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We show two examples of facet-breaking for three-dimensional polyhedral surfaces evolving by
crystalline mean curvature. The analysis shows that creation of new facets during the evolution
is a common phenomenon. The "rst example is completely rigorous, and the evolution after the
subdivision of one facet is explicitly computed for short times. Moreover, the constructed evolution
is unique among the crystalline #ows with the given initial datum. The second example suggests that
curved portions of the boundary may appear even starting from a polyhedral set close to the Wulff
shape.

1. Introduction

Motion by crystalline curvature is an anisotropic evolution of a set when the ambient space RN is
endowed with a convex one-homogeneous function whose unit ball (usually called the Wulff shape)
is a polyhedron. It provides a geometric model for physical phenomena in phase transitions and
crystal growth where the velocity of the evolving front depends on the orientation of the normal
vector and has a "nite number of preferred directions, corresponding to the facets of the Wulff
shape. We refer for instance to [7] for an overview of this kind of geometric evolutions, and to
[3, 16, 24, 25] and references therein for some applications. From the mathematical point of view,
the presence of corners and #at regions in the Wulff shape is source of interesting problems, as
pointed out in the pioneering papers of Taylor [20, 21, 23] who was also able to compute explicitly
the velocity (i.e. the crystalline mean curvature) of the interface (see (4.2)).

The variational nature of this evolution is of basic importance. There is indeed an associated
natural free energy, which decreases as fast as possible under crystalline motion by mean curvature,
see [1, 2, 23] and Section 3 below. The simplest situation of motion by crystalline curvature in N = 2
dimensions has been the object of several recent papers, see for instance [1, 10, 11, 12, 14, 18, 19].
In this case, short-time existence and uniqueness of the evolution has been established, as well
as an inclusion principle between the evolving fronts. Moreover, if the initial set E is a polygon
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compatible with the Wulff shape, its edges translate parallel to themselves during the evolution, so
that no edge-breaking occurs. It is interesting to observe that the situation becomes quite different
in presence of a space-dependent forcing term [11]. In the present paper we consider motion by
crystalline curvature in N = 3 dimensions: here the situation is much more complicated, and less is
known about the qualitative behaviour of the evolving interfaces. In particular, to the best knowledge
of the authors, given an initial set, we can neither de"nitely predict instantaneous facet-breaking nor
understand where subdivisions, if any, take place. In this direction, we refer to the papers [17, 22]
for numerical simulations. Furthermore, the issue of short-time existence of a `smooth' evolution is
still open, as well as the construction of a unique weak solution [11] describing the motion after the
onset of singularities.

A comparison principle has been established in [13] for some particular evolutions in three
dimensions, and generalized in any space dimension and for any convex Wulff shape in [4]. This
result implies uniqueness of the evolution. We notice that in [13] the study of the crystalline
evolution has been carried out under the assumption that no facet-breaking occurs. Here we compute
two examples of facet-breaking for three-dimensional polyhedral surfaces evolving by crystalline
mean curvature. Example 1 concerns a cubic Wulff shapeWφ and a non convex φ-regular initial set
E . It turns out that, for proper choices of the lengths of the edges of ∂E , a facet instantly subdivides
into two new facets. We explicitly compute the subsequent evolution t → E(t) for short times: this
evolution is unique, i.e. is the crystalline evolution of E . Example 2 is more surprising, even if not
completely rigorous: here the Wulff shape is a regular orthogonal prism with hexagonal basis, and
the initial set E is a convex polyhedron very close toWφ . Depending on a certain parameter, there
is evidence that a curved portion of the boundary instantly develops. Numerical simulations of all
these phenomena will appear in [17]. Such an evolution is expected to be the crystalline evolution
of E .

These two examples show several facts. Firstly, subdivision of one facet into new facets seems
to be a common phenomenon in three dimensions, as already remarked by Taylor in [22] and by
Yunger in [26]. Secondly, since it is natural to look for a short time existence theorem in a suitable
class of surfaces, then (if our interpretation of Example 2 is correct) this class must be suf"ciently
large to include piecewise C1 surfaces. Notice also that the class of φ�regular polyhedra is not stable
under crystalline mean curvature #ow, even for short times.

We point out that Taylor expects the existence of initial data for which the amount of new
subdivisions is not bounded [1, 21]. This could be related to our examples.

The plan of the paper is the following. In Section 2 we de"ne some notation. In Section 3 we
recall, following [4], the general de"nitions of φ-regular set and φ-regular #ow. These de"nitions
concern basically Lipschitz surfaces; we do not restrict ourselves to polyhedral surfaces, in view
of Example 2. At the end of Section 3 we partially compute the "rst variation of the crystalline
perimeter. In Section 4 we give some preliminaries on crystalline evolutions of polyhedral sets. In
particular, in De"nition 4.1 we introduce the class of φ-calibrable sets. A φ-calibrable set is, roughly
speaking, a φ-regular polyhedron with each facet of constant φ-mean curvature, i.e. which admits a
global Cahn�Hoffman vector "eld having constant divergence on each facet. Theorem 4.3 provides
a necessary condition for a set to be φ-calibrable, and this will be crucial to construct the examples,
which are illustrated in Section 5. We conclude by observing that "nding necessary and suf"cient
conditions on a set E to be φ-calibrable would be very useful to understand the class of initial
polyhedral surfaces which do not develop new facets for short times.
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2. Some notation

In the following we denote by · the standard euclidean scalar product in R3 and by | · | the euclidean
norm of R3. Given a subset A of R or R2, we denote by |A| the Lebesgue measure of A. Hk , for
k = 1, 2, 3, will denote the k-dimensional Hausdorff measure in R3. If E ⊂ R3, we denote by ∂E
the topological boundary of E . By a polyhedral set E we always mean a bounded closed polyhedral
set, and by a facet F (resp. an edge l) of ∂E (i.e. of E) we always mean a closed facet (resp. a closed
edge); we denote by int(F) (resp. int(l)) the relative interior of F (resp. of l). We assume that all
polyhedral sets have a "nite number of facets.

Given a polyhedral set E , a facet F of E and an edge l of F , we denote by νF,l the euclidean
unit normal to int(l) lying in the plane of F and pointing outside F .

We indicate by φ : R3→ [0,+∞[ a convex function satisfying the properties

φ(ξ) > Λ|ξ |, φ(aξ) = aφ(ξ), ξ ∈ R3, a > 0, (2.1)

for a suitable constantΛ ∈ ]0,+∞[, and by φo : R3→ [0,+∞[, φo(ξ∗) := sup{ξ∗ ·ξ : φ(ξ) 6 1}
the dual of φ. We set

Fφ := {ξ∗ ∈ R3 : φo(ξ∗) 6 1}, Wφ := {ξ ∈ R3 : φ(ξ) 6 1}.

Fφ and Wφ are convex sets whose interior parts contain the origin. In this paper we shall assume
that φ is crystalline, i.e. Wφ (and hence Fφ) is a convex polytope. Fφ is usually called the Frank
diagram andWφ the Wulff shape.

Let T o : R3→ P(R3) be the duality mapping de"ned by

T o(ξ∗) := 1
2∂
−(φo(ξ∗))2, ξ∗ ∈ R3,

where P(R3) is the class of all subsets of R3 and ∂− denotes the subdifferential in the sense of
convex analysis. We observe that T o is a multivalued maximal monotone operator; moreover

T o(aξ∗) = aT o(ξ∗), a > 0,

and T o takes ∂Fφ onto ∂Wφ .
One can show that

ξ∗ · ξ = φo(ξ∗)2 = φ(ξ)2, ξ∗ ∈ R3, ξ ∈ T o(ξ∗).

Given a nonempty set E ⊂ R3 and x ∈ R3, we set

distφ(x, E) := inf
y∈E

φ(x − y), distφ(E, x) := inf
y∈E

φ(y − x),

dEφ (x) := distφ(x, E)− distφ(R3 \ E, x).
At each point x where dEφ is differentiable, there holds ∇dEφ (x) ∈ ∂Fφ , i.e. the following eikonal
equation holds:

φo(∇dEφ ) = 1.
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Let E be a polyhedral set and F a facet of ∂E . One can check that the function dEφ is differentiable
on int(F) and we set, for x ∈ int(F),

W̃ F
φ := T o(∇dEφ (x)) ⊂ ∂Wφ.

Notice that W̃ F
φ is a convex set independent of x ∈ int(F). Moreover W̃ F

φ is a facet of ∂Wφ if and

only if F is a facet of ∂E parallel to a facet of ∂Wφ (i.e. W̃ F
φ ) and having the same exterior unit

normal.
Given a vector "eld n : ∂E → R3, the symbol divτ n will denote the tangential divergence

of n on ∂E in the sense of distributions. Finally, the crystalline perimeter is the integral functional
de"ned by

Pφ(E) :=
∫
∂E
φo(ν) dH2, (2.2)

where E is a set of "nite perimeter and ν denotes the outward euclidean unit normal to ∂E (both ∂E
and ν here must be intended in a geometric measure sense, see [15]). The crystalline perimeter is
the natural free energy associated with crystalline motion by mean curvature, see for instance [23],
[13] and Section 3 below.

3. General de"nitions of φ-regular set and φ-regular #ow

The next de"nition generalizes to the three dimensional crystalline case the notion of smooth
compact surface, compare [4].

DEFINITION 3.1 Let E ⊂ R3 and nφ : ∂E → R3 be Borel-measurable. We say that the pair
(E, nφ) is φ-regular if

1. the set ∂E is compact and Lipschitz continuous;

2.

nφ(x) ∈ T o
(

ν(x)

φo(ν(x))

)
H2-a.e. x ∈ ∂E;

3. there is an open set A ⊇ ∂E such that, for a.e. y ∈ A there exists a unique (x, s) ∈ ∂E × R
so that y = x + snφ(x) and, letting neφ(y) := nφ(x), there holds

neφ ∈ L∞(A;R3), divneφ ∈ L∞(A);

4. div neφ admits a trace on ∂E , which we denote by divτnφ ∈ L∞(∂E). Expressed precisely,

forH2-a.e., x ∈ ∂E , there exists lim
ρ→0+

|Bρ(x)|−1
∫
Bρ(x)

div neφ(y) dy = divτnφ(x).

As already remarked in the Introduction, such a generality (as in De"nition 3.4 below) is needed in
view of Example 2 of Section 5, and could be helpful for a short time existence theorem of φ-regular
#ows.

If ∂E is a plane, then divτ is the usual tangential divergence in the sense of distributions.
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The vector "eld nφ is called the Cahn�Hoffman "eld [8, 9]; in the case of smooth strictly convex
anisotropies φ and smooth sets E , nφ is simply given by T o(∇dEφ ).

De"nition 3.1 slightly differs from De"nition 2.1 of [4], where the vector "eld nφ is directly
de"ned in a tubular neighbourhood of ∂E and satis"es nφ ∈ T o(∇dEφ ). We anyway expect that, for
a large class of functions φ and of φ-regular sets, the de"nitions coincide (see Remark 5.5 below).
Notice that in the case of smooth anisotropies φ and smooth sets E , nφ is extended in a natural way
out of the front, and one can check that divτ nφ = div nφ on ∂E . This essentially follows from the
relation φ(nφ) = 1.
REMARK 3.2 Let E be a polyhedral set having the following property: given any vertex v of ∂E ,
the intersection of W̃ Q

φ over all facets Q containing v is non empty. Then it is not dif"cult to prove

that there exists a vector "eld nφ ∈ Lip(∂E;R3) such that (E, nφ) becomes φ-regular.
Concerning the next de"nition of intrinsic φ-mean curvature we refer to [6, 9, 23].

DEFINITION 3.3 Let (E, nφ) be φ-regular. We de"ne the φ-mean curvature κφ of ∂E atH2-almost
every x ∈ ∂E as

κφ := divτ nφ. (3.1)

We now introduce the evolution by crystalline mean curvature.
Let t ∈ [0, T ]→ E(t) ⊂ R3 be a parametrized family of subsets of R3. De"ne

dE(t)φ (x) := distφ(x, E(t))− distφ(R3 \ E(t), x).

Whenever no confusion is possible, we set dφ(x, t) := dE(t)φ (x). Let T > 0 be given.

DEFINITION 3.4 A φ-regular #ow on the interval [0, T ] is a family of pairs (E(t), nφ(·, t))t∈[0,T ],
with nφ(·, t) : ∂E(t)→ R3, which satis"es the following properties:

(1) (E(t), nφ(·, t)) is φ-regular for any t ∈ [0, T ];
(2) the function dφ is Lipschitz continuous on R3 × [0, T ], differentiable for a.e. t ∈ [0, T ] and

forH2-a.e. x ∈ ∂E(t), and such that
∂dφ
∂t
(x, t) = κφ(x, t), a.e. t ∈ [0, T ], H2-a.e. x ∈ ∂E(t). (3.2)

In [4] a φ-regular #ow is de"ned in a slightly different manner. Essentially (2) is replaced by

(2)′ dφ ∈ Lip(R3 × [0, T ]) and
∂dφ
∂t
(x, t) = div nφ(x, t)+ O

(
dφ(x, t)

)
a.e. (x, t) ∈ A × [0, T ],

where A is a suitable tubular neighbourhood of ∂E .
As a consequence of Corollary 3.4 in [4], it follows that a φ-regular #ow in the sense of [4]

depends only on E(0), i.e. it does not depend on the choice of nφ . We obviously expect that in
most cases the two notions coincide. Reasoning as in [4], this would imply that two φ-regular #ows
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starting from the same set coincide, and also that a comparison principle holds. In any case the
two de"nitions coincide for the evolution of Example 1 (see Remark 5.5), and this shows that the
evolution given in Fig. 4 of the initial set E of Fig. 1 is unique.

Finally, in the polyhedral case and if no new facet creates, the evolution law of De"nition 3.4
concides with the one considered in [13, 23].

We conclude this section by sketching the computation of the "rst variation of the crystalline
perimeter (2.2), which motivates, from a variational point of view, the geometric evolution law in
De"nition 3.4. The computation of the "rst variation on all φ-regular sets and for deformations with
a generic initial velocity is of course dif"cult, because of the nondifferentiability of both the surface
and the integrand; see [13, 23] for some discussion in this direction. We will therefore assume further
regularity properties on (E, nφ) and on the deformation α.

Let (E, nφ) be φ-regular and assume that nφ ∈ Lip(A;R3). Let α ∈ Lip(A × R;R3), with
α(x, s) := x + sg(x), for a given g ∈ Lip(A;R3) which is assumed to be H2-a.e. differentiable
on ∂E . Set αs(x) := α(s, x) and ∂Es := αs(∂E). Notice that αs : A → R3 is bilipschitz for any
s ∈ [−s0, s0], for s0 suf"ciently small. Denote by Pφ the measure φo(ν)H2 supported on ∂E and
set

νφ := ∇dEφ a.e. in A,

X := {ξ ∈ Lip(A;R3), ξ ∈ T o(νφ) a.e. in A}.
Notice that X is non-empty, since nφ ∈ X , and every ξ ∈ X admits divergence on ∂E . Then the
following holds:

lim inf
s→0

Pφ(Es)− Pφ(E)

s
>
∫
∂E

g · νφ div ξ dPφ, ξ ∈ X. (3.3)

The above inequality can be interpreted as follows: the `subdifferential' of the functional Pφ at E
along the "eld g contains the convex set

D(E) := {div ξ νφ : ξ ∈ X}.
Let us prove (3.3). Denote by νs the outward euclidean unit normal to ∂Es . We have

Pφ(Es)− Pφ(E) =
∫
∂E
φo (νs)− φo (ν) dH2 + s

∫
∂E
φo (ν) divτ g dH2 + o(s).

Using the regularity assumptions on ∂E and g, and the convexity of φo, one can check that for
H2-a.e. x ∈ ∂E and for any ξ ∈ X , there holds

lim inf
s→0

φo (νs(x))− φo (ν(x)) > ξ · d
ds
νs |s=0.

Following [5], Theorem 5.1, we then get

lim inf
s→0

Pφ(Es)− Pφ(E)

s
>
∫
∂E
ξ · (−ν∇g + (ν∇g · ν)ν) dH2

+
∫
∂E
φo (ν) divτ g dH2.
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Observe that ξ · νφ = 1 in A; therefore

lim inf
s→0

Pφ(Es)− Pφ(E)

s
>
∫
∂E
divg − νφ∇g ξ dPφ.

Decomposing g as g = 〈g, νφ〉ξ + (g − 〈g, νφ〉ξ), (3.3) follows reasoning as in [5]. Given now
ωξ := div ξ νφ ∈ D(E), we want to "nd the "eld gξ ∈ X which solves

min

{∫
∂E

g · ωξ dPφ : g ∈ X,
∫
∂E
φ(g)2 dPφ 6 1

}
.

A solution to this problem is given by gξ = −cξ div ξ ξ , where 1/(cξ )2 = ∫
∂E

(
divξ

)2 dPφ , and
this motivates De"nition 3.4.

4. The polyhedral case. φ-calibrable sets

Given a φ-regular pair (E, nφ), we say that F ⊂ ∂E is a planar facet of ∂E if, for some x ∈ ∂E , F ,
if considered as a subset of Tx∂E ' R2 (where Tx∂E denotes the tangent plane at x to ∂E de"ned
H2-a.e. on ∂E), is the closure of a connected component with Lipschitz boundary of ∂E ∩ Tx∂E .
For H1-a.e. s ∈ ∂F , let νF (s) be the unit exterior normal to ∂F lying in Tx∂E . By [13], Lemma
9.2, there is a well de"ned function cφ,F ∈ L∞(∂F) which is the trace of nφ · νF on ∂F . For any
planar facet F ⊂ ∂E , set W̃ F

φ := T o(∇dEφ ). We observe that, given a polyhedron E , F a facet of
∂E , l an edge of F and s ∈ int(l), if νF (s) points outside E then

cφ,F (s) = max{n · νF (s) : n ∈ W̃ F
φ },

and, if νF (s) points inside E , then

cφ,F (s) = min{n · νF (s) : n ∈ W̃ F
φ }.

In particular, cφ,F (s) does not depend on s ∈ int(l). So in the following, we will sometimes denote
it by cφ,F,l .

Let us de"ne a φ-calibrable facet of a φ-regular set (E, nφ).

DEFINITION 4.1 Let (E, nφ) be φ-regular and let F be a planar facet of ∂E . We say that F is
φ-calibrable if there exists a vector "eld nφ,F ∈ L∞(F;R3), with divτ nφ,F ∈ L∞(F), solving the
following problem: 

nφ,F ∈ W̃ F
φ H2-a.e. on F,

divτ nφ,F = vF H2-a.e. on F,
nφ,F · νF = cφ,F H1-a.e. on ∂F,

(4.1)

where the constant vF is uniquely determined by the Gauss�Green theorem [13, 20] i.e.

vF := |F |−1
∫
∂F
cφ,F (s) dH1. (4.2)

We say that E is φ-calibrable if there exists a vector "eld nφ ∈ L∞(∂E;R3) with divτ nφ ∈
L∞(∂E), such that the restriction of nφ to each planar facet F of ∂E solves problem (4.1).
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The constant vF de"ned in (4.2) coincides with the weighted mean curvature introduced by Taylor
in the polyhedral case (compare [20, 23]), and −vF φo(ν)ν represents the normal velocity of the
facet F . One can check that the following property holds.

LEMMA 4.2 Let E be a φ-calibrable polyhedral set. Then there exists nφ : ∂E → R3 such that
(E, nφ) is φ�regular and each facet of ∂E has constant φ-mean curvature.

Proof. See Theorem 9.2 of [13]. 2

An interesting problem is to characterize those sets E ⊆ R3 which admit a vector "eld nφ : ∂E →
R3 such that (E, nφ) is φ-regular, with every facet of constant φ-mean curvature. Theorem 4.3
below will provide a necessary condition in order to guarantee the existence of such an nφ , and will
be useful to construct the examples of Section 5.

THEOREM 4.3 Let (E, nφ) be φ-regular and let F be a φ-calibrable planar facet of ∂E . Then the
following condition holds:

vP := |P|−1
∫
∂P
cφ,P (s) dH1 > vF , (4.3)

for any P ⊆ F with Lipschitz boundary, where

cφ,P (s) :=
{
cφ,F (s) if s ∈ ∂P ∩ ∂F,
sup {n · νP (s) : n ∈ W̃ F

φ } otherwise.

Proof. From (4.1) we get divτ nφ,F = vF on F . If we integrate divτ nφ,F over P ⊆ F , using the
Gauss�Green theorem, we get

|P| divτ nφ,F =
∫
P
divτ nφ,F dx =

∫
∂P
nφ,F · νP dH1 6

∫
∂P
cφ,P dH1,

which implies (4.3). 2

We expect that condition (4.3) is also suf"cient for a facet F ⊂ ∂E to be φ-calibrable, and this is
subject of current research. This would suggest that the subdivision condition for a facet F reads as
follows: F instantly subdivides if and only if there does not exist a Cahn�Hoffman vector "eld with
constant divergence on F (and with the correct boundary conditions), which becomes equivalent to
say that there exists P ⊂ F with vP < vF .

REMARK 4.4 The de"nitions and results of Sections 3 and 4 can be extended without
modi"cations in arbitrary space dimensions and for a generic convex one-homogeneous function
φ.

5. The examples

Example 1

In this example we "x the Wulff shape to beWφ := [−1, 1]3.
Let E be the set of Fig. 1. Observe that the set E satis"es the assumptions of Remark 3.2. In

Proposition 5.2 below we show that, for suitable choices of the lengths of the edges of ∂E , there are
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FIG. 1. Example 1: the Wulff shapeWφ and the initial set E .
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FIG. 2. φ-calibrable rectangular facet.

facets of ∂E not satisfying condition (4.3). In addition, using Lemmas 5.3 and 5.4, we prove that in
the crystalline evolution starting from E , some facets instantly subdivide. In particular, we observe
that the velocity "eld does not need to be continuous on a facet of the evolving front.

The following lemma shows that a rectangular facet F is always φ-calibrable when W̃ F
φ is a

rectangle; using this fact, we will show that φ-calibrable facets F are not necessarily rectangles.

LEMMA 5.1 Let R ⊂ R2 be a closed rectangle with edges l1, . . . , l4 parallel to the coordinate
axes, and let νi := νR,li be the exterior unit normal to li (see Fig. 2). Let ai := ali ∈ R
(i = 1, . . . , 4) be real numbers with |ai | 6 1. Then there exists a vector "eld n = (n1, n2) ∈
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C1(int(R),R2) ∩ C(R,R2) such that
max {|n1|, |n2|} 6 1 in int(R),
div n = vR := |R|−1

∑4
i=1 ai |li | in int(R),

n · νi = ai in int(li ).
(5.1)

Proof. For simplicity, "x the origin at the intersection between l4 and l1. Given (x, y) ∈ R, we set

n1(x, y) := a2x

|l1| − a4
(
1− x

|l1|
)
, n2(x, y) := a3y

|l4| − a1
(
1− y

|l4|
)
.

The vector "eld n := (n1, n2) satis"es (5.1). 2

In the following we sometimes identify an edge of a polygon with its length.

PROPOSITION 5.2 Let F be the frontal facet of E with edges of length a, b, c, d respectively (see
Fig. 1). Then F is φ-calibrable if and only if

b > cd

c + d , c > ab

a + b . (5.2)

Proof. One directly checks that cφ,F = 1 on each edge of ∂F , therefore, by the expression of vF in
(4.2) we get

vF =
2(a + d)

cd + b(a − c) .
Assume now that F is φ-calibrable. Let P be the rectangle in Fig. 1, having edges c and d. Recalling
the de"nition of cφ,P given in Theorem 4.3, we get cφ,P = 1 on each edge of ∂P . Applying Theorem
4.3 to P and F , we get

vP =
2(c + d)

cd
> 2(a + d)
cd + b(a − c) = vF ,

i.e.
cd

c + d 6
cd + b(a − c)

a + d .

Rearranging terms, we have

b >
(

cd

c + d −
cd

a + d
)(

a + d
a − c

)
= cd

c + d ,

which is the "rst inequality of (5.2). The second inequality can be proved in a similar way by
applying Theorem 4.3 to F and the rectangle R with edges a and b. Indeed, the inequality

vR =
2(a + b)

ab
> 2(a + d)
cd + b(a − c) = vF

yields
ab

a + b 6
c(d − b)
a + d +

ab

a + d ,
i.e. (

ab

a + b −
ab

a + d
)(

a + d
d − b

)
6 c,
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which is the second inequality in (5.2).
Assume now that (5.2) holds. We have to prove that F is φ-calibrable. Let us consider the

rectangle F \ P . In order to apply Lemma 5.1 to F \ P , we have to de"ne the constants a1, . . . , a4.
We set these constants equal to 1 on ∂(F \ P) \ l ′ and we de"ne al ′ in such a way that

vF = vF\P ,
i.e.

1+ al ′
2
= (a + d)(a − c)

cd + b(a − c) −
(a
b
− c

b

)
= (a − c)(c + d − cd/b)

cd + b(a − c) .

We need to check that |al ′ | 6 1. The condition al ′ > −1 is equivalent to b > cd/(c + d), whereas
the condition al ′ 6 1 is implied by c > ab/(a + b). Indeed, (1+ al ′)/2 6 1 means that

(d − b)c2 − [(d − b)(a + b)+ bd]c + ab(d − b) 6 0,
and it is easy to check that the above quadratic polynomial is nonpositive when c satis"es the
constraints ab/(a + b) 6 c 6 a. We conclude that (5.2) implies |al ′ | 6 1.

The same argument applies to the edge l. Indeed, for the rectangle S ⊂ P of edges c and d − b,
the constant al is de"ned in such a way that vF = vS , i.e.

1+ al
2
= (d − b)(a + b − ab/c)

cd + b(a − c) ,

and one checks that (1 + al)/2 ∈ [0, 1] when cd/(c + d) 6 b 6 d. Once al and al ′ have been
de"ned, we can apply Lemma 5.1 three times (separately to the three rectangles partitioning F ,
reversing the signs of al and al ′ in the rectangle P \ S) and get a vector "eld F → R2 satisfying
(5.1). By adding a constant third component we get a vector "eld satisfying (4.1). 2

Notice that the vector "eld nφ,F constructed in the last part of the proof of Proposition 5.2 is not
continuous on F ; more precisely the tangential component of nφ,F along l ′ jumps across l ′.

By choosing for instance a := 2, b := 1
4 , c := 1, and d := 1, it turns out that F is not

φ-calibrable, since vF = 24
5 , vP = 4, and inequality (4.3) is violated.

We want now to de"ne a φ-regular evolution starting from E , when F is not φ-calibrable; notice
that, during the evolution, the facet F cannot translate parallel to itself.

We begin with two preliminary lemmas, whose proof is similar to that of Proposition 5.2.

LEMMA 5.3 Let F2 be the polygon in Fig. 3. The facet F2 is φ-calibrable for any ε ∈ ]0, e/2[ if
and only if b 6 e 6 d.

Proof. First we compute the constants cφ,F2,l , where l is an edge of F2. We have

cφ,F2,ε = cφ,F2,d = cφ,F2,e = 1, cφ,F2,b = cφ,F2,e−2ε = −1,
hence

vF2 =
4ε + 2(d − b)
e(d − b)+ 2εb .

Assume that F2 is φ-calibrable for ε ∈ ]0, e/2[. Let Q1 be the rectangle in Fig. 3, having edges ε
and b. We have cφ,Q1,ε = cφ,F2,ε = 1, cφ,Q1,b = cφ,F2,b = −1, and cφ,Q1,l ′ = 1. Hence applying
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FIG. 3. φ-calibrable facets. The side facet F2 and the lower facet F1 of E(t).

Theorem 4.3 to Q1 and F2, we get vQ1 = 2/b > vF2 , which is equivalent to b 6 e. The inequality
e 6 d can be obtained by a similar argument applied to F2 and the rectangle Q2 of edges d − b and
e − 2ε in Fig. 3. Indeed Theorem 4.3 yields

vQ2 =
(e − 2ε)+ (2ε − e)+ 2(d − b)

(e − 2ε)(d − b) > vF2 ,

which is equivalent to e − d 6 2ε. Letting ε ↓ 0+, we get e 6 d.
Assume now that b 6 e 6 d. We have to show that F2 is φ-calibrable for ε ∈ ]0, e/2[. Let us

consider the rectangle Q1. Choose al ′ in such a way that vF2 = vQ1 . Since

vQ1 =
ε − b + b + εal ′

εb
= 1+ al ′

b
,

we are imposing
1+ al ′
2
= b(2ε + d − b)
e(d − b)+ 2εb .

Clearly (1+ al ′)/2 > 0, and one directly checks that b 6 e is equivalent to (1+ al ′)/2 6 1.
Similarly, let us consider the rectangle Q2. We have

vQ2 =
2al ′′

e − 2ε .

Imposing vF2 = vQ2 makes the inequality e − d 6 2ε equivalent to al ′′ 6 1, while al ′′ is always >
−1. Applying Lemma 5.1 and reasoning as in Proposition 5.2, we conclude that F2 is φ-calibrable.

2

LEMMA 5.4 Let F1 be the polygon in Fig. 3. The facet F1 is φ�calibrable for any ε > 0
suf"ciently small if and only if c > ae/(a + e).
Proof. We have cφ,F1 = 1 on each edge of F1, hence

vF1 =
2(a + e)

ae − 2ε(a − c) .
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Assume that F1 is φ-calibrable and ε > 0 is suf"ciently small. We have cφ,Q3 = 1 on each edge of
Q3; hence

vQ3 =
2(ε + c)
εc

.

The inequality vQ3 > vF1 is always satis"ed for ε suf"ciently small. Reasoning in a similar way for
the rectangle Q2, one can check that the inequality

vQ2 =
2(a − c)+ 2(e − 2ε)
(a − c)(e − 2ε) > vF1

is always satis"ed for ε suf"ciently small.
Assume now that c > ae/(a + e). We have to prove that F1 is φ-calibrable for any ε > 0

suf"ciently small. Choose al ′ such that vF1 = vQ3 ; we have
1+ al ′
2
= ε

(
(a + e)

ae − 2ε(a − c) −
1

c

)
.

Hence (1 + al ′)/2 6 1 for ε small enough, and one checks that the inequality (1 + al ′)/2 > 0 is
equivalent to

c > ae − 2ε(a − c)
a + e .

Similarly

vQ2 =
2(a − c)+ (e − 2ε)(1+ al ′)

(a − c)(e − 2ε) .

Imposing vF1 = vQ2 , we get
1+ al ′′
2
= (a − c)

(
a + e

ae − 2ε(a − c) −
1

e − 2ε
)
.

Then (1 + al ′′)/2 > 0 whenever e2 > 4εc, which is satis"ed for ε small enough, and one checks
that (1+ al ′′)/2 6 1 is always satis"ed for ε suf"ciently small. 2

Now let a = 2, b = 1
4 , c = 1, and d = 1, and choose e := 1

2 . With this choice of the lengths of
the edges of ∂E , the facet F is not φ-calibrable, whereas the facets F1 and F2 are φ-calibrable for ε
suf"ciently small.

We are in a position to construct an evolution of the set E of Fig. 1, which actually is the
evolution of E by crystalline mean curvature; see Remark 5.5. The frontal facet F instantly
subdivides into two disjoint facets (the fracture appears along l ′), and then each facet translates
parallel to itself with velocity given by (4.2). The same applies to the facet opposite to F . In this way
we get an evolution t → E(t) starting from E and de"ned on a suitable time interval [0, T ], with
T > 0, having shape as in Fig. 4. We need to prove that this evolution corresponds to a φ-regular
#ow starting from E . In order to prove this, we must construct a vector "eld nφ(·, t) : ∂E(t)→ R3,
t ∈ [0, T ], as in De"nition 3.4. By Lemma 4.2, it is enough to prove that E(t) is φ-calibrable for
t ∈ [0, T ], with T > 0 suf"ciently small. We observe that, for any t ∈ [0, T ], the only facets of
∂E(t) which are not rectangular are F1 and F2 of Fig. 3. By applying Proposition 5.2 and Lemmas
5.4 and 5.3, it follows that E(t) is φ-calibrable. For t = 0, one can construct the "eld nφ on ∂E , by



52 G. BELLETTINI, M. NOVAGA, & M. PAOLINI

E(t)

FIG. 4. Example 1: qualitative shape of the evolving set E(t) starting from E for short times.

FIG. 5. Example 1: numerical computation of E(t).

considering the facet F (and similarly the facet opposite to F) as the union of P and F \ P , and then
solve (4.1) independently on the two rectangles, setting c

φ,P,l ′ = 1 = −cφ,F\P,l ′ . We observe that,
with this de"nition, the "eld nφ is not continuous on F : we do not know if there exists a continuous
"eld equivalent to nφ (i.e. with the same divergence and satisfying the same restrictions).

Figure 5 is the result of a numerical computation.
The following remark is crucial and concerns uniqueness of the φ-regular #ow.

REMARK 5.5 Since the vector "eld nφ previously de"ned admits an extension (by lines) in a
suitable space�time neighbourhood A× [0, T ] of the evolving front ∂E(t), the map (E(t), nφ(·, t))
becomes a φ-regular evolution in the sense of [4], and is unique in that class.

Example 2.

In this example we "x the Wulff shape to be the regular orthogonal prism with hexagonal basis
centred at the origin; the apothem of the hexagonal basis is set equal to 1. Let E be the convex set
of Fig. 6. Observe that also in this case E satis"es the assumptions of Remark 3.2. We will prove
that, for a proper choice of the parameter ε > 0, E is not φ-calibrable. Moreover, we expect that its
evolution develops curve portions of the boundary, i.e. the set E does not remain a polyhedral set
under crystalline mean curvature #ow. Assume for simplicity that r = 1 in Fig. 6.
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FIG. 6. Example 2: the Wulff shapeWφ and the initial set E .

LEMMA 5.6 There exists ε > 0 such that the frontal facet Fε of ∂E is not φ-calibrable for any
ε ∈ ]0, ε[.

Proof. We have cφ,Fε = 1 on each edge of ∂Fε , and

vFε =
2(7− ε)
7− ε2 6 2,

for any ε ∈ [0, 1]. The function ε → vFε is strictly convex on [0, 1], with vF0 = vF1 = 2, and attains
its minimum for ε = 7 − √42, with value vFε = (7 +

√
42)/7 < 2. Hence Fε is not φ-calibrable

for any ε ∈ ]0, ε[. 2

Let us "x ε ∈ ]0, ε[. An interesting problem is to understand which is the evolution starting from
this set. We expect that such an evolution E(t) does not remain a polyhedral set. This is motivated
by the following heuristic argument.

One can realize that Fε satis"es (4.3) with the choice cφ,Fε = 1 on each edge of ∂Fε . Assuming
that condition (4.3) is necessary and suf"cient for a facet to be φ-calibrable, we deduce that Fε is
φ-calibrable. If this is true, there exists a "eld nφ : Fε → R3 satisfying (4.1). Now let p and q be
the points in Fig. 6, and let n(p) (resp. n(q)) be the unique vector obtained as the intersection of
W̃ Q
φ over all facets Q of ∂E having p (resp. q) as vertex (see Remark 3.2). We de"ne the "eld nφ

on T := Fε \ Fε by taking the linear combination of n(p) and n(q) on every section of T parallel to
l ′. We can perform the same construction for the facet of ∂E opposite to Fε . Since the other facets
of ∂E are all φ-calibrable by Proposition 5.2, we get a global "eld nφ : ∂E → R3 such that the pair
(E, nφ) is φ-regular.

We observe that, contrary to Example 1, the function divτ nφ is not constant (nor piecewise
constant) on Fε , but increases moving away from l ′ in T . Moreover, as can be shown by a direct
computation, divτ nφ is continuous on Fε , i.e. the two de"nitions of nφ on Fε and on T have
the same divergence on l ′. This suggests that, during an evolution starting from E , the facet Fε
does not break into two different facets as in Example 1, but rather bends inside E (with velocity
given by divτ nφ). Figure 7 (obtained by a numerical computation) shows the expected shape of
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FIG. 7. Example 2: numerical computation of the evolving set E(t) starting from E for short times.

the evolving set E(t) for small positive times. This example suggests that one cannot expect a
short-time existence theorem for φ-regular #ows in the class of polyhedral sets. The problem of
predicting where a fracture creates in a planar facet of an evolving set is interesting and deserves
further investigation. Numerical computations in this direction will appear in [17].
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