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1. Introduction

In many problems of Computer Vision, as in image segmentation or signal processing, the detection
of the relevant contours from an input image is formulated in a variational setting, where the
minimization of a given ‘energy’ functional provides a piecewise-smooth approximation of the
data, whose discontinuity set gives the desired segmentation. In this case, the unknown is a pair
(u, K), with K a union of (sufficiently smooth) closed curves contained in a fixed open set §2 C R?
representing the contour of the objects in the picture and u : £2\ K — R belonging to a class of
(sufficiently smooth) functions, representing a smoothing of the input image on £2\ K. A model
functional for this kind of problem is, proposed by Mumford & Shah [20],

F(u,K):/ |Vu|2dx+clH1(K)+cz/ lu — g|*dx, (1.1)
2\K 2\K

where §2 parameterizes the input picture taken from a camera, g is interpreted as the grey level
of the input picture, c¢; and ¢ are contrast parameters, and HI(K ) denotes the total length of K.
In this case the competing optimality criteria for K and # are the minimality of the total length
of K and of the L%-norm of the gradient of u on £2\ K, in addition to the closeness of u to the
datum g. Problems involving functionals of this form, with volume and surface energies, are usually
called free-discontinuity problems, after a terminology introduced by De Giorgi. They have been
intensively studied in recent times through weak formulations in the framework of the spaces of
special functions of bounded variation (see [5, 8, 14, 15]).

The presence of the unknown surface K leads to numerical problems, and some kind of
approximation of free-discontinuity problems is needed to obtain approximate smooth solutions.
The Ambrosio and Tortorelli approach (see [3] and [4]) provides a variational approximation
of the Mumford and Shah functional (1.1) via elliptic functionals. They overcome the lack of
convexity of the limiting function by introducing an additional function variable which approaches
the characteristic of the complement of the set K. Their approximating functionals have the form

Fow.v) = | v2VuPdx +c 2, Lo o
e(u,v) = 1 elVul "+ —(0 —v)")dx + 2 |lu — g|”dx, (1.2)
Q Q de Q
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defined on functions u, v such that u, v € H! (£2) and 0 < v < 1. The interaction of the terms in the
second integral provides an approximate interfacial energy, as in the theory of phase transitions for
Cahn—Hilliard fluids. This phenomenon had previously been described in analytic terms by Modica
& Mortola [19] in the case of phase boundaries. The adaptation of the Ambrosio and Tortorelli
approximation to obtain more complex surface energies as limits does not seem to follow easily
from their approach.

Motivated by applications in Computer Vision and Fracture Mechanics, in this paper we study
a variant of the Ambrosio Tortorelli construction by considering functionals of the form

G, v) = / V2| V| dx + ¢ / (8|VU|2 LI v)2) dx + 02/ w—gl”dv, (13)
2 2 4e 2

where y > 1. Even though the form of the functionals in (1.3) is quite similar to the previous one,
the domain of the limiting functional will be different. Indeed, as we have G¢(u, 1) < f o IVul +
calu — g|¥ dx, it is clear that the limit of these functionals will be finite if # € BV (§2). In fact we
prove (Theorem 4.1 and Example 4.6) that G, converge to functionals related to the function-surface
energy
lut —u~| :
G(u,K)=|Du|(.Q\K)+c1/ —dH +02/ lu — g|” dx, (1.4)
k L+]ut —u~| 2\K
where |Du|(A) denotes the total variation on A of the distributional derivative Du, and u* are the
traces of u on both sides of K.

The substitution of the L2-norm of the gradient by the L!-norm in this formulation is driven by
a currently very popular approach to image segmentation by curve evolution (see [21,22]). In fact,
one may view the image domain £2 as a Riemannian manifold endowed with a metric defined by
the image properties. Then the segmentation problem may be thought of as the problem of finding
a minimum cut in a Riemannian manifold. Curve evolution as practiced today deals with the case
where the metric is isotropic, which can be formulated as the segmentation functional G using
the L'-norm of the gradient. Of course, it is not easy to implement such a functional and its use
lies in the fact that gradient descent equations of the corresponding approximation G, are elliptic
along the level curves and hyperbolic in the normal direction and so produce shocks. It is likely
that boundaries can be recovered as sharp discontinuities, and no transition layer appears. This is
apparently not possible with functionals containing the L2-norm of the gradient.

This approximation approach can be pushed further to construct a variational approximation
for a wide class of non-convex functionals defined on spaces of generalized functions of bounded
variation. In particular, we extend this procedure to limiting functionals of the more general form

G(u,K):/ f(‘dﬂ‘)dx+x|psu|(:z\1()+/ S (ut — u ) dH, (1.5)
7, dx K

with f of linear growth, where | Dyu| denotes the singular part of | Du| with respect to the Lebesgue
measure. These functionals provide a simplified variational formulation for problems in fracture
mechanics involving crack initiation energies of Barenblatt type, i.e. depending on the size of
the crack opening (see [2, 6, 18]), and are used to explain softening and fracture phenomena (see
[11], where they are also derived from an atomic model). Note that in a mechanical framework the
auxiliary function v in (1.3) can be interpreted as a damage parameter, so that our approach provides
an approximation of functionals in fracture mechanics by elliptic energies with damage.
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The paper is divided as follows. In Section 2 we introduce the spaces of generalized functions of
bounded variation GBV and GS BV, which are needed for a weak formulation of the functionals in
(1.1)—(1.4), and the notion of I"-convergence, which makes precise in which sense the convergence
of these functionals is understood. In Section 3 we state the many preliminaries which are needed in
the course of the proof. Section 4 is devoted to the statement and proof of the main result, in a slightly
more general form than above. The proof of the result lies on a lower bound which is obtained by
a new definition of the limit interfacial energy density, taking into account the interaction of the
first two integrals of the approximating energies G, and on an upper bound which is obtained by
direct construction and a density result of pairs function-polyhedral surface. Section 5 contains the
statement and proof of the approximation result for general isotropic functionals with convex bulk
energy density and concave surface energy density defined on GBV.

2. Notation

We use standard notation for Sobolev and Lebesgue spaces. L will denote the Lebesgue measure
in R” and ¥ will denote the k-dimensional Hausdorff measure. If £2 is an open set in R”, A(£2)
and B(£2) will be the families of open and Borel sets, respectively. If © is a Borel measure and B
is a Borel set, then the measure | B is defined as ul_ B(A) = u(A N B). Let A” CC A be open
sets. By a cut-off function between A" and A we mean a function ¢ € C3°(A) with0 < ¢ < 1 and
¢ =1onA

2.1  Generalized functions of bounded variation

Letu € L'(£2). We say that u is a function of bounded variation on 2 if its distributional derivative
is a measure; i.e. there exist signed measures p; such that

/MDifl’dX:—/fﬁdMi
2 2

forall ¢ € C cl (£2). The vector measure u = () will be denoted by Du. The space of all functions
of bounded variation on £2 will be denoted by BV (£2).

It can be proven that if u € BV (£2) then the complement of the set of Lebesgue points S,,, that
will be called the jump set of u, is rectifiable, i.e. there exists a countable family (I3) of graphs of
Lipschitz functions of (n — 1) variables such that 7"~ (Su\Uj"i1 I';) = 0. Hence, a normal v, can
be defined H"~'-a.e. on S, as well as the traces u™ of u on both sides of S, as

u®(x) = lim u(y)dy,
p=>0% J(yeB, (x):£(y—x,v, (x)) >0}

where £ udy = |B|7! [ udy.

If u € BV (£2) we define the three measures D%u, D/u and Du as follows. By the Radon
Nikodym Theorem we set Du = D%u 4+ D*u where D%u << L" and D*u is the singular part of
Du with respect to L£". D%u is the absolutely continuous part of Du with respect to the Lebesgue
measure, D/u = Dul_ S, is the jump part of Du, and D°u = D’ul_(§2\S,) is the Cantor part of
Du. We can write then

Du = D% + D/u + D u.
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It can be seen that D/u = (ut — u™)v, H"~1_S,, and that the Radon Nikodym derivative of Du
with respect of £" is the approximate gradient Vu of u.

A function u € L'(£2) is a special function of bounded variation on 2 if D°u = 0, or,
equivalently, if its distributional derivative can be written as

Du=Vul"+ @ut —u)v,H" 'L S,.

The space of special functions of bounded variation on 2 is denoted SBV (§2). We will also use the
auxiliary spaces

SBVP(22) ={u € SBV(2) : |Vu| € LP(£2), H""1(S,) < +00}.

We define the space G BV (§2) of generalized functions of bounded variation as the space of all
functions u € L'(£2) whose truncations ur = (—=T) V (u A T) are in BV (£2) for any T > 0.
For such functions we can define S, = (J;-( Su;, and the approximate gradient and the traces
u™ as the limits of the corresponding quantities defined for u7. Moreover, we define the measure
|Du| : B(§2) — [0, +00] as

|Dul(B) = sup |[Dur|(B) =

lim |D ur|(B).
T>0 T—+00

If u € BV (£2) |Du| coincides with the usual notion of total variation of Du. Finally, we set
GSBV(R2)={u € GBV(£2) : |[D°ul =0} ={u € L'(2) : ur € SBV(R) forall T}.

For a detailed study of the properties of BV -functions we refer to [5, 16, 17]. For an introduction
to the study of free-discontinuity problems in the BV setting we refer to [5].

2.2 Relaxation and I"-convergence

Let (X, d) be a metric space. We first recall the notion of relaxed functional. Let F : X —
R U {4+o0}. Then the relaxed functional F of F, or relaxation of F, is the greatest d-lower
semicontinuous functional less than or equal to F.

We say that a sequence F; : X — [—00,+0o0] I'-converges to F' : X — [—00, +00] (as
Jj — +oo)if forall u € X we have

(1) (lower limit inequality) for every sequence (u;) converging to u

F(u) < liminf Fj(u;); 2.1
J

(ii) (existence of a recovery sequence) there exists a sequence (u;) converging to u such that

F(u) = limsup Fj(u;), 2.2)
J

or, equivalently by (2.1),
F(u) = 11m Fj(uj). (23)
J

The function F is called the I"-limit of (F}) (with respect to d), and we write F' = I"-lim; Fj. If
(F) is a family of functionals indexed by & > 0 then we say that F, I"-converges to F as ¢ — 0T
if F = I'-limj_, 1 F¢; for all (¢;) converging to 0.

The reason for the introduction of this notion is explained by the following fundamental theorem.
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THEOREM 2.1 Let F = I'-lim; F}, and let a compact set K C X exist such that infy F; =
infg F; for all j. Then

dmin F = liminf F;. 2.4
X i X

Moreover, if (u;) is a converging sequence such that lim; Fj(u;) = lim; infy Fj then its limit is a
minimum point for F.

The definition of I"-convergence can be given pointwise on X. It is convenient to introduce also
the notion of I"-lower and upper limit, as follows: let F; : X — [—00, +0oc] and u € X. We define

I-liminf Fg(u) = inf{liminf Fe (u.) : ue — u}; 2.5)
e—0t e—0F
I'-limsup Fg(u) = inf{limsup Fe(ue) : uy — u}. (2.6)
=0t e—0F
If I'-liminf, o+ Fe(u) = I'-limsup,_ o+ Fe(u) then the common value is called the I"-limit

of (F¢) at u, and is denoted by I'-lim,_,¢+ F¢(u#). Note that this definition is in accord with the
previous one, and that F, I"-converges to F if and only if F(u) = I'-lim,_, g+ F¢(u) at all points
uelX.

We recall that:
(1) if F = I'-lim; F; and G is a continuous function then ' + G = I'-lim; (F; + G);
(ii) the I"-lower and upper limits define lower semicontinuous functions.

From (i) we get that in the computation of our I'-limits we can drop all d-continuous terms.
Remark (ii) will be used in the proofs combined with approximation arguments.

For an introduction to I"-convergence we refer to [13] (see also [10] Part II). For an overview of
I'"-convergence techniques for the approximation of free-discontinuity problems see [8].

3. Preliminaries

In the following £2 will denote a bounded open set in R” with Lipschitz boundary.

We denote by W($2) the space of all functions w € SBV($2) satisfying the following
properties:

@) 1" (Sw\Sw) = 0;

(i) Sy, is the intersection of £2 with the union of a finite number of pairwise disjoint (n — 1)-
dimensional simplexes;

(iii) w € Wk (2\§,,) for every k € N.

The following result is due to Cortesani and Toader [12] (see also [9]).

THEOREM 3.1 (Strong approximation in SBV?) Let u € SBV2(2) N L*®(£2). Then
there exists a sequence (w;) in W(§2) such that w; — u strongly in L'(£2), Vw; —
Vu strongly in L>(£2, R"), lim SUPy s 100 lWjlloo < [l#t]loo and

lim sup ¢>(wj".", w;, ij)dH”q < St u, v,)dH"!
Jj——+oo Swj Su

for every upper semicontinuous function ¢ : R x R x §*~! — [0, 400) such that ¢ (a, b, v) =
¢(b,a,—v), foreverya,b € Randv € gn—1
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The next result is a particular case of a theorem by Bouchitté, Braides & Buttazzo [7], and deals
with relaxation in BV of isotropic functionals.

THEOREM 3.2 (Relaxation in BV) Let g : R — [0, +00] be a lower semicontinuous function
with
t
g2(0) =0, lim & =

t—0t+ 1

17

and such that the map ¢+ — g(|z]) is subadditive and locally bounded. Let F' : BV (£2) — [0, +o0]
be defined by

/|Vu|dx+/ glut —u DdH™™! if ue SBVE(2)NL®(R2)
Flu) = 2 Sy

+o00 otherwise in BV (£2).

Then the relaxation of F with respect to the L' (£2)-topology is given on BV (£2) by the functional

f(u)=/ |Vu|dx+/ g(ut —u ) dH" ! + |DCu|(£2).
2

Su

The following lemma is a commonly used tool (see [8]).

LEMMA 3.3 (Supremum of measures) Let u : A(£2) — [0, +00) be an open-set superadditive
function, let A € M™(£2), let ; be positive Borel functions such that j1(A) > f 4 Wi d for all
A € A($2) and let ¥ (x) = sup; ¥;(x). Then u(A) > fA Y dx forall A € A(L2).

We finally include a ‘slicing’ result by Ambrosio (see [1]). We introduce first some notation.
Let £ € $"7!, and let g :={y € R" : (y, &) = 0} be the linear hyperplane orthogonal to &. If
y € [Ig and E C R" we define E¢ , = {t € R: y+t§ € E}. Moreover, if u : 2 — R we set
ugy : 2ty — Rbyug (@) = u(y + ).

THEOREM 3.4 (a)Letu € BV (£2). Then, forall & € §"~! the function ug, y belongs to BV (§2¢ y)
for H" '-aa. y e II¢ . For such y we have

u/g,y(t) = (Vu(y +1&),&) foraa. t € 2y, (3.1)
Sue, = {t €R: y+1& €Sy}, (3.2)
vit) =ut(y+1E)  or  v(tt) =uT(y+1£), (3.3)

according to the cases (v,, &) > 0 or (v,, &) < O (the case (v,, &) = 0 being negligible). Moreover,
we have

/H Duey|(Ae.y) AH'(y) = [(DCu, £)|(A) (3.4)
&
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for all A € A(£2), and for all Borel functions g

Jr

(b) Conversely, if u € L'(£2) and forall £ € {e;, ... ,e,}andforae. y € I: ug y € BV (82¢ )
and

> s0dr o) = [ gl ear . (35)

ZGS,,E y Su

f | Dug |(2¢.y) dH" ' () < +00, (3.6)
TIg

thenu € BV (£2).

4. The main result

Using the space GBYV defined in the previous section, it is possible to give a weak formulation
for problems as in (1.1) and (1.4), which has been successfully used to obtain solutions of free-
discontinuity problems (see [5]). In what follows we drop the term containing [ |u — g|” dx, which
is of lower order, and does not affect the form of the I"-limit, and we generalize the form of the
functional (1.3).

THEOREM 4.1 Let W : [0, 1] — [0, +00) be a continuous function such that W(x) = 0 if and

only if x = 1, and let ¢ : [0, 1] — [0, 1] be an increasing lower semicontinuous function with
Y(0)=0,¢%(1)=1,and ¥(r) > 0ifr #0. Let G, : L'(£2) x L'(§2) — [0, +00) be defined by

1
f (w(vwm F-W@) —|—8|Vv|2) dx if wu,ve H(Q)
Q €
Ge(u,v) = and0 <v <1 ae.
+00 otherwise.

Then there exists the I'-limg,_0t+ G:(u,v) = G(u,v) with respect to the LY(2) x LY()-
convergence, where

/|Vu|dx+/ g(ut —u DdH" " +|Du|(2) if ueGBV(R)
2

Su

G(u,v) = andv =1 ae.

+00 otherwise,
and

g@):=min{yYy @)z +2cw(®) : 0 <t < 1}, “4.1)

with ey (1) := 2 [ W(5) ds.
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The proof of the theorem above will be a consequence of the propositions in the rest of the
section. Before entering into the details of the proof, we define also a ‘localized version’ of our
functionals as follows:

/(w(v)lvm~|—éW(v)+8|Vv|2>dx if uve HY(Q)
A

Ge(u,v, A) = and0 < v < lae.

+00 otherwise,

and

/ [Vu|dx +/ g(ut —u~[)dH"™" + |Du|(A)
A S.NA

G(u,v, A) = ifu e GBV(2)andv =1 a.e.

+00 otherwise,
for any A C £2 bounded open set.

REMARK 4.2 By the assumptions on ¥ and W, it can be easily proved that g satisfies the
following properties
(i) g is increasing, g(0) = 0 and
1
lim g(z) =2cw(0) = 4/ v Wi(s)ds;

Z
(i1) g is subadditive, i.e.
g(z1+z2) < g(z1) + g(z2) Vzi, 22 € RT;

(iii) g is Lipschitz-continuous with Lipschitz constant 1;
(iv) g(z) < zforall z € R* and
. 8(@)
lim — =

z—0t Z

I;
(v) for any T > O there exists a constant cr > 0 such that z < ¢7 g(z) forall z € [0, T'].
PROPOSITION 4.3 Letn = 1. Then G (u, v) < I'-liminf,_, g+ G¢(u, v) forall u, v € L'(£2).

Proof. 1t suffices to consider the case in which the right-hand side is finite. Let &; — 0%, u = u
and v; — vin L'(£2) be such that lim;_, 4o, Ge;(uj, vj) = I'-liminf,_, o+ G¢(u, v). Up to passing
to subsequences we may suppose

uj — u, and v; — v a.e. 4.2)

We have
/ W) dx < cej;
Q
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hence, by the continuity of W, for any n > 0 El({x €2 :Whk)) > n}) = lim; Ll({x €
2 :Wwjx)) > n}) = 0. We conclude that W(v) =0 a.e.,ic. v =1 ae.

We now use a discretization argument. By simplicity, we suppose that £2 = (a, b) (otherwise
we split £2 into its connected components). Let N € N and consider the intervals

I}ﬁ,:(a e )(b—) —i—%(b—a)), kefl,...,N).

Up to passing to subsequences we may suppose that

lim infv;
j—too [k

exists forall N e Nand k € {1,..., N}. Let z € (0, 1) be fixed and consider the set

Jﬁ,:{ke{l,... ,N}: lim infuv; \z}.

j—+oo Jk

Note that for any («, 8) interval in R and for any w € H'(«, 8) we have, by Young’s inequality,

/( W(w) + e|w' |2 dx > / W) |w'| dx > 2‘/ ,/W(s)ds‘.

From this inequality we deduce, following an argument as in [4], that

1
(2/ VWS ds J#If < lim G (), vy) < +o0c.
z Jj—>+o00 ’

()

Then
#Jy < C

with C independent of N. Hence, up to a subsequence, we may suppose

Ji =N, k)

with L independent of N, and up to a further subsequence that there exist S = {¢1, ... , 7.} C [a, b]
such that
kN
lim -+ = t;
N—+oo N
foranyi € {1,..., L}. Forevery n > 0 we have

15, c Sy =S8+ [-n,nl
for all k € J§, and for N large enough. Then
llmmng (), vj) >hm1nfG6 (uj, vj, 2\Sy)

j‘)

+hm1an Ge; (uj, vj, (ti —n, i + 1))

]*) o0

>1iminf1ﬁ(z)/ |u}|dt
J—>+0o0

+Zl§n3 inf G, (uj, vj, (ti =0, ti + 1)) (4.3)
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With fixed i € {1,..., L}, we focus our attention on the term G, (uj, vj, (ti — 1, t; +n)). By
definition and by (4.2), we have that for any § > 0 there exist x|, x» € (t; — n, t; + n) such that

hm u,(xl)_u(xl) < ess-inf u + 8,

i= (ti—n,ti+n)

hm uj(x2) =u(xz) > ess-sup u — 4,
Jj=>oo (i —n,ti+m)

lim vj(x))= lim v;j(x2) =L 4.4
Jj—+oo J—>+oo

Let xj’: € [x1, x2] be such that v; (x]’:) = inf[x, x,] vj. Then we obtain the following estimate:

GS_,‘ (Mj, 'Uj, (tl - 77, tl + 77)) 2 GS, (ujv vj5 (-xla xz))

. X2 X2
>w(vj(x}))‘/ u}dx(+2/ VW@ dx

> (v (X)) (x2) — uj(x1)]|

vj(x1) vj(x2)
VW(s)ds +2 VWi(s)ds
v (x) vj (x})
> inf { (x2) —
Ao Y (1)|uj(x2) — uj(xy)]

vj(x2)

o[ e [T W)

4.5)
Letting j — 400 and taking into account (4.4), we get
hmJ:nst (uj, vj, (G —n, ;i + 1))
]*)
1
> inf {lp(t) ess-sup u — ess-inf u —28’ +4/ \/W(s)ds}.
t€l0,1] (t;—n,ti+n) (ti—n,t;+n) t
Thus, by the arbitrariness of § > 0,
hmmst (wj,vj, (t; —n, t; + 1)) = (ess sup u — ess-inf u) (4.6)
j—+ (ti—n,ti+n) (ti—n,ti+n)

Now we turn back to the estimate (4.3). Since sup; G?/ (uj,vj) < +oo, by (4.3) we get the
equiboundness of f-Q\Sr; |u}| dt. Hence u € BV (£2\S;) and, by (4.3) and (4.6),

L
hmlnfGE (uj, vj) = ¥(2)|Du|(£2\Sy,) + Z <ess sup u — ess-inf u) 4.7
J=+ i=1 (ti—n,ti+n) (ti=n.ti+n)

By the arbitrariness of 7, we deduce that u € BV (§£2\5), i.e. since S is finite, u € BV (£2). Then,
letting n — 0 in (4.7), we get

L
liminf Ge, (uj, vj) > ¥ (@) Dul(@\$) + Y g(u™ —u”|x)

Une i=1

> Y @IDul@\S) + Y (80t —u™|0) A Y@t —uT|0)). “8)

teSy
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Finally, letting z — 1 in (4.8) we obtain the required inequality, since g(¢) < ¢. a

We recover, now, the n-dimensional analogue of the previous inequality, by using Theorem 3.4.
PROPOSITION 4.4 Letn € N. Then G(u, v) < I'-liminf,_, g+ G (u,v) forall u, v € L'(£2).
Proof. In the following we will use the notation introduced before Theorem 3.4, and we set G’ =
I'-liminf,_ o+ Gg.

Leté € 5"~1 pe fixed. For any u, v € Hl(Q), 0 < v < 1, we have, by Fubini’s Theorem,

Ge(u, v, A)
= [ [ (vew+ e+
g J Agy

1
Fo W + 1) + el Voly +15)?) dr a1 ()
/ 1 . .
2/}_{5 /Asy<1/f(véy(t))|u§y| + EW(USy(t))—i—gh}Sy(t)'Z) dr a1 (y)
= [ Getuey vy A a1 ), o
I
where G, is defined by

/(¢(U)|u/| T éW(v) +s|v”|2) dr ifu,ve H'(I)
1

Ge(u, v, I) = and0 < v < 1

+00 otherwise,

forany u, v € L'(I)andI CR open and bounded.
Lete; — Oandletu; — u,v; — vin L'(£2) be such that

liminf G, (uj, vj) < +o00. (4.10)

J—=+o0

Thenuj, v; € Hl(.Q), 0 < vj < lae. and, as in the proof of Proposition 4.3, v = 1 a.e. Moreover,
by Fubini’s Theorem, (u;)gy — Ugy, (vj)ey — 1in Ll(.ng) for " laa. ye Il;.
Thus by Proposition 4.3 and by Fatou’s Lemma we get

lim inngj (uj,vj, A)
Jj—>+0o

> [ timintG, (w)ey. (e, Aey) 4 )
Mg J—+00

> (f |uts |dt+/
/];5 Agy &y Su

g(uf, —ug, ) d# + |D0u5y|(A§y)) dH 1 (y).
£y NAgy

4.11)
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Let T > 0 and set
ur =(-T)vwunT).

Since g is increasing, it is clear that we decrease the last term in (4.11) if we substitute u by ur.

Moreover, since ur € L°°(£2), with |lur|lcc < T, by Remark 4.2(v), we have
luf —uz| < cr g(uf —uz))

for a suitable constant cr depending only on 7. Then, by (4.10) and (4.11), we have

/ |Dur|(Agy) dH" ! () < +o00.
IIg

Thus, applying Theorem 3.4, we get that u7 € BV (§2) and, by the arbitrariness of (u;) and(v;),

G'(u, 1, A) >/A|<VMT,S>|dx+f g(uj —uz DIy, ) dH"~ + [(DCur, £)|(A) (4.12)

Sun

forall A € A(£2) and &€ € S"~ 1.
Consider the superadditive increasing function defined on A(£2) by

Y(A) :=G'(u, 1, A)
and the Radon measure
A= L2+ g(luf —upDH Sy, + | Durl.

Fixed a sequence (&;);cN, dense in "1, we have, by (4.12),
> [

for all i € N, where

[(Vur(x), &) L" ae.on$2
Yi(x) = 1 [ (x), &) |Dur| ae. on2\S,,

l(ve(x), &) H"lae. onS,,.

Hence, applying Lemma 3.3, we get

G'(u, 1, A) >/ |Vur|dx +/ g(ut — uz ) dH"~ + | D ur|(A)
A SupNA
for all A € A(£2). In particular
G2 [ Vurldr+ [ gluf —uph a4 Durl().
2

Sup

4.13)

(4.14)

Finally, by the arbitrariness of T > 0, u € GBV (£2) and the thesis follows letting T — 400 in

(4.14).

O
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PROPOSITION 4.5 We have I'-limsup,_, o+ G (4, v) < G(u,v) forallu, v € L'(£2).

Proof. Tt suffices to prove the inequality for v = 1 a.e. Since we will use density and relaxation
arguments, we divide the proof into five steps, passing from a particular choice of u to the general
one. In the following we will use the notation G” = I'-limsup,_, o+ G.

Step 1. Suppose that u € W(£2) and
S.=82nK

with K a (n — 1)-dimensional simplex. Up to a translation and rotation argument, we can suppose
that K is contained in the hyperplane IT := {x, = 0}. Set

h(y):==ut(y) —u"(y), y€ S

By our hypotheses on u, & is regular on S.; hence, fixed § > 0, we can find a triangulation {7; }zN: 1
of S, such that
lh(y1) —h(y2)| <8 if y1,y2 € T;.

Let is : S, — R be defined as
hs(y) =z yeT,

where z; := min {a(y) : y € T;}. Since ||h — hs|loo < 8, by Remark 4.2 (iii), we have that

/ g(hs(y) dH" ! < / gh() dH" ™' + 8H"1(S,).

Su u

Let x;; realize the minimum in (4.1) for z = z;. Fixed n > 0, there exists 7' (1) > 0 such that

T
min {/ (|v/|2 + W(v)) dt:ve H(0,T), v(0) =x,,, o(T) = 1} Sew()+n (415
0

forall T > T(n) and foranyi =1, ..., N. Let v(z;, -) realize the minimum in (4.15).
Forr >0,e >0andi € {1,..., N}, set

B, ::H(y,t)e.Q: y e S Il <r} and Tf := {yeTi: d(y,BT,-)>8],

and let ¢} : R”~D — R be a cut-off function between 7} and 7; such that || V¢! [l < Ce™!. Fix
a sequence (&) such that limg_,o+ % =0, set Ty := T (n)e + &, and define

1 if (y,t) € 2\Br,
ve(y, 1) =
PLOHVEE) + (1 —gL(y) if yeT, |t <Ts,

where
Xz it |7l <&

v(z,-, Itl_&') if & < |t| <T,.
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We have that (v;) € H!(£2) and v, — 1 in L1(§2) as ¢ — 0+. Hence, we get

/ (E'V”s|2+ W(ve)) d
2
Y ) B —

22/162/7 1(v (Z,- lt] &)‘ +W<U( i . ga)))drd%ﬂ*‘(y)
" 121:/;" /_& (8|V¢§(y)|2|le_ — 1P+ éW(vg(y, t))) dr dH" ' (y)
+Z/T\Tf Vel Po (e, ) ]

2 U/(Zj, |7 |;E€)’ )dtd'H"il(y)

/ /Tg =W (ve(y, 1)) dt dH" ' (y)
i=1 YT\Tf

N
< ; /T.g 2/(; <|v’(Zi, l‘)I2 + W(v(z;, t))) dr dH"_l(y)

Sa

+—|¢>é

=H ‘(Su)+c(n>ZH" NTATY)

i=1

N
< Zz/ ew (xz) dH () + 20H" 1 (Su) + O (o).
i= T;

We now construct a recovery sequence u.. Let

21 T, <t <&

ie(z1,22,0) = { Fe Lt + &) +a1 |t <&

2 &<t < T,

and set

u(y, 1) 1] > T

ué‘(yvt) =
i (U, =T, u(, To)ot) Il < Te.

(4.16)
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It can be easily verified that u, € H'(£2) and u, — u in L'(£2) as ¢ — 0. Moreover, we have

_ n—1
fW(vs)IVMsldx 121:/ f& %, Y u(y, Te) —u(y, =Te)|dt dH" ™ (y)
+f |Vuldx + cH" N (T\Tf) + O(e)
£2\By,
N
= [ vuiae+ Y [ vt — i a0 + 0.
i=17Ti
.17
Letting, now, ¢ tend to 07, we obtain, by (4.16) and (4.17),

G’ (u, 1) < limsup G (us, v,)

e—>07t

N
<f9 |Vul dx + Z[T(W —uT )Yz, + 26w () dH () + e

N
<f |w|dx+2f(zz-wxzp+zcw(xz,->>dH"—1(y>+c(n+6)

:/9|Vu|dx+/ g(hs(y) dH" 1 (y) + ¢(n + )

Su

</Q|Vu|dx+/s g™ — () dH™ () + c(n + 9).

Letting 1 and 8 tend to 0™, we obtain the required inequality.
In order to use the same construction as above in the case S, = £2 N (Ulﬂi 1 K ,-), with M > 1,

we now show that we can replace (u,) by a new sequence (i) such that iz, # u only in a small
neighbourhood of K. To this end we again use a cut-off argument. Set
K.:={yell :d(y,K) < ¢}
and let ¢, : R”~! — R be a cut-off function between K and K, with |V¢e|se < ce™!. Define
Ue(y, 1) = GeMue(y, 1) + (1 =g YNuly, 1) (y,1) € 2.

We have

Ue(y,t) = ue(y,t)  if(y,t) € Br,,
e(y,t) =u(y,t) if (y,1) € 2\K, x (=T, T,). (4.18)
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Then
/ |Vﬁg|dx</ Vul dx
$2\Br, S2\Ke x (=T, Te)
T:
[ (19000 — ) dr )
RN(KN\K) =T
Ty
+f [ (snvuetynn
N(KN\K) J-T¢
+(1 = 9o () Va(y, 1) dr dH™! ()
T5 n—1
< [Vu|dx + c—H"" (K \K) + O(¢).
(7 &
Thus

limsup/ |Vﬂ£|dx=/ |Vu|dx,
e—>0t JQ\Br, 2

and, by (4.18), we still have

limsup G, (il ve) < G(u, 1) +c(n +9).
e—>0t
Step 2. If u € W(£2) with S, = 2 N (Ulﬁil Ki), we can generalize in a very natural way the

construction of the recovery sequences i, and v, in Step 1, since this construction modifies u and v
only in a small neighbourhood of each sets K;.

Step 3. Letu € SB V2(£2)NL*®(£2). Then, applying Theorem 3.1 with ¢ (a, b, v) = g(la —b|),
there exists a sequence (w;) € W(S2) such that

w; — uin L'(£2), and limsup G(w;, 1) < G(u, 1)

Jj—>4o00
Then, by the previous steps and by the lower semicontinuity of G”

G"(u,1) < liminfG”(wj, D <liminf G(w;, 1) < G(u, 1).
j—+o0 Jj—+00

Step 4. Since g satisfies the hypotheses of Theorem 3.2, the relaxation with respect to L' (£2)-
topology of the functional

Gu,1) if ueSBV3(£2)NL®(2)
F(u) .=
+00 otherwise in BV (£2)

is given by o
Fu)=G,1)

for all u € BV (£2). Then by the previous steps and by the lower semicontinuity of G” we get

G'(u,1) < F(u) = G(u, 1)
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for any u € BV (£2).
Step 5. We recover the general case by a truncation argument. Let u € GBV (£2) and let u; =
(=j) VvV (u A j). Then
lim G(u;,1) =G, 1).

Jj—>+oo

Since u; — u in L'(£2) we get the thesis by the lower semicontinuity of G”. O

EXAMPLE 4.6 We illustrate with a few simple examples the behaviour of the function g, given by
(4.1), with different choices of .

Let W(v) = (1 —v)?/4, so that cw () = (1 — 1)?/2. We then have

(a) if ¥ (v) = v? then g(2) = |zI/(1 + |z]);

_ (2 .
(b) if ¥ (v) = v then g(z) = |z = (z°/4) %flzl <2
1 if |z] > 2;

0 ifv=0

©ify) = . then g(z) = min{|z|, 1}.
1 otherwise,

We see that the ‘bulk term’ and the ‘surface term’ (i.e. the first and the second terms in (4.1))
play different roles in these examples. Note that in (a) we always have interaction between these
two terms (i.e. both terms contribute to the value g(z)) contrary to what happens in the Ambrosio
Tortorelli case. The interaction also occurs in (b) for |z| < 2. Note moreover that in the third case
the minimal ¢ in the definition of g(z) does not vary with continuity at z = 1.

5. Approximation of general functionals

In this section we show how Theorem 4.1 can be used to obtain an approximation of general
(isotropic) energies defined on GSBYV by a double limit. The set £2 will be a bounded open subset
of R" with Lipschitz boundary.

PROPOSITION 5.1 Let W and y be defined as in Theorem 4.1, let f : [0, +00) — [0, +00) be a
convex and increasing function satisfying

t—+o00 f

1, (5.1)
and let G, : L'(£2) x L'(£2) — [0, +00) be defined by

/ (1//(v)f(|Vu|) + éW(v) + 8|Vv|2) dx ifu,v e H'(Q)
2

Ge(u,v) = and0 < v <1 ae.
400 otherwise.

Then there exists the I'-limg_o4 Go(u,v) = G(u,v) with respect to the L'(£2) x LY(2)-
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convergence, where

/ f(|Vu|)dx+/ g(ut —u ) dH" " + |DU|(2) ifu € GBV(R)
7 Su

G(u,v) = andv =1 ae.

+00 otherwise,
and g is defined in (4.1).

Proof. The estimate for the I"-lim inf can be performed as in Proposition 4.3, noting that in (4.5)
we obtain, by Jensen’s inequality,

Ge;(uj, vj, (1 =, ti + 1)) = ¥ (v (x))x2 — x‘”(%)

x2
+zf JWp vl dx,
X1 I

from which the lower bound can be easily obtained taking into account (5.1). The rest of the proof
can be obtained following Propositions 4.4 and 4.5. O

REMARK 5.2 LetK >0and N > 2, let
O=agy<ay <---<ay =1, O=by <by_1---<by=K,

and let f and W be as in the previous proposition. Then there exists ¥ satisfying the hypotheses in
Theorem 4.1 such that, if G, : L1(§2) x L1(£2) — [0, +00) is defined by

/(w(v)f(|v:4|)+ §W(v)+el<|vu|2) dv if u,ve H(Q)
2

Ge(u,v) = and0 <v <1 ae.

+00 otherwise,
then the thesis of the previous proposition holds with g : [0, +00) — [0, 4-00) given by
8(z) = min{a;z + b;}.

In fact, in this case the formula for g can be easily inverted, obtaining  as the piecewise constant
function given by ¥ (0) = 0 and

&) =a;  ifcy (bim1/2) < & < o' 1(bi/2),
where cw is defined in Theorem 4.1.

PROPOSITION 5.3 Let W be as in Theorem 4.1. Let ¢, ¢ : [0, +00) — [0, +00) be functions
satisfying
(i) ¢ is convex and increasing, lim,_, ;o @(#)/t = +00;
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(>ii) ¥ is concave, lim,_, o+ U () /t = +00.
Then there exist two increasing sequences of functions (¢;) and (/;), and a sequences of positive
real numbers (k;), converging to sup ¥, such that if we define

/ (1//j(v)g0j(|Vu|) + %W(v) +kjs|w|2) dx ifu,v e H'(Q)
2

G'si (u,v) = and0 <v <1 ae. (5.2)

+00 otherwise,
then for every j € N there exist the limits
r- lim Gi(u,v) =: G/(u, v)
e—>0t

r- lim G/(u,v) = lim G’(u,v) = G(u,v)
Jj—>+00 Jj—+oo

with respect to the L' (£2) x L!(£2)-convergence, where

f (p(|Vu|)dx+[ O(ut —u"|)dH"' ifu e GSBV(R)
2

Su

G(u,v) = andv =1 a.e.

+00 otherwise.

Proof. Let#; : [0, +00) — [0, +00) be functions of the form
9;(z) = min{A/z + B/},

with 0 = Aé <-e < Ajj = j converging increasingly to ©#, and let ¢; : [0, +00) — [0, +00) be
convex increasing functions with

im ¥ @ .

im —— = j,

t——400 t
converging increasingly to ¢. Let k; = max ¥;.
Set g; = j/j, Kj = kj/j and f; = ¢;/j. By the previous remark, applied with g = g;, f = f;

and K = K, we can find ¥ =: v; such that if we let Gl LY (£2) x LY(£2) = [0, +00) be defined

by (5.2) then there exists the I'-limy_, o4 GZ (1, v) = G/ (u, v) with respect to the L' (22) x L!(£2)-
convergence, where

/(ﬂj(IVul)der/ 9 (It —u” ) dH" " + jIDu|(£2)
Q Su

Gl(u,v) = ifu e GBV(L2) andv =1 ae.

+00 otherwise.

Since the functionals G/ converge increasingly to G, they also I'-converge to G as j — +o00. [
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REMARK 5.4 If ¢ is convex and even, ¢ is concave and even, and

lim M= li &=M

1—>+oo f t—ot t ’

then there exist (¢;), () and (k;) such that the functionals G/ defined above I'-converge with
respect to the LY(2) x L! (£2)-convergence to

/¢(|Vu|)dx+/ d(ut —u ) dH"' + M|Du|(£2)
2

Su

G(u,v) = ifu e GBV(S2) andv = la.e.

400 otherwise.

The proof can be obtained directly from Remark 5.2, using the approximation argument of
Proposition 5.3.
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