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A Note on Leighton’s Variational Lemma
for Fractional Laplace Equations
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Abstract. In this note, we establish Leighton’s variational lemma for fractional
Laplace equations. We use the classical techniques to establish this variational lemma.
We also point out several questions concerning the zeros of the solutions to fractional
Laplace equations which play an important role in the qualitative theory of fractional
Laplace equations.
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1. Introduction

In this note, we are interested to establish Leighton’s variational lemma for the
fractional Laplace equation

(−∆)su− a(x)u = 0 in Ω; u = 0 in Rn\Ω, (1)

where a ∈ L∞(Ω), Ω is an open bounded subset of Rn with smooth boundary,
n > 2s (0 < s < 1) and (−∆)s stands for the fractional Laplacian. The choice
of n > 2s is specified later.

In the recent years, there have been a good amount of research works on
the fractional Laplace equations dealing with existence, multiplicity and regu-
larity questions but to the best of our knowledge, there are not many results
available which deal with qualitative behavior of the solutions such as Sturm–
Picone theorem. We refer to a very recent paper [6] which deals with qualitative
behaviours of fractional equations.

Let us recall that in 1836, Sturm [22] established the first important com-
parison theorem which deals with a pair of linear ODEs

lx ≡ (p1(t)x′(t))′ + q1(t)x(t) = 0. (2)

Ly ≡ (p2(t)y′(t))′ + q2(t)y(t) = 0, (3)
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on a bounded interval (t1, t2), where p1, p2, q1, q2 are real-valued continuous
functions and p1(t) > 0, p2(t) > 0 on [t1, t2] ⊂ (0,∞). The original Sturm’s
comparison theorem [22] reads as

Theorem 1.1 (Sturm’s comparison theorem). Suppose p1(t) = p2(t) and
q1(t) > q2(t), ∀ t ∈ (t1, t2). If there exists a nontrivial real solution y of (3)
such that y(t1) = 0 = y(t2), then every real solution of (2) has at least one zero
in (t1, t2).

In 1909, Picone [18] modified Sturm’s theorem. The modification reads as

Theorem 1.2 (Sturm–Picone theorem). Suppose that p2(t) ≥ p1(t) and
q1(t) ≥ q2(t), ∀ t ∈ (t1, t2). If there exists a nontrivial real solution y of (3)
such that y(t1) = 0 = y(t2), then every real solution of (2) unless a constant
multiple of y has at least one zero in (t1, t2).

In 1962, Leighton [15] proved a comparison theorem to the above pair of
equations (2), (3). He showed that Sturm and Sturm–Picone theorems may be
regarded as special cases of this theorem. In order to prove his theorem, he
defined the quadratic functionals associated with (2) and (3) as follows:

j(u) =
∫ t2
t1

[p1(t)(u′(t))2 − q1(t)(u(t))2] dt.

J(u) =
∫ t2
t1

[p2(t)(u′(t))2 − q2(t)(u(t))2] dt,

where the domainD of j and J is defined to be the set of all real-valued functions
u ∈ C1[t1, t2] such that u(t1) = u(t2) = 0 (t1, t2 are consecutive zeros ofu). The
variation of j(u) is defined as V (u) = J(u)− j(u), i.e.,

V (u) =

∫ t2

t1

[
(p2(t)− p1(t))(u′(t))2 + (q1(t)− q2(t))(u(t))2

]
dt. (4)

Now, Leighton’s theorem reads as follows:

Theorem 1.3. (Leighton’s theorem) Suppose there exists a nontrivial real so-
lution u of Lu = 0 in (t1, t2) such that u(t1) = u(t2) = 0 and V (u) ≥ 0, then
every real solution of lv = 0 unless a constant multiple of u has at least one
zero in (t1, t2).

It is easy to see that Theorems 1.1 and 1.2 are special cases of Leighton’s
theorem. We point out that the proof of Leighton’s theorem heavily depends
on a lemma so-called Leighton’s variational lemma, which is stated as follows:

Lemma 1.4 (Leighton’s variational lemma). If there exists a function u ∈ D,
not identically zero, such that J(u) ≤ 0, then every real solution of Lv = 0
except a constant multiple of u vanishes at some point of (t1, t2).
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We mention that all the above comparison theorems have been extended to
a pair of linear elliptic partial differential equations of type

lu ≡
n∑

i,j=1

Di(aijDju) + cu = 0. (5)

Lv ≡
n∑

i,j=1

Di(AijDjv) + Cv = 0, (6)

in Ω ⊂ Rn, where Ω is a bounded domain with smooth boundary, aij, Aij, c, C
are real and continuous on Ω and the matrices aij and Aij are symmetric and
positive definite in Ω.

In 1955, Hartman and Wintner [13] extended Sturm–Picone theorem (The-
orem 1.2) to (5), (6) and their theorem reads as follows:

Theorem 1.5. Let Ω ⊂ Rn be a bounded domain whose boundary has a piece-
wise continuous unit normal. Suppose aij − Aij is positive semidefinite and
C ≥ c on Ω. If there exists a nontrivial solution u of lu = 0 in Ω such that
u = 0 on ∂Ω, then every solution of Lv = 0 vanishes at some point of Ω.

In 1965, Clark and Swanson [3] obtained a analog of Leighton’s theorem
(Theorem 1.3) using the variation of lu, which is defined as

V (u) =

∫
Ω

[
n∑

i,j=1

(aij − Aij)DiuDju+ (C − c)u2

]
dx.

Their theorem reads as follows:

Theorem 1.6. Let Ω ⊂ Rn be a bounded domain whose boundary has a piece-
wise continuous unit normal. Suppose aij − Aij is positive semidefinite and
C ≥ c on Ω. If there exists a nontrivial solution u of lu = 0 in Ω such that
u = 0 on ∂Ω and V (u) ≥ 0, then every solution of Lv = 0 vanishes at some
point of Ω.

Again, it is easy to see that Theorem 1.5 is a special case of Theorem 1.6
and the proof of Theorem 1.6 depends on the following n-dimensional version
of Lemma 1.4. Let us define the quadratic functional associated with (6):

M(u) =

∫
Ω

[
n∑

i,j=1

(AijDiuDju− Cu2

]
dx,

where the domain D of M is defined to be the set of all real-valued continuous
functions on Ω which vanish on the boundary and have uniformly continuous
first partial derivatives in Ω.
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Lemma 1.7 (n-dimensional version of Leighton’s variational lemma). If there
exists u ∈ D not identically zero such that M(u) ≤ 0, then every solution v of
Lv = 0 vanishes at some point of Ω.

From the above research works, it is very clear that Leighton’s variational
lemma plays an important role to establish and extend Sturm–Picone’s com-
parison theorem. Motivated by the above research works and by an increas-
ing interest on fractional Laplace equations in recent years, see for instance
[2, 4, 5, 12, 16, 17, 19, 20, 27], it is natural to ask whether is there any Sturm–
Picone’s type theorem for a pair of fractional Laplace equations or not? To
answer this question, the first step is whether one can establish Leighton’s vari-
ational lemma for fractional Laplace equation. In this note, we answer this
question. More precisely, we establish Leighton’s variational lemma for frac-
tional Laplace equations. Due to the nonlocal nature of the operator, it is
not clear whether Sturm–Picone theorem holds for a pair of linear fractional
Laplace equation or not. Since the classical proof of Sturm–Picone theorem for
a pair of ordinary differential equations/systems as well as elliptic partial dif-
ferential equations steadily rests on Leighton’s lemma, so it has been extended
in different directions, see, for instance, Jaroš et al. [11], Komkov [14], Došlý
and Jaroš [7], see [26] for a generalization of Leighton’s variational lemma for
nonlinear differential equations and the earlier developments on this area. The
results of [26] are used and extended to more general equations by A. Tiryaki
[24,25] and in his other papers and the references cited therein.

Let us recall some elementary definitions. We denote by S the Schwartz
space of rapidly decreasing functions, defined as follows:

S = {u ∈ C∞(Rn) : for any α, β ∈ Nn
0 , sup

x∈Rn
|xβDαu(x)| <∞}.

Let s ∈ (0, 1) be fixed. The fractional Laplacian of u ∈ S is defined for x ∈ Rn

as follows:

(−∆)su(x) = Cn, s P.V.

∫
Rn

u(x)− u(y)

|x− y|n+2s
dy = Cn, s lim

ε→0

∫
Rn\Bε(x)

u(x)− u(y)

|x− y|n+2s
dy,

where

Cn, s =

(∫
Rn

1− cos ζ

|ζ|n+2s
dζ

)−1

,

which is a normalization constant, see [5, Section 3].
One can also write the above singular integral as follows:

(−∆)su(x)=−Cn, s
2

∫
Rn

u(x+y)+u(x−y)−2u(x)

|y|n+2s
dy, ∀x∈Rn, u∈S(Rn),

see [5]. When s< 1
2

and u∈C0,α(Rn) with α>2s, or if u∈C1,α(Rn), 1+2α>2s,
the above integral is well-defined.
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Following [21], suppose X denotes the linear space of Lebesgue measurable
functions from Rn to R such that the restriction to Ω of any function g in X
belongs to L2(Ω) and the map

(x, y) :−→ g(x)− g(y)

|x− y|n2 +s
∈ L2(R2n\(C Ω× C Ω)),

where C Ω = Rn\Ω. Moreover,

X0 = {g ∈ X : g = 0 a.e. in Rn\Ω}.

Let Q = R2n\(C Ω)× (C Ω). The space X is endowed with the norm defined as

||g||X = ||g||L2(Ω) +

(∫
Q

|g(x)− g(y)|2

|x− y|n+2s
dxdy

) 1
2

. (7)

One can see easily that ||.||X is a norm on X. Using a sort of Poincaré–Sobolev
inequality for functions in X0, one can see that

||u||X0 =

(∫
Q

|u(x)− u(y)|2

|x− y|n+2s
dxdy

) 1
2

(8)

is a norm on X0 and is equivalent to the norm defined in (7). Since v ∈ X0 so
v = 0 a.e. in Rn\Ω and therefore the integral in (8) can be extended to all R2n.
It is easy to see that (X0, ||.||X0) is a Hilbert space with the scalar product

〈u, v〉X0 :=

∫ ∫
R2n

(u(x)− u(y))(v(x)− v(y))

|x− y|n+2s
dxdy.

The plan of this note is as follows. We recall and prove some preparatory
results in Section 1. Section 2 deals with the proof of Leighton’s variational
lemma which is followed by a few remarks and questions.

The following is an embedding lemma which is used further.

Lemma 1.8. If v ∈ X, then v ∈ Hs(Ω). Moreover,

||v||Hs(Ω) ≤ ||v||X .

Also, if v ∈ X0, then v ∈ Hs(Rn) and

||v||Hs(Ω) ≤ ||v||Hs(Rn) ≤ ||v||X .

For a proof of the above lemma, we refer the reader to [20]. The next
theorem deals with the embedding of fractional Sobolev space. One can see the
paper of Di Nezza et al. [5] for the complete details.
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Theorem 1.9 ([5]). The following embeddings are continuous:

(1) Hs(Rn) ↪→ Lq(Rn), 2 ≤ q ≤ 2n
n−2s

, if n > 2s,

(2) Hs(Rn) ↪→ Lq(Rn), 2 ≤ q ≤ ∞, if n = 2s,

(3) Hs(Rn) ↪→ Cj
b (Rn), if n < 2(s− j).

Moreover, for any R > 0 and any p ∈ [1, 2∗(s)), 2∗(s) = 2n
n−2s

, the embedding
Hs(BR) ↪→↪→ Lp(BR) is compact, where

Cj
b (R

n) = {u ∈ Cj(Rn) : Dku is bounded on Rn for |k| ≤ j}.

Next, we deal with the following important inequality which is obtained
using the so-called Picone’s inequality. This is given partly in [8]. Since it is
short and interesting, so we reproduce it here.

Lemma 1.10. For u, v ∈ X0 with v > 0 a.e. in Rn, we have∫
Rn

(−∆)
s
2v. (−∆)

s
2

(
u2

v

)
dx ≤

∫
Rn
|(−∆)

s
2u|2dx (9)

and equality holds if and only if u is a constant multiple of v.

Proof. We use the following simple inequality to establish (9). This inequality
is called Picone’s inequality, see Lemma 6.2 for p = 2 in [1], see also [9].
For any a, b, c, d ∈ R, c > 0, d > 0, we have

(c− d)

(
a2

c
− b2

d

)
≤ (a− b)2 (10)

and equality holds if and only if bc = ad. The above inequality is also true even
when c < 0, d < 0.

By definition, we have∫
Rn

(−∆)
s
2v. (−∆)

s
2

(
u2

v

)
dx

=
Cn, s

2

∫
Rn

∫
Rn

[v(x)− v(y)]
(

(u(x))2

v(x)
− (u(y))2

v(y)

)
|x− y|n+2s

dxdy

≤ Cn, s
2

∫
Rn

∫
Rn

|(u(x)− u(y)|2

|x− y|n+2s
dxdy (by (10))

=

∫
Rn
|(−∆)

s
2u|2dx.

This completes the proof.

Remark 1.11. We remark that if u≡ 0 equality trivially holds in (9) but v is
not necessarily a multiple of u. This says that the statement “u is a constant
multiple of v” in Lemma 1.10 is not equivalent to “v is a constant multiple
of u”.
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2. Leighton’s variational lemma

In this section, we prove Leighton’s variational lemma. In order to do so, we
associate a “quadratic functional”, namely, j(u) corresponding to (1), which is
defined as follows:

j(u) =

∫
Rn

[
|(−∆)

s
2u|2 − a(x)u2

]
dx, u ∈ X0.

It is easy to see that j(u) is nothing but the second variation of the energy
functional

E : X0 −→ R

defined by

E(u) =
1

2

∫
Rn
|(−∆)

s
2u|2dx− 1

2

∫
Ω

a(x)u2dx

associated with (1). If u ∈ X0 satisfies j(u) ≤ 0, it simply says that u is a local
maxima of E. Let u be an unstable solution of (1), then it will satisy j(u) ≤ 0,
see [10].

Theorem 2.1 (Weaker version of Leighton’s variational lemma). Let 2s<n<4s
0 < s < 1. If there exists a function u ∈ X0 such that j(u) < 0, then every
solution v of

(−∆)sv = a(x)v in Ω; v = 0 in Rn\Ω, a ∈ L∞(Ω) (11)

vanishes at some point of Ω.

Proof. Since v ∈ X0 is a solution to (11) so it satisfies∫
Rn

(−∆)
s
2v. (−∆)

s
2φ dx =

∫
Ω

a(x)vφ dx, ∀φ ∈ X0. (12)

Suppose we assume that v 6= 0 in Ω. By Lemma 1.8 and Theorem 1.9, we
have v ∈ L2(Rn). Since a ∈ L∞(Ω), so by [19, Proposition 1.4], we have
v ∈ Cβ(Rn) ∩ X0, 0 < β < 1 and, in particular, v is bounded. Without
any loss of generality, we may assume that v > 0 in Ω (the case when v < 0
in Ω can be dealt similarly).

Since u ∈ X0, again using the similar arguments as above, we have
u ∈ Cγ(Rn) ∩ X0, 0 < γ < 1 and, in particular, u is bounded. Since v = 0 in
Rn\Ω, so we cannot take u2

v
as a test function in (12). Now for any given small

ε > 0, it is easy to see that u2

v+ε
∈ X0 and let us take φ = u2

v+ε
as a test function

in (12), which yields∫
Rn

(−∆)
s
2v. (−∆)

s
2
u2

v + ε
dx =

∫
Ω

a(x)v
u2

v + ε
dx,
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which is same as∫
Rn

(−∆)
s
2 (v + ε). (−∆)

s
2
u2

v + ε
dx =

∫
Ω

a(x)v
u2

v + ε
dx,

i.e.,

0 =

∫
Rn

(−∆)
s
2 (v + ε). (−∆)

s
2
u2

v + ε
dx−

∫
Ω

a(x)v
u2

v + ε
dx

≤
∫
Rn
|(−∆)

s
2u|2dx−

∫
Ω

a(x)v
u2

v + ε
dx (from Lemma 1.10 )

= j(u) (letting ε→ 0 in the above inequality),

which is a contradiction and this completes the proof.

Remark 2.2. In order to obtain the L∞ regularity of u, in view of [19, Propo-
sition 1.4(iii)], we have assumed that 2s < n < 4s.

Next, the assumption j(u) < 0 in the above theorem is weakened to j(u) ≤ 0
and we state and prove a stronger version of Leighton’s variational lemma.

Theorem 2.3 (Stronger version of Leighton’s variational lemma). Let
2s < n < 4s, 0 < s < 1. If there exists a function u ∈ X0 not identically
zero such that j(u) ≤ 0, then every solution v of (11) except a constant multi-
ple of u vanishes at some point of Ω.

Proof. Since v ∈ X0 is a solution to (11) so it satisfies∫
Rn

(−∆)
s
2v. (−∆)

s
2φ dx =

∫
Ω

a(x)vφ dx, ∀φ ∈ X0. (13)

Suppose we assume that v 6= 0 in Ω. By Lemma 1.8 and Theorem 1.9, we have
v∈L2(Rn). Since a∈L∞(Ω), so by [19, Proposition 1.4], we have v∈Cβ(Rn)∩X0,
0 < β < 1 and, in particular, v is bounded. Without any loss of generality, we
may assume that v > 0 in Ω (the case when v < 0 in Ω can be dealt similarly).

Since u ∈ X0, again using the similar arguments as above, we have
u ∈ Cγ(Rn) ∩ X0, 0 < γ < 1 and, in particular, u is bounded. Since v = 0 in
Rn\Ω, so we can not take u2

v
as a test function in (13). Now for any given small

ε > 0, it is easy to see that u2

v+ε
∈ X0 and let us take φ = u2

v+ε
as a test function

in (13), which yields∫
Rn

(−∆)
s
2v. (−∆)

s
2
u2

v + ε
dx =

∫
Ω

a(x)v
u2

v + ε
dx,

which is same as∫
Rn

(−∆)
s
2 (v + ε). (−∆)

s
2
u2

v + ε
dx =

∫
Ω

a(x)v
u2

v + ε
dx,
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i.e.,

0 =

∫
Rn

(−∆)
s
2 (v + ε). (−∆)

s
2
u2

v + ε
dx−

∫
Ω

a(x)v
u2

v + ε
dx. (14)

Now, from Lemma 1.10, we have∫
Rn

(−∆)
s
2 (v + ε). (−∆)

s
2
u2

v + ε
dx ≤

∫
Rn
|(−∆)

s
2u|2dx.

We claim that∫
Rn

(−∆)
s
2 (v + ε). (−∆)

s
2
u2

v + ε
dx <

∫
Rn
|(−∆)

s
2u|2dx. (15)

Suppose, if not, then by an application of Lemma 1.10, we have u = cε(v + ε)
for some cε ∈ R. From this, if v 6≡ 0, fixed p ∈ Ω ∩ {v 6= 0} and one can see
that cε = up

v(p)+ε
, which implies that cε converges to some c0 ∈ R as ε → 0, and

then u = c0v. We note that c0 6= 0, because if c0 = 0, then u ≡ 0, which is a
contradiction as we have assumed that u 6≡ 0 and therefore v = 1

c0
u, which is

not possible and therefore (15) holds. Now, (14) and (15) yield that

0 =

∫
Rn

(−∆)
s
2 (v + ε). (−∆)

s
2
u2

v + ε
dx−

∫
Ω

a(x)v
u2

v + ε
dx

<

∫
Rn
|(−∆)

s
2u|2dx−

∫
Ω

a(x)v
u2

v + ε
dx

= j(u) (letting ε→ 0 in the above inequality),

which is a contradiction and this completes the proof.

The following remarks and questions are in order:

Remark 2.4. In the present remark, we show that Theorem 2.3 does not hold
when the condition v = 0 in Rn\Ω is replaced by the more classical v = 0 on ∂Ω.
This shows a concrete difference with respect to the classical case. We show
this by constructing a counterexample.

Let us take n = 1, Ω = (−1, 1) and a be the first eigenvalue of the frac-
tional Laplacian with homogeneous data. Let u ∈ X0 be the first eigenfunction
associated with a, i.e.,(

− d2

dx2

)s
u = au in Ω, u = 0 in R\Ω.

It is easy to check that j(u) = 0. Let v be the minimizer of j with the condition
that v = v0 outside (−1, 1) with

v0(x) =

{
1, if |x| ∈ (3, 4),

0, otherwise.
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Such v satisfies the equation in (−1, 1) and we have v0(±1) = 0, (i.e., v = 0

on ∂Ω). Since v is a minimizer of j so v does not vanish in Ω. Nevertheless, it is

not possible that v is a multiple of u, otherwise, the difference w = v−u would

satisfy
(
− d2

dx2

)s
u = 0 in (−1, 1) with w vanishing in R\((−1, 1)∪(3, 4)∪(−4,−3))

and w positive in (3, 4)∪ (−4,−3). But then, calculating
(
− d2

dx2

)s
w(0), one can

see that

0 = P.V.

∫
R

w(0)− w(y)

|y|1+2s
dy = −P.V.

∫
R

w(y)

|y|1+2s
dy < 0,

which is a contradiction.

Remark 2.5. It will be of interest to get a nonlinear version of Theorem 2.3
for a class of equations

(−∆)su− a(x)f(u) = 0 in Ω; u = 0 in Rn\Ω

under certain conditions on a and f.

Remark 2.6. Let us consider a pair of fractional Laplace equations:

lu ≡ (−∆)su− a(x)u = 0 in Ω; u = 0 in Rn\Ω. (16)

Lv ≡ (−∆)sv − b(x)v = 0 in Ω; v = 0 in Rn\Ω, (17)

where a, b ∈ L∞(Ω) and l and L are fractional partial differential operators,
where Ω is an open bounded subset of Rn with smooth boundary, n > 2s
(0 < s < 1). Corresponding to (16) and (17), one can associate the “quadratic
functionals” j(u) and J(u), respectively, for u ∈ X0 defined as follows:

j(u) =

∫
Rn

[
|(−∆)

s
2u|2 − a(x)u2

]
dx,

J(u) =

∫
Rn

[
|(−∆)

s
2u|2 − b(x)u2

]
dx.

One can also define the variation V (u) = J(u) − j(u) =
∫
Rn(a(x) − b(x))u2dx.

It is not clear whether using Theorem 2.3, the classical Sturm’s comparison
theorem holds for (16) and (17) or not. It would be of much interest to answer
this question.

Remark 2.7. It would be interesting to check that Theorem 2.3 can be gener-
alized to equations involving more general non-local operators than fractional
Laplacian, like,

LMu(x) = −1

2

∫
Rn

[u(x+ y) + u(x− y)− 2u(x)]M(y) dy, x ∈ Rn,
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where M : Rn\{0} −→ (0,∞) is a function such that kM ∈ L1(Rn), k(x) =
min{|x|2, 1}, and there exists θ > 0 such that

M(x) ≥ θ|x|−(n+2s), s ∈ (0, 1), x ∈ Rn\{0}, M(x) = M(−x),

see [2, 4] and the reference therein dealing with such fractional operators. A
typical example of M is M(x) = |x|−(n+2s) and in this case LM = (−∆)s, the
fractional Laplacian.

In view of previous remark, again it is not clear whether classical Sturm’s
comparison theorem holds for a pair of such kind of equations or not.

Remark 2.8. Let Ωa = {x ∈ Rn : |x − x0| < a} denote the n-disc in Rn,
where x0 is a fixed point in Rn and a is a positive number. Let Ω

′
a denote the

complement of Ωa in Rn. Following the definition of [23, p. 205], a function u
is said to be oscillatory in Rn whenever u has a zero in Rn ∩ Ω

′
a for all a > 0.

In the context of fractional Laplacian, due to the nonlocal (global) nature of
the operator, it is not adequate to prescribe the boundary values only on the
boundary ∂Ω but we declare u to be zero in whole complement Rn\Ω, see
[16, p. 801] and many other papers. Now in view of the above, we say that a
solution u of (1) is oscillatory if u has a zero in Ω ∩ Ω

′
a for all a > 0, Ω

′
a ⊂ Ω.

It would be of interest to find out some sufficient conditions for the oscillation
of every solution of (1). In that case, we call (1) as an oscillatory equation.
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