ, t) +

(N
2β
− C1

)∫ ∞
0

(−µ′(s))ξ2|η̂(t, s)|2 ds ≤ 0. (78)

By choosing N large enough such that N > 2βC1, and exploiting the estimate
(72), we deduce from (39) and (76) that there exists a positive constant η2 such
that

d

dt
L1(ξ, t) + η2

ξ4

(1 + ξ2)2
Ê(ξ, t) ≤ 0, ∀t ≥ 0. (79)

Now, using (77) and (71), together with the definitions of all functionals
involved in (71), we deduce that there exist two positive constants β1 and β2,
such that, for all t ≥ 0,

β1Ê(ξ, t) ≤ L1(ξ, t) ≤ β2Ê(ξ, t). (80)
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Combining (79) and (80), we find that for all t ≥ 0, we have

d

dt
L1(ξ, t) ≤ −

η2
β2

ξ4

(1 + ξ2)2
L1(ξ, t), ∀t ≥ 0. (81)

Applying Gronwall’s lemma and using (80) once again, then (44) holds.

Case two: αg 6= 0. In this case, we estimate the terms involving αg in (47)
as follows:

|αg Re(iξ ¯̂uŷ)| ≤ ε′3
2
ξ2|û|2 + C(ε′3)|ŷ|2,∣∣∣∣αgδβ Re

(
ξ2 ¯̂u

∫ ∞
0

µ(s)η̂(s) ds

)∣∣∣∣ ≤ ε′3
2
ξ2|û|2 + C(ε′3)g(0)

∫ ∞
0

ξ2µ(s)|η̂(s, t)|2 ds,

where we have applied Young’s inequality, for an arbitrary ε′3 > 0. Hence,
taking the above estimates into account, then (47) can be written as:

d

dt
B1(ξ, t) +

(
β

g(0)
− ε3

)
|v̂|2 ≤ ε′3ξ

2|û|2 + C(ε3, ε
′
3)|ŷ|2

+ C(ε3, ε
′
3)g(0)

∫ ∞
0

ξ2µ(s)|η̂(s, t)|2 ds

+ C(ε3)g
′(0)

∫ ∞
0

ξ2µ′(s)|η̂(s, t)|2 ds.

(82)

Also, we have from [6] (see the estimate [6, (3.27)])

d

dt
Re(iξŷ

¯̂
θ) + δξ2(|ŷ|2 − |θ̂|2)− 1

β
Re

(
iξ3 ¯̂y

∫ ∞
0

µ(s)η̂(s) ds

)
= −Re(aξ2

¯̂
θẑ) + Re(iξ

¯̂
θv̂).

(83)

Applying Young’s inequality, we have, for any ε1, ε
′
1 > 0,

|Re(aξ2
¯̂
θẑ)| ≤ ε′1

ξ4

1 + ξ2
|ẑ|2 + C(ε′1)(1 + ξ2)|θ̂|2,

|Re(iξ
¯̂
θv̂)| ≤ ε′1

ξ2

1 + ξ2
|v̂|2 + C(ε′1)(1 + ξ2)|θ̂|2.

and∣∣∣∣Re

(
i
ξ3

β
¯̂y

∫ ∞
0

µ(s)η̂(s) ds

)∣∣∣∣ ≤ ε1ξ
2|ŷ|2 + C(ε1)ξ

4g(0)

∫ ∞
0

µ(s)|η̂(s, t)|2ds.

Plugging the above estimates into (83), we obtain

d

dt
B4(ξ, t)+(δ−ε1)ξ2|ŷ|2≤C(ε1)ξ

2g(0)

∫ ∞
0

ξ2µ(s)|η̂(s, t)|2 ds

+C(ε′1)(1+ξ2)|θ̂|2+ε′1
ξ4

1+ξ2
|ẑ|2+ε′1

ξ2

1+ξ2
|v̂|2,

(84)
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On the other hand, we can modify the estimate (65) as follows (see the estimate
[6, (3.51)]):

d

dt
B6(ξ, t) + (g(0)− ε6)ξ2|θ̂|2

≤ ε5
ξ4

(1 + ξ2)2
|ŷ|2 + C(ε5)g(0)(1 + ξ2)2

∫ ∞
0

ξ2µ(s)|η̂(s, t)|2 ds

+ C(ε6)g
′(0)

∫ ∞
0

ξ2µ′(s)|η̂(s, t)|2 ds,

(85)

Finally, we define
B8(ξ, t) = B3(ξ, t) + B5(ξ, t).

Summing up (56) and (62), we get

d

dt
B8(ξ, t) + δξ2|û|2 + δaξ2|ẑ|2

= (δ2 − a2 − a)ξ2 Re(ẑ
¯̂
θ) + δ(a+ 1)ξ2|θ̂|2

+
ξ3

g(0)
(1− a2 − δ2) Re

(
i¯̂v

∫ ∞
0

µ′(s)η̂(s, t) ds

)
+
ξ2

β
Re

(
¯̂u

∫ ∞
0

µ(s)η̂(s, t) ds

)
+ ξ4

(αg+a)

β
Re

(
¯̂u

∫ ∞
0

µ(s)η̂(s, t) ds

)
+ ξ3

(αg−a2+a)

β
Re

(
i¯̂y

∫ ∞
0

µ(s)η̂(s, t) ds

)
.

(86)

Applying Young’s inequality we have |(δ2 − a2 − a) Re(ξ2ẑ
¯̂
θ)| ≤ ε2ξ

2 |ẑ|2 +
C(ε2)ξ

2|θ̂|2, and∣∣∣∣(αg − a2 + a)

β
Re

(
iξ3 ¯̂y

∫ ∞
0

µ(s)η̂(s, t) ds

)∣∣∣∣
≤ ε′2

ξ2

1 + ξ2
|ŷ|2 + C(ε′2)ξ

2(1 + ξ2)g(0)

∫ ∞
0

ξ2µ(s)|η̂(s, t)|2ds.

Similarly, ∣∣∣∣ξ2 + (αg + a)ξ4

β
Re

(
¯̂u

∫ ∞
0

µ(s)η̂(s, t) ds

)∣∣∣∣
≤ ε′2ξ

2|û|2 + C(ε′2)(1 + ξ2)2g(0)

∫ ∞
0

ξ2µ(s)|η̂(s, t)|2 ds,

and ∣∣∣∣ ξ3g(0)
(1− a2 − δ2) Re

(
iξ3 ¯̂v

∫ ∞
0

µ′(s)η̂(s, t) ds

)∣∣∣∣
≤ ε′2

ξ2

(1 + ξ2)
|v̂|2 + C(ε′2)ξ

2(1 + ξ2)g′(0)

∫ ∞
0

ξ2µ′(s)|η̂(s, t)|2ds.
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Using the above estimates we write

d

dt
B8(ξ, t) + (δ − ε′2)ξ2|û|2 + (δa− ε2)ξ2|ẑ|2

≤ C(ε2)ξ
2|θ̂|2 + ε′2

ξ2

1 + ξ2
|ŷ|2 + ε′2

ξ2

(1 + ξ2)
|v̂|2

+ C(ε′2)(1 + ξ2)2g(0)

∫ ∞
0

ξ2µ(s)|η̂(s, t)|2ds

+ C(ε′2)ξ
2(1 + ξ2)g′(0)

∫ ∞
0

ξ2µ′(s)|η̂(s, t)|2ds.

(87)

Now, we define the functional

L2(ξ, t) = λ1
ξ2

(1 + ξ2)2
B8(ξ, t) + λ2

ξ2

(1 + ξ2)2
B4(ξ, t)

+
λ3

1 + ξ2
B6(ξ, t) + λ4

ξ4

(1 + ξ2)3
B1(ξ, t),

(88)

where λ1, λ2, λ3 and λ4 are positive constants to be fixed later. Taking the
derivative of L2(ξ, t) with respect to t and using the inequalities (82), (84), (85)
and (87), we have

d

dt
L2(ξ, t) +

ξ4

(1 + ξ2)2

[
(δ − ε1)λ2 − ε′2λ1 − ε5λ3 − C(ε3, ε

′
3)λ4

]
|ŷ|2

+
ξ4

(1 + ξ2)2

[
(δ − ε′2)λ1 − ε′3λ4

]
|û|2 +

ξ4

(1 + ξ2)2

[
(δa− ε2)λ1 − ε′1λ2

]
|ẑ|2

+
ξ4

(1 + ξ2)3

[(
β

g(0)
− ε3

)
λ4 − ε′2λ1 − ε′1λ2

]
|v̂|2

+
ξ2

1 + ξ2

[
(g(0)− ε6)λ3 − C(ε2)λ1 − C(ε′1)λ2

]
|θ̂|2

− C(1 + ξ2)

∫ ∞
0

ξ2(−µ′(s))|η̂(s, t)|2 ds

≤ 0,

(89)

where we have made use of (72). Here as before, C is a generic positive constant
that depends on εi, γj and ν, yet is independent on t and ξ.

As we did in Case one, we fix ε1, ε2, ε
′
2, ε3 and ε6 as follows:

ε1 < δ, ε2 < δa, ε′2 < δ, ε3 <
β

g(0)
, ε6 < g(0).

Also, we choose λi as we did for γi. That is we fix λ1 = 1 and choose λ4 large

enough such that λ4 >
ε′2

β
g(0)
−ε3

. Once λ4 is fixed, we choose ε′3 small enough such
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that ε′3 <
δ−ε′2
λ4
. Next, we choose λ2 large enough such that λ2 >

ε′2+C(ε3,ε′3)λ4
δ−ε1 .

Then, we fix ε′1 small enough such that

ε′1 < min

δa2 − ε2λ2
,

(
β
g(0)
− ε3

)
λ4 − ε′2

λ2

 .

Now, we select λ3 large enough such that λ3 >
C(ε2)+C(ε′1)λ2

g(0)−ε6 . Finally, we take ε5
small enough such that

ε5 <
(δ − ε1)λ2 − ε3λ1 − C(ε3, ε

′
3)λ4

λ1
.

Consequently, we deduce that there exists a positive constant η3 > 0, such that

d

dt
L2(ξ, t) + η3Q2(ξ, t) ≤ C(1 + ξ2)

∫ ∞
0

ξ2(−µ′(s))|η̂(s, t)|2 ds, (90)

where

Q2(ξ, t) =
ξ4

(1 + ξ2)2

(
|û|2 + |ŷ|2 + |ẑ|2

)
+

ξ4

(1 + ξ2)3
|v̂|2 +

ξ2

1 + ξ2
|θ̂|2. (91)

It is straightforward to see that

Q2(ξ, t) ≥
ξ4

(1 + ξ2)3

(
|û|2 + |ẑ|2 + |v̂|2 + |ŷ|2 + |θ̂|2

)
. (92)

Now, we define the functional

L2(ξ, t) = M(1 + ξ2)Ê(ξ, t) + L2(ξ, t), (93)

where M is a large positive number that will be chosen later. Using (40)
and (90), the functional L2(ξ, t) satisfies the estimate

d

dt
L2(ξ, t)+η3Q2(ξ, t)+

(
M

2β
−C

)
(1+ξ2)

∫ ∞
0

ξ2(−µ′(s))|η̂(t, s)|2 ds ≤ 0. (94)

By choosing M large enough such that M > 2Cβ, we deduce from (39) and
(92) that for M large enough, there exists a positive constant η4 such that

d

dt
L2(ξ, t) + η4

ξ4

(1 + ξ2)3
Ê(ξ, t) ≤ 0, ∀t ≥ 0. (95)

Now, using (93) and (88), together with the definitions of all functionals involved
in (88) for all ξ ∈ R, we deduce that there exist two positive constants β3 and β4,
such that, for all t ≥ 0,

β3(1 + ξ2)Ê(ξ, t) ≤ L2(ξ, t) ≤ β4(1 + ξ2)Ê(ξ, t). (96)
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Combining (95) and (96), we have

d

dt
L2(ξ, t) ≤ −

η4
β4

ξ4

(1 + ξ2)4
L2(ξ, t), ∀t ≥ 0. (97)

Applying Gronwall’s lemma and again using (94), then (44) holds. This com-
pletes the proof of Proposition 3.2.

4. The Decay estimate

In this section, we derive the decay rates of the energy of (25).

Theorem 4.1. Let s be a nonnegative integer, αg =
(

β
g(0)
− 1
)
(1− a2)− δ2 β

g(0)

as in (48), and assume that Es(0) and sup|ξ|≤1{Ê(ξ, 0)} are bounded. Then, the

energy Ek(t), defined by

Ek(t) = Ek(t) +
1

β

∫ ∞
0

µ(s)

∫
R
|∂kxη(x, t, s)|2 dxds, (98)

where for all k ≥ 0,

Ek(t) :=
1

2

∫
R

{
(∂kxϕt)

2 + (∂kxψt)
2 + (∂kx(ϕx − ψ))2 + a2(∂kxψx)

2
}

(x, t) dx, (99)

satisfies the following decay estimates:

• if αg = 0

Ek(t) ≤ C sup
|ξ|≤1
{Ê(ξ, 0)}(1 + t)−

1
4
− k

2 + Ce−ctEk(0), (100)

• if αg 6= 0

Ek(t) ≤ C sup
|ξ|≤1
{Ê(ξ, 0)}(1 + t)−

1
4
− k

2 + C(1 + t)−
`
2Ek+`(0), (101)

where k and ` are nonnegative integers satisfying k + ` ≤ s and C and c are
positive constants.

Remark 4.2. We should mention here that for αg 6= 0, the decay rate of the
high-frequency part (the last term in (101)) is slower than the one obtained in
[7,8] which is (1 + t)−`, but since ` is a positive integer, then for example to get

the decay estimate of (1 + t)−
1
8 of the L2-norm, in both situations, the initial

data should be in L1 ∩ H1. Thus, the faster decay rate (1 + t)−` obtained in
[7,8] will not give any improvement for the regularity of the initial data (at least
the regularity required for the decay rate of L2-norm and the H1-norm of the
solution). However, there is a slightly difference for the regularity assumption
for some higher-order terms such as the H2-norm of the solution.
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Proof of Theorem 4.1. Case one: αg = 0. In this case, using (45), we have

ρ(ξ) ≥

{
cξ4 for |ξ| ≤ 1,

c for |ξ| ≥ 1.
(102)

Applying the Plancherel theorem together with inequality (44), we have:

Ek(t) =

∫
R
|ξ|2kÊ(ξ, t) dξ

≤ C

∫
R
|ξ|2ke−cρ(ξ)tÊ(ξ, 0) dξ

= C

∫
|ξ|≤1
|ξ|2ke−cρ(ξ)tÊ(ξ, 0) dξ + C

∫
|ξ|≥1
|ξ|2ke−cρ(ξ)tÊ(ξ, 0) dξ

= I1(t) + I2(t).

Here, we split the integral into two parts, so that I1(t) is the low-frequency part
where |ξ| ≤ 1 and I2(t) is the high-frequency part where |ξ| ≥ 1. Using the first
inequality in (102), we can estimate I1(t) as:

I1(t) = C

∫
|ξ|≤1
|ξ|2ke−cρ(ξ)tÊ(ξ, 0) dξ

≤ C

∫
|ξ|≤1
|ξ|2ke−cξ4tÊ(ξ, 0) dξ

≤ C sup
|ξ|≤1
{Ê(ξ, 0)}

∫
|ξ|≤1
|ξ|2ke−cξ4t dξ.

(103)

Finally, using Lemma 2.2, we obtain

I1(t) ≤ C sup
|ξ|≤1
{Ê(ξ, 0)}(1 + t)−

1
4
− k

2 . (104)

Using the second inequality of (102), we can find the estimate for I2(t) as follows:

I2(t)=C

∫
|ξ|≥1
|ξ|2ke−cρ(ξ)tÊ(ξ,0) dξ=Ce−ct

∫
|ξ|≥1
|ξ|2kÊ(ξ,0) dξ≤Ce−ctEk(0). (105)

Now, a collection of the estimates (104) and (105) shows that estimate (100)
holds.

Case two: αg 6= 0 in this case ρ(ξ) can be written as

ρ(ξ) ≥

{
cξ4 for |ξ| ≤ 1,

cξ−4 for |ξ| ≥ 1.
(106)
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Applying again the Plancherel theorem together with inequality (44), we have

Ek(t) =

∫
R
|ξ|2kÊ(ξ, t) dξ

≤ C

∫
R
|ξ|2ke−cρ(ξ)tÊ(ξ, 0) dξ

= C

∫
|ξ|≤1
|ξ|2ke−cρ(ξ)tÊ(ξ, 0) dξ + C

∫
|ξ|≥1
|ξ|2ke−cρ(ξ)tÊ(ξ, 0) dξ

= J1(t) + J2(t).

As we did before, we split the integral into two parts, J1(t) the low-frequency
part where |ξ| ≤ 1 and J2(t) the high-frequency part where |ξ| ≥ 1. Using the
first inequality in (106) we can estimate J1(t) exactly as in Case one. Now,
J2(t) can be estimated using the second inequality in (106) as

J2(t) = C

∫
|ξ|≥1
|ξ|2ke−cρ(ξ)tÊ(ξ, 0) dξ

≤ C

∫
|ξ|≥1
|ξ|2kecξ−4tÊ(ξ, 0) dξ

≤ C sup
|ξ|≥1
{|ξ|−2`ecξ−4t}

∫
R
|ξ|2(`+k)Ê(ξ, 0) dξ

≤ C(1 + t)−
`
2Ek+`(0),

(107)

where we have used the estimate sup|ξ|≥1{|ξ|−2`ec|ξ|
−4t} ≤ C(1 + t)−

`
2 Now,

adding estimates (104) and (107), then estimate (101) holds.

Remark 4.3. As we have said in the introduction, the Timoshenko–Fourier
and Timoshenko–Cattaneo are only particular cases of the result in this paper
and since it has been proved in [7, 8], by using the eigenvalues expansion, that

the decay rate (1 + t)−
1
8 is optimal. Then, it is not possible to improve the

decay in this paper for initial data U0 ∈ L1(R) with
∫
R U0(x) dx 6= 0.
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