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Extreme Points
and Strongly Extreme Points in

Orlicz Spaces Equipped with the Orlicz Norm

Y. Cui, H. Hudzik and R. PÃluciennik

Abstract. Criteria for extreme points and strongly extreme points of the unit ball in
Orlicz spaces with the Orlicz norm are given. These results are applied to character-
ization of extreme points of B(L1 +L∞) which corresponds with the result obtained
by R. Grza̧ślewicz and H. Schaefer [10] and H. Schaefer [25]. Moreover, we show
that every extreme point of B(L1 + L∞) is strongly extreme. We also get criteria
for extreme points of B(Lp ∩ L∞) (1 ≤ p < ∞) using Theorem 1 and for strongly
extreme points of B(Lp∩L∞) (1 ≤ p < ∞) applying Theorem 2. Although, criteria
for extreme points of B(L1 ∩L∞) were known (see [13]), we can easily deduce them
from our main results and we can extend those results to establish which among
extreme points are strongly extreme. The descriptions of the extreme and strongly
extreme points of B(Lp ∩ L∞) (1 < p < ∞) are original. Moreover, criteria for
extreme points and strongly extreme points of the unit ball in the subspace of finite
elements of an Orlicz space are deduced on the basis of our main results.

Keywords: Orlicz space, Orlicz norm, extreme point, strongly extreme point

AMS subject classification: 46E30, 46E40, 46B20

1. Introduction

Let (X, ‖ · ‖X) be a real Banach space, and let B(X) and S(X) be the closed
unit ball and the unit sphere of X, repsectively. By X∗ denote the dual space
of X. In the sequel N and R denote the set of natural numbers and the set of
reals, respectively.
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R. PÃluciennik, Poznań Univ. Techn., Inst. Math., Piotrowo 3A, PL – 60-965 Poznań,
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Before starting with our results, we need to recall some notions.

A point x ∈ S(X) is said to be an extreme point of B(X) if x cannot be
written as the arithmetic mean 1

2 (y + z) of two distinct points y, z ∈ S(X).
A Banach space X is said to be rotund if every point in S(X) is an extreme
point. A point x ∈ S(X) is said to be a strongly extreme point of B(X) if
for every sequences (yn), (zn) in X such that ‖yn‖X , ‖zn‖X → 1 the condition
yn + zn = 2x for any n ∈ N implies ‖yn − x‖X → 0. A Banach space X is
said to be midpoint locally uniformly rotund if every point of S(X) is strongly
extreme.

We denote by ext B(X) and sext B(X) the sets of extreme points and of
strongly extreme points, respectively, of B(X).

The notion of extreme point plays an important role in some branches of
mathematics. For example, the Krein-Milman theorem, Choquet integral rep-
resentation theorem, Rainwater theorem on convergence in the weak topology,
Bessaga-PeÃlczyński theorem and Elton test for unconditional convergence are
strongly connected with this notion. In [26], using the principle of local reflex-
ivity, a remarkable theorem describing connections between extreme points of
S(X) and strongly extreme points of S(X) is proved. Namely, a Banach space
X is midpoint locally uniformly rotund if and only if every point of S(X) is
an extreme point in X∗∗. Another proof of this theorem based on Goldstein’s
theorem is given in [8]. Analyzing the proof of this fact one can easily see its
local version, namely, if x ∈ S(X) is a strongly extreme point in X, then κ(x)
is an extreme point in X∗∗, where κ is the mapping of canonical embedding
of X into X∗∗.

The aim of this paper is to give criteria for extreme points and strongly
extreme points of the unit ball of Orlicz spaces generated by arbitrary Orlicz
functions (that is, Orlicz functions which vanish outside zero and which attain
infinite values to the right of some point u > 0 are not excluded) and equipped
with the Orlicz norm. We prove that the necessary conditions for a point
x from the unit sphere to be an extreme point presented in [16] are also
sufficient. We will give sufficient conditions under which extB(L0

Φ) = ∅. It is
an important observation because such space lacks Krein-Milmann Property,
so it is not isometric to any dual space. As we will see below, the fact that
the degenerated Orlicz functions are not excluded in our considerations is of
great interest. Namely, the classical spaces L1 + L∞ and L1 ∩ L∞ which are
important in the interpolation theory as well as the spaces Lp ∩L∞ (1 < p <
∞) become a special cases of Orlicz spaces investigated in this paper.

A map Φ : R→ [0,∞] is said to be an Orlicz function if it is even, convex,
left continuous on whole of R+, Φ(0) = 0 and Φ is not identically equal to zero.
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For any Orlicz function Φ we set

a(Φ) = sup
{
u ≥ 0 : Φ(u) = 0

}

b(Φ) = sup
{
u > 0 : Φ(u) < ∞}

.

We say an Orlicz function Φ satisfies the ∆2-condition for all u ∈ R (at infinity)
[at zero] if there are positive constants K and u0 with 0 < Φ(u0) < ∞ such
that Φ(2u) ≤ KΦ(u) holds for all u ∈ R (for every |u| ≥ u0) [for every
|u| ≤ u0]. We denote these conditions by Φ ∈ ∆2 (Φ ∈ ∆2(∞)) [Φ ∈ ∆2(0)],
respectively. Obviously, Φ ∈ ∆2 if and only if Φ ∈ ∆2(∞) and Φ ∈ ∆2(0).

Let (T, Σ, µ) be a measure space with a σ-finite, non-atomic and complete
measure µ and L0(µ) be the set of all µ-equivalence classes of real and Σ-
measurable functions defined on T . For a given Orlicz function Φ we define
on L0(µ) a convex functional (called a pseudomodular, see [22]) by

IΦ(x) =
∫

T

Φ(x(t)) dµ.

We define the Orlicz space LΦ generated by an Orlicz function Φ by the
formula

LΦ =
{

x ∈ L0(µ) : IΦ(cx) < ∞ for some c > 0 depending on x
}

.

This space is usually equipped with the Luxemburg norm

‖x‖Φ = inf
{

ε > 0 : IΦ

(x

ε

)
≤ 1

}

or with the equivalent one

‖x‖0Φ = sup
{ ∫

T

|x(t)y(t)| dµ : y ∈ LΨ, IΨ(y) ≤ 1
}

called the Orlicz norm, where the function Ψ is defined by the formula

Ψ(u) = sup
{|u|v − Φ(v) : v ≥ 0

}

and called complementary to Φ in the sense of Young. It is proved in [15] that
for any Orlicz function Φ the Amemiya formula for the Orlicz norm

‖x‖0Φ = inf
k>0

1
k

(
1 + IΦ(kx)

)

is true. The set of all k > 0 at which the infimum in the Amemiya formula for
‖x‖0Φ is attained (for fixed x ∈ LΦ) will be denoted by K(x). In particular, the
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set K(x) can be empty if the Orlicz space LΦ is generated by an Orlicz function
such that the function R(u) = Au−Φ(u) is bounded, where A = limu→∞

Φ(u)
u

(see [3]). Moreover, for any x ∈ LΦ define

θ(x) = sup
{
c > 0 : IΦ(cx) < ∞}

.

To simplify notations, we put LΦ = (LΦ, ‖ · ‖Φ) and L0
Φ = (LΦ, ‖ · ‖0Φ).

We say w is a point of strict convexity of Φ (we write w ∈ SC(Φ)) if for
every u, v ∈ R such that u 6= v and w = 1

2 (u + v) there holds

Φ
(u + v

2

)
<

1
2
(
Φ(u) + Φ(v)

)
.

For more details on Orlicz spaces we refer to [2, 19, 22, 24].

2. General results

The following result proved in [4] for the Orlicz sequence space l0Φ is also true
in the function space L0

Φ.

Proposition 1. Let x ∈ L0
Φ \ {0}. If K(x) = ∅, then

‖x‖0Φ = lim
k→θ(x)−

1
k

(1 + IΦ(kx)).

Proposition 1 leads to the following

Corollary 1.

(a) If x ∈ L0
Φ and θ(x) < ∞, then K(x) 6= ∅.

(b) If K(x) = ∅, then ‖xχB‖0Φ = A‖xχB‖L1 for any B ∈ Σ, where
A = limu→∞

Φ(u)
u .

Proof. Both statements (a) and (b) can be proved on the base of Propo-
sition 1 by the same argumentation as in [4] and the fact that K(xξB) = ∅ for
any B ∈ Σ whenever K(x) = ∅

Theorem 1. Let Φ be an arbitrary Orlicz function. Then x ∈ S(L0
Φ) is

an extreme point of the unit ball B(L0
Φ) if and only if:

(a) the set K(x) consists of one element from (0, +∞)
(b) kx(t) ∈ SC(Φ) for µ-a.e. t ∈ T , where {k} = K(x).

Proof. Necessity. First, we will prove the necessity of K(x) 6= ∅.
Although this fact was proved in [16], we will present here another very
short proof. Suppose that x is an extreme point of the unit ball B(L0

Φ) and
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K(x) = ∅. We can find a number a > 0 such that the set {t ∈ T : |x(t)| ≥ a}
has positive and finite measure. We can assume without loss of generality that
the measure of the set T0 = {t ∈ T : x(t) ≥ a} is also positive and finite. Take
two subsets T1 and T2 of T0 such that µ(T1) = µ(T2) > 0. Choose ε ∈ (0, a)
and put

x1(t) = x(t)χT\(T1∪T2) + (x(t) + ε)χT1 + (x(t)− ε)χT2

x2(t) = x(t)χT\(T1∪T2) + (x(t)− ε)χT1 + (x(t) + ε)χT2 .

Obviously, x = 1
2 (x1 + x2) and x1 6= x2. Moreover, by Corollary 1/(b) we

have
‖xi‖0Φ ≤ A

∫

T

|xi(t)| dµ = A

∫

T

|x(t)| dµ = ‖x‖0Φ = 1

for i = 1, 2. Hence x1, x2 ∈ B(L0
Φ). Therefore x cannot be an extreme point

of B(L0
Φ). If K(x) 6= ∅ and x ∈ S(L0

Φ) is an extreme point, then kx(t) must be
points of strict convexity of Φ for µ-a.e. t ∈ T and K(x) must be a singleton
(because otherwise x is not an extreme point, see [16]).

Sufficiency. We first prove that for x1, x2 ∈ S(L0
Φ) with x = x1+x2

2 at
least one of the sets K(x1) or K(x2) is non-empty. Suppose that K(x1) = ∅
and K(x2) = ∅. Then

2 = ‖x1 + x2‖0Φ

< A

∫

T

|x1(t) + x2(t)| dµ

≤ A

∫

T

|x1(t)| dµ + A

∫

T

|x2(t)| dµ

= ‖x1‖0Φ + ‖x2‖0Φ
= 2.

The first sharp inequality follows from the fact that +∞ /∈ K(x) because
K(x) = {k}, where 0 < k < +∞. This contradiction shows that K(x1) 6= ∅
or K(x2) 6= ∅.

Now we will prove that K(x1) 6= ∅ and K(x2) 6= ∅. Otherwise, we can
assume without loss of generality that K(x1) 6= ∅ and K(x2) = ∅. Put

[x1, x) =
{
(1− λ)x1 + λx : 0 ≤ λ < 1

}

(x, x2] =
{
(1− λ)x + λx2 : 0 < λ ≤ 1

}
.

Next we will prove that K(y) 6= ∅ for all y ∈ [x1, x) and K(y) = ∅ for all
y ∈ (x, x2]. Assume first for the contrary that there is x3 ∈ [x1, x) such that



794 Y. Cui et. al.

K(x3) = ∅. Then there exists λ3 ∈ [0, 1) such that x3 = (1 − λ3)x1 + λ3x.
Since x1 = 2x− x2, we have

x3 = (1− λ3)(2x− x2) + λ3x = (2− λ3)x− (1− λ3)x2.

Hence x = 1
2−λ3

x3 + 1−λ3
2−λ3

x2. Therefore

1 = ‖x‖0Φ

< A

∫

T

∣∣∣ 1
2− λ3

x3(t) +
1− λ3

2− λ3
x2(t)

∣∣∣dµ

≤ A

2− λ3

∫

T

|x3(t)| dµ +
1− λ3

2− λ3
A

∫

T

|x2(t)| dµ

=
1

2− λ3
‖x3‖0Φ +

1− λ3

2− λ3
‖x2‖0Φ

= 1,

a contradiction.
Assume now for the contrary that there is x4 ∈ (x, x2] such that K(x4) 6=

∅. We can find x5 ∈ [x1, x) such that x = x4+x5
2 and x4 6= x5. Therefore,

there are k4 ≥ 1 and k5 ≥ 1 such that

‖x4‖0Φ =
1
k4

(1 + IΦ(k4x4))

‖x5‖0Φ =
1
k5

(1 + IΦ(k5x5)).

By the convexity of the modular IΦ we have

IΦ

( k4k5

k4 + k5
2x

)
= IΦ

( k4k5

k4 + k5
(x4 + x5)

)

= IΦ

( k5

k4 + k5
k4x4 +

k4

k4 + k5
k5x5

)

≤ k5

k4 + k5
IΦ(k4x4) +

k4

k4 + k5
IΦ(k5x5).

Hence
2 = 2‖x‖0Φ

≤ k4 + k5

k4k5

(
1 + IΦ

(
k4k5

k4 + k5
2x

))

≤ k4 + k5

k4k5

(
1 +

k5

k4 + k5
IΦ(k4x4) +

k4

k4 + k5
IΦ(k5x5)

)

≤ 1
k4

(
1 + IΦ(k4x4)

)
+

1
k5

(
1 + IΦ(k5x5)

)

= 2.
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Consequently, all inequalities from the last three lines are equalities in fact.
Therefore 2k4k5

k4+k5
= k and

Φ(kx(t)) =
k5

k4 + k5
Φ(k4x4(t)) +

k4

k4 + k5
Φ(k5x5(t))

for µ-a.e. t ∈ T . By the assumption that Φ is strictly convex at kx(t) for
µ-a.e. t ∈ T , it follows that k4x4(t) = k5x5(t) = kx(t) for µ-a.e. t ∈ T .
Since x4, x5, x ∈ S(L0

Φ), we get k4 = k5 = k, which gives x4 = x5 = x. This
contradicts the inequality x4 6= x5. Thus K(y) = ∅ for any y ∈ (x, x2]. Take
xn =

(
1− 1

n

)
x + 1

nx2 for all n ∈ N. Then xn ∈ (x, x2] for all n ∈ N. Hence
K(xn) = ∅ and consequently ‖xn‖0Φ = A

∫
T
|xn(t)| dµ for all n ∈ N. Note that

xn → x as n →∞ with respect to the norm ‖ · ‖0Φ and limn→∞ |xn(t)| = |x(t)|
for µ-a.e. t ∈ T . Since K(x) = {k}, with 0 < k < +∞, we have

‖x‖0Φ = lim
n→∞

‖xn‖0Φ = lim
n→∞

A

∫

T

|xn(t)| dµ ≥ A

∫

T

|x(t)| dµ > ‖x‖0Φ,

a contradiction. Therefore K(x1) 6= ∅ and K(x2) 6= ∅. Now, repeating the
same procedure as above, putting x1 and x2 instead of x4 and x5, respectively,
we get

k1x1(t) = k2x2(t) = kx(t)

for µ-a.e. t ∈ T . Hence, by the fact that x1, x2, x ∈ S(L0
Φ), we have k1 = k2 =

k and consequently, x1 = x2 = x. Thus x is an extreme point of B(L0
Φ)

Corollary 2. The Orlicz space L0
Φ is rotund if and only if:

(a) Φ is strictly convex

(b) limu→∞R(u) = ∞ where R(u) = A|u|−Φ(u) with A = limu→∞
Φ(u)

u .

Proof. Sufficiency. Taking any x ∈ S(L0
Φ), we need to prove that x

is an extreme point of S(L0
Φ). Condition (b) guarantees that K(x) 6= ∅ (see

[3]). By condition (a), kx(t) ∈ SC(Φ) for µ-a.e. t ∈ T . Therefore, in view of
Theorem 1, x is an extreme point of B(L0

Φ).

Necessity. Let us first prove the necessity of condition (b). Assume that
this condition is not satisfied. Then there is x ∈ S(L0

Φ) such that K(x) = ∅
(see [3]). Consequently, if B ∈ Σ ∩ supp(x) and 0 < µ(B) < µ(supp(x)), then
K(xχB) = ∅ and K(xχB′) = ∅, where B′ = supp(x) \ B. This yields that
A < ∞ and, by Corollary 1/(b), ‖x‖0Φ = A‖x‖L1 , ‖xχB‖0Φ = A‖xχB‖L1 and
‖xχB′‖0Φ = A‖xχB′‖L1 . Therefore,

‖x‖0Φ = ‖xχB‖0Φ + ‖xχB′‖0Φ.
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For α = ‖xχB‖0Φ and β = ‖xχB′‖0Φ, we have α, β ∈ (0, 1) with α + β = 1.
Moreover, defining y = xχB

‖xχB‖0Φ
and z = xχB′

‖xχB′‖0Φ
, we have y, z ∈ S(L0

Φ) and

αy + βz = xχB + xχB′ = x.

This means that x is not an extreme point of B(L0
Φ) and so L0

Φ is not rotund.
Using now condition (b), the necessity of which has already been proved,

we have that K(x) 6= ∅ for any x ∈ L0
Φ\{0} (see [3]). Consequently, the

necessity of condition (a) follows from Theorem 1

The next corollary gives sufficient conditions under which the ext B(L0
Φ) =

∅.
Corollary 3. If one of the conditions
(i) IΨ(p ◦ u0χT ) < 1 where u0 = sup{u ≥ a(Φ) : u ∈ SC(Φ)}
(ii) SC(Φ)\{0} = ∅

is satisfied, then ext B(L0
Φ) = ∅.

Proof. Suppose ext B(L0
Φ) 6= ∅. Then, by Theorem 1, there are x0 ∈

S(L0
Φ) and exactly one k0 ≥ 1 such that

‖x0‖0Φ =
1
k0

(1 + IΦ(k0x0))

and k0x0(t) ∈ SC(Φ) for µ-a.e. t ∈ T . It is well known that K(x0) = [k∗, k∗∗]
where

k∗ = k∗(x0) = inf
{
k > 0 : IΨ(p ◦ k|x0|) ≥ 1

}

k∗∗ = k∗∗(x0) = sup
{
k > 0 : IΨ(p ◦ k|x0|) ≤ 1

}
.

Since K(x0) is a singleton, k0 = k∗ = k∗∗. If condition (i) is satisfied, then
k0|x0(t)| ≤ u0 for µ a.e. t ∈ T . Hence

IΨ(p ◦ k|x0|) ≤ IΨ(p ◦ u0χT ) < 1

and consequently the set
{
k > 0 : IΨ(p ◦ k|x0|) ≥ 1

}

is empty, i.e. K(x0) = ∅. Hence, by Theorem 1, x0 cannot be an extreme
point of B(L0

Φ), a contradiction.
If condition (ii) is satisfied, then, by Theorem 1, k0x0(t) = 0 for µ-a.e.

t ∈ T and, consequently, x0(t) = 0 for µ-a.e. t ∈ T . Therefore, x0 /∈ S(L0
Φ), a

contradiction. This shows that in this case ext B(L0
Φ) = ∅, which finishes the

proof
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Remark 1. The condition limu→∞R(u) = ∞ is equivalent to the fact
that limu→A Ψ(u) = ∞, where R = A|u|−Φ(u) and the constant A are defined
as above and Ψ is the function complementary to Φ in the sense of Young.

Theorem 2. Assume Φ is an Orlicz function and x ∈ S(L0
Φ). Then x is

a strongly extreme point of B(L0
Φ) if and only if the following conditions are

satisfied:
(a) The set K(x) is a singleton, that is K(x) = {k}, where k > 0.
(b) kx(t) ∈ SC(Φ) for µ-a.e. t ∈ T .
(c) Either Φ(b(Φ)) < ∞ and x is of the form k|x(t)| = b(Φ) for µ-a.e.

t ∈ T or Φ ∈ ∆2(∞) and at least one of the conditions
(i) µ(T ) < ∞
(ii) a(Φ) > 0
(iii) Φ ∈ ∆2(0)

is satisfied.

Proof. Necessity. Let x be a strongly extreme point of B(L0
Φ). Since

strongly extreme points are extreme points, so the necessity of conditions
(a) and (b) follows from Theorem 1. Consequently, we need only to prove
the necessity of condition (c). For, assuming that b(Φ) = ∞, we first prove
the necessity of Φ ∈ ∆2(∞). Assume for the contrary that Φ /∈ ∆2(∞).
Then there is a sequence (un) of positive numbers such that un ↗ ∞ and
Φ(2un) > 2nΦ(un) for every n ∈ N. Take a number a > 0 such that the
set T0 = {t ∈ T : |x(t)| ≤ a} has a positive measure. Next, passing to a
subsequence of (un) if necessary, we may assume that for any n ∈ N there is
Tn ∈ Σ with Tn ⊂ T0 such that Φ(un)µ(Tn) = 1

2n . Define

xn(t) = x(t)χT\Tn
(t) +

(
x(t) +

un

k
sign x(t)

)
χTn(t)

yn(t) = x(t)χT\Tn
(t) +

(
x(t)− un

k
sign x(t)

)
χTn(t)

zn(t) = x(t)χT\Tn
(t) +

un

k
sign x(t)χTn(t)

for every n ∈ N. Then xn + yn = 2x for any n ∈ N and, by µ(Tn) → 0 as
n →∞, we have

lim
n→∞

‖xn − zn‖0Φ = lim
n→∞

‖xχTn‖0Φ ≤ a lim
n→∞

‖χTn‖0Φ = 0.

Since |yn| ≤ |xn| for any n ∈ N we have

lim sup
n→∞

‖yn‖0Φ ≤ lim sup
n→∞

‖xn‖0Φ
= lim sup

n→∞
‖zn‖0Φ
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≤ lim sup
n→∞

1
k

[
1 + IΦ(kxχT\Tn

) +
∫

Tn

Φ(un) dµ

]

≤ lim sup
n→∞

[
1
k

(1 + IΦ(kx)) +
1
k

Φ(un)µ(Tn)
]

= 1 +
1
k

lim sup
n→∞

Φ(un)µ(Tn)

= 1.

Moreover,
0 = lim

n→∞
‖xχTn

‖0Φ = lim
n→∞

‖x− xχT\Tn
‖0Φ

whence limn→∞ ‖xχT\Tn
‖0Φ = ‖x‖0Φ = 1. Hence, by ‖xn‖0Φ ≥ ‖yn‖0Φ ≥

‖xχT\Tn
‖0Φ for every n ∈ N, we have

lim inf
n→∞

‖xn‖0Φ ≥ lim inf
n→∞

‖yn‖0Φ ≥ lim inf
n→∞

‖xχT\Tn
‖0Φ = 1.

The last inequalities and inequalities (1) yield

lim
n→∞

‖xn‖0Φ = lim
n→∞

‖yn‖0Φ = 1 = ‖x‖0Φ.

However, we have for any n ∈ N,

IΦ(2k(xn − x)) = Φ(2un)µ(Tn) > 2nΦ(un)µ(Tn) = 1

whence ‖xn − x‖0Φ ≥ ‖xn − x‖Φ ≥ 2k, which contradicts the fact that x is a
strongly extreme point.

Now we will prove that if µ(T ) = ∞, a(Φ) = 0, b(Φ) = ∞ and Φ ∈ ∆2(∞),
then Φ ∈ ∆2(0), whenever x is a strongly extreme point of B(L0

Φ). First we
will show that there exists a set A ∈ Σ such that IΦ(2xχA) < ∞ and µ(A) =
∞. Let (un) be a sequence of positive numbers such that Φ(2un) < 1

2n+1 and
define

Kn = sup
{Φ(2u)

Φ(u)
: u ≥ un

}
.

Then Φ(2u) ≤ KnΦ(u) for all u ≥ un (n ∈ N). By the assumptions that
the measure µ is non-atomic and µ(T ) = ∞ one can find a sequence (An)
in Σ such that µ(An) = 1 for any n ∈ N and µ(Am ∩ An) = 0 for any
m,n ∈ N with m 6= n. Since IΦ(kx) < ∞, we get IΦ(kxχAn) → 0 as n →∞.
Consequently, there exists a subsequence (nj) of natural numbers such that
IΦ(kxχAnj

) < 1
2j+1Kj

for all j ∈ N. Define

A1
nj

= {t ∈ Anj : k|x(t)| ≥ uj}, A2
nj

= Anj\A1
nj

, A = ∪∞j=1Anj .
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Then

IΦ(2kxχA) =
∞∑

j=1

IΦ(2kxχAnj
)

=
∞∑

j=1

IΦ(2kxχA1
nj

) +
∞∑

j=1

IΦ(2kxχA2
nj

)

≤
∞∑

j=1

KjIΦ(kxχA1
nj

) +
∞∑

j=1

Φ(2uj)µ(A2
nj

)

<

∞∑

j=1

1
2(j+1)

+
∞∑

j=1

1
2(j+1)

= 1

which means that A is the desired set.

Now, we will show that there is a sequence (Bn) of measurable subsets of
A such that µ(Bn) = ∞ for all n ∈ N and IΦ(2kxχBn) → 0 as n → ∞. For,
define

Cn =
{

t ∈ A :
1
n

< |x(t)| ≤ n
}

.

Then ∪∞n=1Cn = A up to a set of measure zero and IΦ(2kxχCn) → IΦ(2kxχA)
by the Beppo-Levi theorem, whence IΦ(2kxχA\Cn

) → 0 as n → ∞. By
µ(Cn) < ∞ for any n ∈ N we have µ(A\Cn) = ∞ for any n ∈ N. Therefore,
setting Bn = A\Cn for all n ∈ N, we get the desired sequence.

Assume now that

µ(T ) = ∞, a(Φ) = 0, b(Φ) = ∞, Φ ∈ ∆2(∞), Φ /∈ ∆2(0).

Then there exists a sequence (un) of positive numbers such that un ↘ 0 as
n → ∞ and Φ(2un) > 2nΦ(un) for every n ∈ N. For any n ∈ N choose
Tn ⊂ Bn with Tn ∈ Σ such that Φ(un)µ(Tn) = 2−n and define

xn = x +
un

2k
χTnsign x

yn = x− un

2k
χTnsign x.

Then xn + yn = 2x for every n ∈ N. Moreover, |x| ≤ |xn| for any n ∈ N,
whence lim infn→∞ ‖xn‖0Φ ≥ ‖x‖0Φ = 1. On the other hand, we have for each
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n ∈ N

‖xn‖0Φ ≤
1
k

(1 + IΦ(kxn))

=
1
k

(
1 + IΦ(kxχT\Tn

)
)

+
∫

Tn

Φ
(2kx(t) + un

2

)
dµ

≤ 1 +
1
2
{
IΦ(2kxχTn

) + Φ(un)µ(Tn)
}

→ 1 (n →∞).

Consequently, lim supn→∞ ‖xn‖0Φ ≤ 1, whence limn→∞ ‖xn‖0Φ = 1. Since
|yn| ≤ |x| for all n ∈ N, we get lim supn→∞ ‖yn‖0Φ ≤ ‖x‖0Φ = 1.

In order to prove that limn→∞ ‖yn‖0Φ = 1, we need only to show that
lim infn→∞ ‖yn‖0Φ ≥ 1. Assume for the contrary that lim infn→∞ ‖yn‖0Φ < 1.
Then we get

2 = ‖2x‖0Φ
= lim

n→∞
‖xn + yn‖0Φ

= lim inf
n→∞

‖xn + yn‖0Φ
≤ lim inf

n→∞
(‖xn‖0Φ + ‖yn‖0Φ)

< 1 + lim inf
n→∞

‖yn‖0Φ
< 2

– a contradiction. Therefore, limn→∞ ‖yn‖0Φ = 1. Moreover,

IΦ(4k(xn − x)) = IΦ(2unχTn) = Φ(2un)µ(Tn) > 2nΦ(un)µ(Tn) = 1

for all n ∈ N. Hence, by the definition of the Luxemburg norm, we have

‖xn − x‖0Φ ≥ ‖xn − x‖Φ >
1
4k

for each n ∈ N. Thus x is not a strongly extreme point.
To finish the proof of the necessity we need to consider the case b(Φ) <

∞. First assume that limu→b(Φ)− Φ(u) = ∞. Hence and by the inequality
IΦ(kx) < ∞, we get k|x(t)| < b(Φ) for µ-a.e. t ∈ T . Therefore, defining

An =
{

t ∈ T : k|x(t)| <
(
1− 1

n

)
b(Φ)

}
(n ∈ N)

we have A1 ⊂ A2 ⊂ ... and µ(T\ ∪∞n=1 An) = 0. Consequently, there is

m ∈ N such that µ(Am) > 0. Denote Am = A and λ =
√

1− 1
m . Then
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k|x(t)|
λ ≤ λb(Φ) for every t ∈ A. Choose a sequence (Bn) of measurable

subsets of A such that µ(Bn) → 0 as n →∞ and define

xn = x +
(1− λ)b(Φ)

2k
sign xχBn

yn = x− (1− λ)b(Φ)
2k

sign xχBn .

Then |x| ≤ |xn| for all n ∈ N, whence lim infn→∞ ‖xn‖0Φ ≥ ‖x‖0Φ = 1. More-
over,

‖xn‖0Φ ≤
1
k

(1 + IΦ(kxn))

=
1
k

(
1 + IΦ(kxχT\Bn

)
)

+
1
k

IΦ

(
λ

kx

λ
χBn + (1− λ)

b(Φ)
2

χBn

)

≤ 1
k

(
1 + IΦ(kx)

)
+ λIΦ

(kx

λ
χBn) + (1− λ)Φ

(1
2
b(Φ)

)
µ(Bn)

→ 1
k

(1 + IΦ(kx))

= ‖x‖0Φ
= 1.

Consequently, lim infn→∞ ‖xn‖0Φ ≤ 1, whence limn→∞ ‖xn‖0Φ = 1. Since
|yn| ≤ |x| for all n ∈ N, we get

lim sup
n→∞

‖yn‖0Φ ≤ ‖x‖0Φ = 1.

It is easy to prove that limn→∞ ‖yn‖0Φ = 1.
However, we have for any n ∈ N

IΦ

( 2k

1− λ
(xn − x)

)
= Φ(b(Φ))µ(Bn) = ∞

whence
‖xn − x‖0Φ ≥ ‖xn − x‖Φ ≥ 1− λ

2k
.

Since xn +yn = 2x for any n ∈ N, this means that x is not a strongly extreme
point if b(Φ) < ∞ and limu→b(Φ)− Φ(u) = ∞.

Similarly we can prove that if Φ(b(Φ)) < ∞, x ∈ S(L0
Φ) and k|x(t)| < b(Φ)

for t ∈ A, where µ(A) > 0, then x is not a strongly extreme point. Therefore,
if b(Φ) < ∞ and x ∈ S(L0

Φ) is a strongly extreme point, then it must be
Φ(b(Φ)) < ∞ and k|x(t)| = b(Φ) for µ-a.e. t ∈ T . This finishes the proof of
the necessity.
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Sufficiency. Suppose x ∈ S(L0
Φ). By Theorem 1 and conditions (a) -

(b), x is an extreme point of B(L0
Φ). Let (xn) and (yn) be sequences in L0

Φ

such that ‖xn‖0Φ → 1 and ‖yn‖0Φ → 1 as n → ∞ and xn + yn = 2x for any
n ∈ N. We need to prove that ‖xn − x‖0Φ → 0 as n →∞. The proof requires
the consideration of few cases separately.

Case 10. Assume that K(xn) 6= ∅ and K(yn) 6= ∅ for any n ∈ N and l =
max{supn kn, supn hn} < ∞ for some kn ∈ K(xn) and hn ∈ K(yn) (n ∈ N).
Then the sequence ( 2knhn

kn+hn
) is bounded. Assume without loss of generality

(passing to a subsequence, if necessary) that limn→∞ 2knhn

kn+hn
= h. Then, in

view of the Fatou lemma, we get

1 = ‖x‖0Φ
≤ 1

h
(1 + IΦ(hx))

≤ lim inf
n→∞

kn + hn

2knhn

(
1 + IΦ

( 2knhn

kn + hn
x
))

≤ lim inf
n→∞

kn + hn

2knhn

(
1 + IΦ

( hn

kn + hn
(knxn) +

kn

kn + hn
(hnyn)

))

≤ lim inf
n→∞

kn + hn

2knhn

(
1 +

hn

kn + hn
IΦ(knxn) +

kn

kn + hn
IΦ(hnyn)

)

= lim inf
n→∞

1
2

( 1
kn

+
1
hn

+
1
kn

IΦ(knxn) +
1
hn

IΦ(hnyn)
)

= lim inf
n→∞

1
2

( 1
kn

(1 + IΦ(knxn)) +
1
hn

(1 + IΦ(hnyn))
)

= lim inf
n→∞

1
2
(‖xn‖0Φ + ‖yn‖0Φ

)

= 1.

Consequently, h ∈ K(x). Since K(x) = {k}, we get h = k, i.e. limn→∞ 2knhn

kn+hn

= k.

Next, we will show that knxn − hnyn → 0 in measure. Assume that this
is not true. Then there exists ε0 > 0 and δ0 > 0 such that µ(En) ≥ ε0 for n
large enough, where

En =
{
t ∈ T : |knxn(t)− hnyn(t)| ≥ δ0

}
.

Since 2knhn

kn+hn
→ k as n → ∞ and xn + yn = 2x for any n ∈ N, we conclude

that
knhn

kn + hn
(xn + yn) =

2knhn

kn + hn
x → kx
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µ-a.e. in T . Assume first that the measure of T is finite. Then knhn

kn+hn
(xn +

yn) → kx in measure. Consequently, if

An =
{

t ∈ T :
knhn

kn + hn
(xn(t) + yn(t)) /∈ [kx(t)− δ0, kx(t) + δ0]

}
,

then µ(An) < ε0
4 for n large enough. Since k = supn kn < ∞ and L =

supn ‖xn‖0Φ < ∞, we get

sup
n

IΦ(knxn) = sup
n

[kn‖xn‖0Φ − 1] ≤ kL− 1 =: M < ∞.

Therefore, defining
Bn =

{
t ∈ T : kn|xn(t)| > d

}

where d > 0, we get for any n ∈ N
M > IΦ(knxnχBn) ≥ Φ(d)µ(Bn)

whence µ(Bn) ≤ M
Φ(d) . So there is d > 0 such that µ(Bn) < ε0

4 for every
n ∈ N. Analogously, we can prove that µ(Cn) < ε0

4 for any n ∈ N if

Cn =
{
t ∈ T : hn|yn(t)| > d

}

with d > 0 large enough. Define

Fn =
{

t ∈ T : |knxn(t)− hnyn(t)| ≥ δ0, kn|xn(t)| ≤ d, hn|yn(t)| ≤ d
}

∩A′n.

Then, for every n ∈ N,

µ(Fn) ≥ µ(En)− (
µ(An) + µ(Bn) + µ(Cn)

)

> ε0 −
(ε0

4
+

ε0

4
+

ε0

4

)

=
ε0

4
.

Now, we will show that knxn(t) and hnyn(t) are on different sides of kx(t)
for t ∈ Fn and n large enough. Notice that, for any n ∈ N and for all t ∈ Fn,

2knhn

kn + hn
|x(t)| =

∣∣∣ 2knhn

kn + hn
x(t)

∣∣∣

=
∣∣∣ knhn

kn + hn
(xn(t) + yn(t))

∣∣∣

=
∣∣∣ hn

kn + hn
knxn(t) +

kn

kn + hn
hnyn(t)

∣∣∣

≤ hn

kn + hn
|knxn(t)|+ kn

kn + hn
|hnyn(t)|

≤ hn

kn + hn
d +

kn

kn + hn
d

= d.
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Since lim infn→∞ kn ≥ 1 and lim infn→∞ hn ≥ 1, there exists n1 ∈ N such
that 2knhn

kn+hn
≥ 3

4 for n > n1. Consequently,

|x(t)| ≤ 4
3
d (2)

for n > n1. By limn→∞ 2knhn

kn+hn
= k there is n2 such that | 2knhn

kn+hn
−k| < δ0

4(1+k)d

for every n > n2. In view of (2) we get
∣∣∣ hn

kn + hn
knxn(t) +

kn

kn + hn
hnyn(t)− kx(t)

∣∣∣

=
∣∣∣ knhn

kn + hn
(xn(t) + yn(t))− kx(t)

∣∣∣

=
∣∣∣ 2knhn

kn + hn
x(t)− kx(t)

∣∣∣

=
∣∣∣ 2knhn

kn + hn
− k

∣∣∣ |x(t)|

≤ δ0

4(1 + k)d
4
3
d

=
δ0

3(1 + k)
for any t ∈ Fn and n > n0 = max{n1, n2}.

On the other hand, for any t ∈ Fn and n > n0 we have
∣∣∣ knhn

kn + hn
(xn(t) + yn(t))− hnyn(t)

∣∣∣

=
∣∣∣ hn

kn + hn
knxn(t) +

kn

kn + hn
hnyn(t)− hnyn(t)

∣∣∣

=
∣∣∣ hn

kn + hn
knxn(t) +

( kn

kn + hn
− 1

)
hnyn(t)

∣∣∣

=
∣∣∣ hn

kn + hn
knxn(t)− hn

kn + hn
hnyn(t)

∣∣∣

=
∣∣∣ hn

kn + hn
(knxn(t)− hnyn(t))

∣∣∣

=
hn

kn + hn

∣∣(knxn(t)− hnyn(t))
∣∣

≥ hn

k + hn

δ0

≥
3
4δ0

k + 3
4

>
3
4

δ0

k + 1
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because k = supn{kn} and the function x

k+x
is increasing on [ 34 ,∞). Analo-

gously, we can get
∣∣∣ knhn

kn + hn
(xn(t) + yn(t))− knxn(t)

∣∣∣ ≥ 3δ0

4(1 + k)

for any t ∈ Fn and n > n0. Therefore, for any t ∈ Fn and n large enough, the
distance between the point knhn

kn+hn
(xn(t) + yn(t)) and each of the endpoints

knxn(t) and hnyn(t) of the interval is larger than 3δ0

4(1+k)
, but the distance of

this point from kx(t) is less than δ0
3(1+k) . Thus knxn(t) and hnyn(t) are on

different sides of kx(t) and

min
{
|knxn(t)− kx(t)|, |hnyn(t)− kx(t)|

}
>

δ0

3(1 + k)

for t ∈ Fn and n ≥ n0. By the fact that kx(t) ∈ SC(Φ) for µ-a.e. t ∈ T we
have

max
{
Φ(knxn(t)), Φ(hnyn(t))

}
> Φ

(
a(Φ) +

δ0

3(1 + k)

)

for t ∈ Fn and n ≥ n0. Moreover,

Φ
( hn

hn + kn
(knxn(t)) +

kn

hn + kn
(hnyn(t))

)

<
hn

hn + kn
Φ(knxn(t)) +

kn

hn + kn
Φ(hnyn(t))

for n large enough and t ∈ Fn. Since the sequences (kn) and (hn) are bounded,
there exists δ1 > 0 such that

Φ
( hn

hn + kn
(knxn(t)) +

kn

hn + kn
(hnyn(t))

)

< (1− δ1)
{ hn

hn + kn
Φ(knxn(t)) +

kn

hn + kn
Φ(hnyn(t))

}

for n large enough and t ∈ Fn. Hence

2 = ‖xn + yn‖0Φ

≤ lim inf
n→∞

kn + hn

knhn

(
1 + IΦ

( knhn

kn + hn
(xn + yn)

))

≤ lim inf
n→∞

kn + hn

knhn

[
1 +

∫

T\Fn

Φ
( knhn

kn + hn
(xn(t) + yn(t))

)
dµ

+
∫

Fn

Φ
( knhn

kn + hn
(xn(t) + yn(t))

)
dµ

]
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≤ lim inf
n→∞

[
1
kn

(
1 +

∫

T

Φ(knxn(t)) dµ

)
+

1
hn

(
1 +

∫

T

Φ(hnyn(t)) dµ

)

− δ1

∫

Fn

( hn

hn + kn
Φ(knxn(t)) +

kn

hn + kn
Φ(hnyn(t))

)
dµ

]

≤ lim inf
n→∞

(
2− δ1δ

∫

Fn

(
Φ(knxn(t)) + Φ(hnyn(t))

)
dµ

)

≤ lim inf
n→∞

(
2− δ1δ

∫

Fn

max
{
Φ(knxn(t)), Φ(hnyn(t))

}
dµ

)

≤ lim inf
n→∞

[
2− δ1δΦ

(
a(Φ) +

δ0

3(1 + k)

)
µ(Fn)

]

≤ 2− δ1δε0

4
Φ

(
a(Φ) +

δ0

3(1 + k)

)

where

δ = min
(

inf
n

2hn

hn + kn
, inf

n

2kn

hn + kn

)
.

The obtained contradiction shows that knxn − hnyn → 0 in measure when
µ(T ) < ∞.

Assume now that µ(T ) = ∞. Since 2knhn

hn+kn
→ k, we conclude that

knhn

hn + kn
(xn(t) + yn(t)) =

2knhn

hn + kn
x(t) → kx(t)

µ-a.e. in T . Since xn + yn is equal to the fixed function 2x for any n ∈ N, we
can prove that knhn

hn+kn
(xn + yn)

µ−→kx also when µ(T ) = ∞.

Next, we define in the same way as in the case when µ(T ) < ∞ the
sets Fn, An, Bn, Cn and Fn obtaining that µ(Fn) ≥ ε0

4 for n large enough.
Consequently, using this same argumentation as in the case when µ(T ) < ∞,
we get that knxn−hnyn

µ−→ 0. Since knhn

hn+kn
(xn + yn) is a convex combination

of knxn and hnyn, so knhn

hn+kn
(xn(t)+yn(t)) is in the interval [knxn(t), hnyn(t)]

or [hnyn(t), knxn(t)]. Therefore,

knhn

hn + kn
(xn + yn)− knxn

µ−→ 0,

that is 2knhn

hn+kn
x− knxn

µ−→ 0. The last condition and the fact that 2knhn

hn+kn
→ k

as n → ∞ yield knxn − kx
µ−→ 0. The sequence (kn) is bounded, so we

may assume (passing to a subsequence if necessary) that kn → k′ as n →
∞ for some k′ > 0. Since the sequence (‖xn‖0Φ) is bounded, we have that
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knxn − k′xn → 0 in norm, whence knxn − k′xn
µ−→ 0. Combining this with

knxn
µ−→ kx, we get k′xn

µ−→ kx, that is

k′

k
xn

µ−→ x. (3)

Therefore, by the Fatou property of the norm ‖ · ‖0Φ (see [15]),

1 = ‖x‖0Φ ≤ lim inf
n→∞

k′

k
‖xn‖0Φ =

k′

k
.

Consequently, k′ ≥ k.
We may assume without loss of generality (passing to a subsequence if

necessary) that hn → h′. We can prove in the same way as the inequality
k′ ≥ k has been proved that h′ ≥ k. Assume without loss of generality
that k′ ≥ h′. By the Fatou Lemma we conclude that 2k′h′

h′+k′ ∈ K(x) = {k}.
Hence 2k′h′

h′+k′ = k and we claim that this yields h′ = k′ = k. Assume for
the contrary that k′ > k. The function f(k) = 2h′k

h′+k is strictly increasing on
(0,∞), whence k′ > k implies 2h′k

h′+k < 2h′k′
h′+k′ = k, and consequently 2h′

h′+k < 1,
which contradicts the inequality h′ ≥ k. This contradiction proves that k′ = k.
Therefore, the equality 2h′k′

h′+k′ = k′ yields 2h′
h′+k = 1, whence we get also h′ = k.

So the claim is proved.

Therefore, by (3), xn
µ−→ x. Moreover, ‖xn‖0Φ → ‖x‖0Φ. Assumption (c)

implies that L0
Φ has the Kadec-Klee property with respect to the global con-

vergence in measure (see [7]). Consequently, ‖xn−x‖0Φ → 0 and ‖yn−x‖0Φ → 0
as n →∞. This finishes the proof of Case 1.

Case 20. Assume the assumptions from Case 10 do not hold. There are
sequences (k′n) and (h′n) of positive numbers such that

‖xn‖0Φ ≥
1
k′n

(
1 + IΦ(k′nxn)

)− 1
n

‖yn‖0Φ ≥
1
h′n

(
1 + IΦ(h′nyn)

)− 1
n

for all n ∈ N. We do not know if the sequences (k′n) and (h′n) are bounded,
so we will consider the sequences (x′n) and (y′n), where x′n = 1

2 (xn + x) and
y′n = 1

2 (yn + x) in place of (xn) and (yn), because ‖xn − x‖0Φ → 0 and
‖yn− x‖0Φ → 0 as n →∞ if and only if ‖x′n− x‖0Φ → 0 and ‖y′n− x‖0Φ → 0 as
n →∞, respectively. Moreover,

‖1
2 (xn + x)‖0Φ ≤ 1

2 (‖xn‖0Φ + ‖x‖0Φ)
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for every n ∈ N. Hence lim supn→∞ ‖xn+x
2 ‖0Φ ≤ 1. In the same way we can

prove that lim supn→∞ ‖yn+x
2 ‖0Φ ≤ 1. Since xn+x

2 + yn+x
2 = 2x for all n ∈ N,

we conclude that lim infn→∞ ‖xn+x
2 ‖0Φ ≥ 1 and lim infn→∞ ‖yn+x

2 ‖0Φ ≥ 1.
Consequently, ‖xn+x

2 ‖0Φ → 1 and ‖yn+x
2 ‖0Φ → 1 as n →∞.

Define

wn =
2k′nk

k′n + k
and vn =

2h′nk

h′n + k
.

The sequences (wn) and (vn) are bounded. Moreover,

∥∥∥xn + x

2

∥∥∥
0

Φ
≤ 1

wn

(
1 + IΦ(wn

xn + x

2

))

=
k′n + k

2k′nk

(
1 + IΦ

( k′nk

k′n + k
(xn + x)

))

=
k′n + k

2k′nk

(
1 + IΦ

( k

k′n + k
(k′nxn) +

k′n
k′n + k

(kx)
))

≤ 1
2

{ 1
k′n

(1 + IΦ(k′nxn)) +
1
k

(1 + IΦ(kx))
}

≤ 1
2

{
‖xn‖0Φ +

1
n

+ ‖x‖0Φ
}

→ 1 (n →∞)

whence it follows that

k′n + k

2k′nk

(
1 + IΦ

( k′nk

k′n + k
(xn + x)

))
→ 1 (n →∞).

Analogously,

h′n + k

2h′nk

(
1 + IΦ

( h′nk

h′n + k
(yn + x)

))
→ 1 (n →∞).

Therefore, we can prove in the same way as in Case 10 that ‖x′n − x‖0Φ → 0
and ‖y′n − x‖0Φ → 0 as n →∞.

Case 30. Suppose that assumptions (a) and (b) are satisfied. We will show
that if additionally Φ(b(Φ)) < ∞, then x ∈ S(L0

Φ) such that k|x(t)| = b(Φ)
for µ-a.e. t ∈ T is a strongly extreme point of B(L0

Φ). Namely, assume that
(xn) and (yn) are sequences such that ‖xn‖0Φ → 1 and ‖yn‖0Φ → 1 as n →∞
and xn + yn = 2x. We have K(xn) 6= ∅ and K(yn) 6= ∅ by b(Φ) < ∞. Passing
to the sequences (xn+x

2 ) and (yn+y
2 ) in place of (xn) and (yn) if necessary,

we may assume that the sequences (kn) and (hn), where kn ∈ K(xn) and
hn ∈ K(yn) for any n ∈ N, are bounded. We may assume without loss of
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generality that (kn) and (hn) are convergent. Their limits must be equal to k
as it follows from the proof of Case 10. From the equalities

IΦ(knxn) = kn − 1, IΦ(hnyn) = hn − 1

lim
n→∞

kn = lim
n→∞

hn = k, IΦ(kx) = k − 1

we have
IΦ(knxn) → IΦ(kx)

IΦ(hnyn) → IΦ(kx)
(n →∞).

Therefore, we may assume without loss of generality that IΦ(knxn) < ∞ and
IΦ(hnyn) < ∞ for all n ∈ N. Consequently, kn|xn(t)| ≤ b(Φ) and hn|yn(t)| ≤
b(Φ) for µ-a.e. t ∈ T and for any n ∈ N. Hence and from limn→∞ kn = k =
limn→∞ hn it follows that k|xn(t)| ≤ b(Φ) and k|yn(t)| ≤ b(Φ) for µ-a.e. t ∈ T
and all n ∈ N. Therefore, for µ-a.e. t ∈ T and for any n ∈ N, we have

2b(Φ) = 2k|x(t)| = k|xn(t) + yn(t)| ≤ k(|xn(t)|+ |yn(t)|) ≤ 2b(Φ),

so |xn(t)| = |yn(t)| = |x(t)|. Consequently, xn = yn = x. Therefore x is a
strongly extreme point. This finishes the proof

Remark 2. Assume that µ(T ) = ∞, x ∈ S(L0
Φ), K(x) = {k} for some

0 < k < ∞ and k|x(t)| = b(Φ) for µ-a.e. t ∈ T . Then condition (c) from
Theorem 2 is satisfied and a(Φ) = b(Φ). In fact, if a(Φ) < b(Φ), then
Φ(b(Φ)) > 0 and IΦ(kx) = ∞ by µ(T ) = ∞, which contradicts the assump-
tion K(x) = {k}. The equality a(Φ) = b(Φ) yields that L0

Φ = L∞ and there
is L > 0 such that ‖x‖0Φ = L‖x‖∞ for any x ∈ L0

Φ. Moreover, the equalities
a(Φ) = b(Φ) = k|x(t)| for µ-a.e. t ∈ T imply by Theorem 2 that x is a strongly
extreme point.

Our results cover among others classical Banach spaces like the space L∞,
the interpolation spaces L1 + L∞ and L1 ∩L∞ as well as the spaces Lp ∩L∞

with 1 < p < ∞.

3. Some applications

We start with the following well known result.

Corollary 4. In the space L∞ extreme points and strongly extreme points
of B(L∞) coincide. The only such points are functions x ∈ L0(µ) such that
|x(t)| = 1 for µ-a.e. t ∈ T .

Proof. It is easy to see that L∞ is the Orlicz space (with equality of
norms) L0

Φ∞ where

Φ∞(u) =
{

0 for u ∈ [−1, 1]
+∞ otherwise.
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Obviously, a(Φ∞) = b(Φ∞) = 1. The only points of strict convexity of Φ are
+1 and −1. Note that for any x ∈ L0(µ) with |x(t)| = 1 for µ-a.e. t ∈ T
we have K(x) = {1}. Consequently, conditions (a) and (b) from Theorem 1
are satisfied. These facts, in view of Theorem 1, show that the only extreme
points are the ones mentioned above. Moreover, Theorem 2 yields that all
those points are strongly extreme, which finishes the proof

Now we can apply Theorems 1 and 2 to the classical interpolation space
L1 + L∞ equipped with the norm

‖x‖L1+L∞ = inf
{
‖y‖1 + ‖z‖∞ : y + z = x, y ∈ L1, z ∈ L∞

}

(see [1, 20]). Criteria for extreme points of the unit ball of this space are known
(see [10, 13, 25]), but criteria for strongly extreme points of its unit ball were
still unknown. On the base of our Theorems 1 and 2 we can easily deduce
not only criteria for extreme points but also for strongly extreme points of the
unit ball of the space L1 + L∞.

Corollary 5. Let x ∈ S(L1 + L∞). Then the following statements are
equivalent:

(a) x is an extreme point of B(L1 + L∞)

(b) µ(T ) > 1 and |x(t)| = 1 for µ-a.e. t ∈ T

(c) x is a strongly extreme point of B(L1 + L∞).

If µ(T ) ≤ 1, then the set of extreme points of the unit ball B(L1 + L∞) is
empty.

Proof. It is known (see [12]) that L1 + L∞ is an Orlicz space generated
by the Orlicz function Φ∞,1 defined by the formula Φ∞,1(u) = max{0, |u|−1}.
Moreover, ‖ · ‖L1+L∞ = ‖ · ‖0Φ∞,1

. Suppose that x ∈ S(L1 + L∞).

(a)⇒ (b). Let x be an extreme point of B(L1+L∞). Then, by Theorem 1,
there is k0 ≥ 1 such that k0x(t) ∈ SC(Φ∞,1) for µ-a.e. t ∈ T and K(x) = {k0}.
But SC(Φ) = {−1, 1}, so |k0x(t)| = 1 for µ-a.e. t ∈ T . If k0 > 1, then

‖x‖L1+L∞ =
1
k0

(
1 +

∫

T

Φ∞,1(k0x(t)) dµ

)
=

1
k0

< 1

which means that x cannot be an element of the unit sphere S(L1 + L∞).
Hence it must be k0 = 1 and consequently |x(t)| = 1 for µ-a.e. t ∈ T . Now it
is enough to verify conditions under which statement (a) of Theorem 1 for the
function x is satisfied. Computing the norm of x using the Amemiya formula
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we get

‖x‖L1+L∞ = inf
k>0

1
k

(
1 + IΦ∞,1(kχT )

)

= inf
k>0

1
k

(
1 +

∫

T

Φ∞,1(k) dµ

)

= min
{

inf
k∈(0,1]

1
k

, inf
k∈(1,∞)

[1
k

+
(
1− 1

k

)
µ(T )

]}

= min
{

1, inf
k∈(1,∞)

[1
k

(1− µ(T )) + µ(T )
]}

.

Now we will consider three cases separately.
If µ(T ) < 1, then 1

k (1 − µ(T )) + µ(T ) is a decreasing function of the
variable k. Consequently,

inf
k∈(1,∞)

[1
k

(1− µ(T )) + µ(T )
]

= lim
k→∞

[1
k

(1− µ(T )) + µ(T )
]

= µ(T ).

Hence ‖x‖L1+L∞ = µ(T ) < 1, so x /∈ S(L1 + L∞), whence it follows that x is
not an extreme point of B(L1 + L∞). (It is easy to notice that K(x) = ∅ in
this case).

If µ(T ) = 1, then ‖x‖L1+L∞ = 1, but K(x) = [1,∞) and condition (a) of
Theorem 1 is not satisfied. Therefore, by Theorem 1, x cannot be an extreme
point of B(L1 + L∞).

If µ(T ) > 1, then 1
k (1 − µ(T )) + µ(T ) is an increasing and continuous

function of the variable k. Hence

inf
k∈(1,∞)

[1
k

(1− µ(T )) + µ(T )
]

= lim
k→1

[1
k

(1− µ(T )) + µ(T )
]

= µ(T ).

Consequently, ‖x‖L1+L∞ = min{1, µ(T )} = 1 and K(x) = {1}. Hence condi-
tion (a) of Theorem 1 is satisfied. Therefore µ(T ) > 1 and |x(t)| = 1 for µ-a.e.
t ∈ T , i.e. (b) holds true.

(b) ⇒ (c). Let µ(T ) > 1 and |x(t)| = 1 for µ-a.e. t ∈ T . By the
above construction, it is obvious that conditions (a) and (b) of Theorem 2 are
satisfied. We observe that Φ∞,1 ∈ ∆2(∞) and a(Φ∞,1) = 1 > 0. This means
that condition (c) of Theorem 2 is also satisfied. Hence, by Theorem 2, x is a
strongly extreme point.

(c) ⇒ (a). This implication is trivial, because in any Banach space every
strongly extreme point of the unit ball is extreme.

By the implication (a) ⇒ (b), it follows immediately that in the case
µ(T ) ≤ 1 the unit ball B(L1 + L∞) has no extreme points. This finishes the
proof
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Consider the space L1 ∩ L∞ equipped with the norm

‖ · ‖L1∩L∞ = ‖ · ‖L1 + ‖ · ‖L∞ .

The extreme points of B(L1 ∩ L∞) are characterized by Hudzik, Kamińska
and MastyÃlo in [13]. We can also easily get their criteria using Theorem
1. Moreover, applying Theorem 2 we can find a characterization of strongly
extreme points of B(L1 ∩ L∞). In contrast to the spaces L∞ and L1 + L∞,
the extreme point of B(L1∩L∞) need not be strongly extreme, which follows
from the following

Corollary 6. A point x ∈ S(L1 ∩ L∞) is extreme if and only if it is of
the form |x| = k−1χA, where µ(A) < ∞ and k = 1 + µ(A).

The unit ball B(L1∩L∞) has strongly extreme points if and only if µ(T ) <
∞. The only strongly extreme points of B(L1 ∩ L∞) are the extreme points
corresponding to A = T .

Proof. Since L1 ∩ L∞ is the Orlicz space L0
Φ1,∞ with equality of norms,

where Φ1,∞(u) = max{|u|, Φ∞(u)} and Φ∞ is defined in the proof of Corollary
4 (see [13]), we can apply Theorems 1 and 2.

If |x| = (1 + µ(A))−1χA with µ(A) < ∞, then K(x) = {1 + µ(A)}. In
fact, since

inf
k>0

1
k

(
1 + IΦ1,∞(k(1 + µ(A))−1χA)

)
= inf

0<k≤1+µ(A)

(1
k

+
µ(A)

1 + µ(A)

)
,

k = 1 + µ(A) is the only number for which the infimum is attainable and
x ∈ S(L1 ∩ L∞). Obviously, (1 + µ(A))x(t) ∈ SCΦ1,∞ for µ-a.e. t ∈ T
because SCΦ1,∞ = {−1, 0, 1}. Hence, by Theorem 1, x is an extreme point
of B(L1 ∩ L∞).

Now assume that x ∈ S(L1∩L∞) is an extreme point. Then, by Theorem
1, K(x) = {k} and kx(t) ∈ SCΦ1,∞ = {−1, 0, 1} for µ-a.e. t ∈ T . Conse-
quently, k|x(t)| = 1 for µ-a.e. t ∈ supp x = A. The only k > 0 which satisfies
that condition and the equality 1

k (1+ IΦ1,∞(kx)) = 1 is k = 1+µ(A). Indeed,
the last equality is equivalent to IΦ1,∞(kx) = k− 1. Hence, by k|x(t)| = 1 for
µ-a.e. t ∈ A, we have Φ1,∞(1)µ(A) = k − 1, i.e. k = 1 + µ(A).

It remains to give a proof of the criteria for strongly extreme points. Since
Φ1,∞(b(Φ1,∞)) = 1, by Theorem 2, an extreme point x of B(L0

Φ1,∞) can be
strongly extreme only in the case when k|x(t)| = b(Φ1,∞) = 1 for µ-a.e.
t ∈ T , where {k} = K(x). As we has already shown, k = 1+µ(suppx). Since
k ∈ K(x) yields IΦ1,∞(kx) < ∞, we conclude that it must be µ(suppx) < ∞,
i.e. µ(T ) < ∞. Consequently, the corollary is proved
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Consider now for 1 < p < ∞ the space Lp ∩ L∞ equipped with the norm
proposed in [15]:

‖x‖Lp∩L∞ =





β(x)p−1‖x‖Lp + ‖x‖L∞ if β(x) ≤ (
q
p

) 1
p

p
1
p q

1
q ‖x‖Lp if β(x) >

(
q
p

) 1
p

where β(x) = ‖x‖Lp

‖x‖L∞
for x 6= 0 and 1

p + 1
q = 1.

Corollary 7. The space Lp ∩ L∞ is strictly convex. If µ(T ) ≤ q
p , then a

point x ∈ S(Lp ∩L∞) is strongly extreme if and only if |x| = (1+µ(T ))−1χT .
In the case when µ(T ) > q

p , the unit ball B(Lp ∩L∞) has no strongly extreme
points.

Proof. It is proved in [15] that Lp ∩ L∞ equipped with the above norm
is the Orlicz space L0

Φp,∞ , where Φp,∞(u) = max{|u|p, Φ∞(u)}. Note that
SC(Φp,∞) = [−1, 1]. Let x ∈ S(Lp∩L∞). Then, by the fact that IΦp,∞(kx) =
∞ for k > 1

‖x‖L∞
, we have

1 = ‖x‖Lp∩L∞

= inf
k>0

1
k

(1 + IΦp,∞(kx))

= inf
0<k≤ 1

‖x‖L∞

1
k

(
1 +

∫

T

(k|x|)pdµ

)

= inf
0<k≤ 1

‖x‖L∞

1
k

(1 + kp‖x‖p
Lp).

Consider a real function f of variable k > 0 defined by the formula

f(k) =
1
k

(1 + akp)

where a > 0 is a real constant. The function f is differentiable on (0,∞). Its
derivative is of the form

f ′(k) = − 1
k2

+ a(p− 1)kp−2.

It is easy to calculate that f ′(k) < 0 if and only if k <
(

q
ap

)1/p, f ′(k) = 0 for

k =
(

q
ap

)1/p and f ′(k) > 0 for k >
(

q
ap

)1/p. This means that f(k) is decreasing
on

(
0, ( q

ap )1/p
)

and increasing on
(
( q

ap )1/p,∞)
. Hence, taking a = ‖x‖p

Lp , we
consider two cases.
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If
1

‖x‖L∞
≤ 1
‖x‖Lp

(q

p

) 1
p

,

then the only number at which the infimum is attainable is k0 = 1
‖x‖L∞

.

If
1

‖x‖L∞
>

1
‖x‖Lp

(q

p

) 1
p

,

then the infimum is attainable only at k0 =
(

1
‖x‖Lp

(
q
p

)1/p.

Thus, K(x) = {k0} and k0|x(t)| ∈ SC(Φp,∞) for µ-a.e. t ∈ T . Therefore,
by Theorem 1, x is an extreme point of B(Lp ∩ L∞). This proves that the
space Lp ∩ L∞ is strictly convex.

Note that b(Φp,∞) = 1 and Φp,∞(b(Φp,∞)) = 1. Consequently, by (c) of
Theorem 2, any strongly extreme point x is characterized by the equalities
‖x‖Lp∩L∞ = 1 and k0|x(t)| = 1 for µ-a.e. t ∈ T , where k0 is from (a) of
Theorem 2. Hence IΦp,∞(χT ) = k0 − 1. Taking into account the definition
of Φp,∞, we get µ(T ) < ∞ and k0 = 1 + µ(T ). Consequently, |x| = (1 +
µ(T ))−1χT . It is not difficult to prove that ‖x‖Lp∩L∞ < 1 if µ(T ) > q

p and
‖x‖Lp∩L∞ = 1 if µ(T ) ≤ q

p . Thus, when µ(T ) ≤ q
p , each strongly extreme

point of the unit ball is of the form |x(t)| = 1
1+µ(T ) for µ-a.e. t ∈ T . The

proof is finished

By the space of finite (that is order continuous) elements we will mean
the subspace E0

Φ of L0
Φ defined by

E0
Φ =

{
x ∈ L0

Φ : IΦ(λx) < ∞ for every λ > 0
}

.

The space E0
Φ equipped with the norm topology induced from L0

Φ is a closed
subspace of L0

Φ. Hence E0
Φ is a Banach space. It is worth to describe its set

of extreme points because it plays an important role in studying the problems
concerning duals of Orlicz spaces. Note that E0

Φ = {0} provided b(Φ) < ∞,
so there is no sense of considering properties of E0

Φ in this case.

Corollary 8. Let b(Φ) = ∞. Then extB(E0
Φ) = E0

Φ ∩ ext B(L0
Φ).

Proof. Since E0
Φ is embedded isometrically into L0

Φ, the inclusion

E0
Φ ∩ extB(L0

Φ) ⊂ ext B(E0
Φ)

holds true. If x ∈ extB(E0
Φ), then, repeating the proof the necessity of The-

orem 1, we get conditions (a) and (b) of this theorem. Hence x ∈ ext B(L0
Φ).

Consequently, extB(E0
Φ) ⊂ E0

Φ ∩ ext B(L0
Φ) and the proof is finished
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Corollary 9. Let b(Φ) = ∞. If one of the conditions

(i) IΨ(p ◦ u0χT ) < 1, where u0 = sup{u ≥ a(Φ) : u ∈ SC(Φ)}
(ii) SC(Φ) = {0}
(iii) a(Φ) > 0 and µ(T ) = ∞

is satisfied, then ext B(E0
Φ) = ∅.

Proof. By Corollaries 3 and 8, if (i) or (ii) is satisfied, then extB(E0
Φ) =

∅. To prove the sufficiency of condition (iii), suppose ext B(E0
Φ) 6= ∅. Then

by Corollary 8 and Theorem 1 there is x0 ∈ S(E0
Φ) with exactly one k0 ≥ 1

such that ‖x0‖0Φ = 1
k0

(1 + IΦ(k0x0)) and k0x0(t) ∈ SC(Φ) for µ-a.e. t ∈ T .
Let condition (iii) be satisfied. Since a(Φ) = inf{u ≥ a(Φ) : u ∈ SC(Φ)}, we
have

IΦ(2k0x0) ≥ IΦ(2a(Φ)) = Φ(2a(Φ))µ(T ) = ∞,

i.e. x0 /∈ E0
Φ – contradiction. It shows that also in this case ext B(E0

Φ) = ∅,
which finishes the proof

Corollary 10. Assume Φ is an Orlicz function with b(Φ) = ∞ and x ∈
S(E0

Φ). Then x is a strongly extreme point of B(E0
Φ) if and only if x is an

extreme point of B(E0
Φ), Φ ∈ ∆2(∞) and at least one of the conditions

(i) µ(T ) < ∞
(ii) Φ ∈ ∆2(0)

is satisfied.

Proof. Since L0
Φ = E0

Φ provided Φ ∈ ∆2(∞) and one of the conditions (i)
or (ii) is satisfied, by Theorem 2 we conclude the sufficiency of the corollary. If
x is a strongly extreme point of B(E0

Φ), then x is an extreme point of B(E0
Φ).

By Corollary 4, we conclude that in the case a(Φ) > 0 and µ(T ) = ∞ also
the set of strongly extreme points of B(E0

Φ) is empty. Hence, excluding this
situation and taking into account the assumption b(Φ) = ∞, by Theorem 2,
we conclude the necessity of the assumptions

.
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[7] Domínguez, T., Hudzik, H., López, G., MastyÃlo, M. and B. Sims: Complete
characterizations of the Kadec-Klee properties in Orlicz spaces. Houston J.
Math. (to appear).

[8] Giles, J. R. and W. B. Moors: Generic continuity of minimal set-valued map-
pings. J. Austral. Math. Soc. 63 (1997), 238 – 262.
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