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Segregating partition problem in competition-diffusion systems

SHIN-ICHIRO E1

Graduate School of Integrated Science, Yokohama City University, 22-2 Seto, Kanazawa-Ku,
Yokohama 236-0027, Japan

Ryo IkOTA

Graduate School of Mathematical Sciences, University of Tokyo, 3—8—1 Komaba, Meguro-Ku,
Tokyo 153-8914, Japan

AND

MASAYASU MIMURA

Department of Mathematics, Hiroshima University, 1-3—1 Kagamiyama, Higashi-Hiroshima
739-8526, Japan

[Received 12 November 1998 and in revised form 21 January 1999]

We consider a reaction-diffusion system to describe the interaction of three competing species which
move by diffusion in R2, under the situation where all of the diffusion rates are small and all of
the inter-specific competition rates are large. The resulting system possesses three locally stable
spatially constant equilibria, each of which implies that only one of the competing species survive
and the other two are extinct. Since the diffusion rates are small, internal layer regions appear as
sharp interfaces with triple junctions, which generally divide the whole plane into three different
regions occupied by only one of the species. The dynamics of interfaces as well as triple junctions
are numerically studied. More specifically, assuming that three competing species are almost equal
in competitive strength, we derive an angle condition between any neighboring interfaces at triple
junctions by formal asymptotic analysis.

Furthermore, for more general cases, we numerically study the dynamics of segregating patterns
of three competing species from interfacial view points.

1. Introduction

Understanding of spatial and/or temporal behaviors of ecologically interacting species is a central
problem in population ecology. As for competitive interactions of species, problems of coexistence
and exclusion have been theoretically investigated by using different types of mathematical models.
Specifically, a variety of reaction-diffusion (RD) equations have been proposed to study spatial
segregation of competing species. Quite recently, the methods which are called ‘spatial segregation
limits’ have been successfully developed in mathematical communities [3,4]. These enable us
to derive evolutional equations describing the boundaries of spatially segregating patterns of
competing species. In some situations, the derived equations are described by new types of free
boundary problems.

As a well known model, we are concerned with a RD system of Gause—Lotka—Volterra type [6].
Let u; (¢, x) be the population density of the ith species U; (i = 1,2, ...,n) attime ¢t > 0 and the
position x € §2, where 2 is a bounded domain in R2. The resulting system foru; (i = 1,2, ...,n)
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is given by

84
%:DiAui—l—ﬁ(ul,uz,...,u,,) G=1,2....n), >0, x€ Q. (1.1)

Here D; is the diffusion rate of u; and f; = (r; — Zf jaiju )u; where r; is the intrinsic growth
rate, a;; and a;; are the intraspecific and the interspecfic competition rates, respectively (i, j =

1,2, ..., n). All of the rates are assumed to be positive constants. We impose the zero-flux boundary
conditions 3
%:0(;’:1,2,...,;1), t>0,x€dR, (1.2)
v

where v is the outward normal unit vector on 952. The initial conditions are
u;(0,x) =up;x) 20 (i =1,2,...,n), X € 2. (1.3)

The simplest system of (1.1) is the case with n = 2, that s,

oug
WZD]AW + (r1 —ajuy — byuz)uy,

t>0,xe 2. 1.4)

3142

T Dy Auy + (ry — bauy — aquz)uz,
With the same boundary and initial conditions as (1.2) and (1.3), qualitative properties of non-
negative solutions of (1.4) have been intensively studied. The first remark is that the stable attractor
of (1.4) consists of equilibrium solutions only (Hirsch [7] and Matano & Mimura [12]). By
this information, we may be concerned with existence and stability of non-negative equilibrium
solutions for the study of asymptotic behavior of solutions.

Ecologically, let us assume the situation where two species are strongly competing, that is,

ai/by <ri/ry < bi/az, (1.5)

which indicates that stable constant equilibrium solutions are (11, u2) = (r1/a1,0) and (0, r2/az)
only. These solutions mean that only one of the competing species survives and the other is
extinct. When 2 is convex, any non-constant equilibrium solutions are unstable, even if they exist
(Kishimoto & Weinberger [11]). In other words, stable equilibria are only (r1/a;, 0) and (0, r2/az),
which ecologically indicates that two strongly competing species can never coexist in any convex
habitats. On the other hand, if the domain £2 is not convex, the structure of equilibrium solutions
is not so simple but depends on the shape of £2. If §2 takes suitable dumb-bell shape, for instance,
there exist stable non-constant equilibrium solutions, which exhibit spatial segregation of the two
competing species in a sense that one region is nearly occupied by the species Uj, while the other
is by U», that is, two competing species possibly coexist in suitably non-convex habitats [12].
Integrating the above, one finds that the asymptotic behavior of solutions of two competing species
model (1.4) is rather clear, and that if the domain is convex, it is extremely simple.

On the other hand, for a multi-competing species case, the situation drastically changes. Even
if we restrict ourselves to the diffusionless system of (1.1), the solution structures of the resulting
O.D.E. system are complicated. There coexists a variety of periodically and aperiodically solutions,
in addition to equilibria, depending on parameters r; and a;; (see [13], for example). There has been
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little work for the RD system (1.1) with n > 3, except for some results which are discussed by using
singular perturbation methods [9, 10, 14].
In this paper, we consider (1.1) with n = 3, that is,
31/!,‘

WZDlAul+f‘l(u]5u27u3) (l=17253)’ t>07 XEQ, (1‘6)

where f; = (r; —ajiuy — apur — ajzuz)u; (i =1,2,3), or simply

9
8_ltl — DAu+Fu), t>0,x €, (1.6

where u = (u1, ua, u3), D is the diagonal matrix with elements {D;} (i = 1,2,3) and F(u) =

(fi(), f2(u), f3(w)).
We first consider the diffusionless system of (1.6)

ou
— =F), t>0, 1.7
ot

assuming that a;; (i # j) are large comparing with other g;; to require that Py = (r;/ai1,0,0),

P, = (0,r2/a2,0) and P3 = (0,0, r3/az3) are stable and other critical points are all unstable, that
is, three species are in strong competition. It is shown in [20] that almost all non-negative solutions
u(t) of (1.7) tend to one of P;(i = 1,2, 3). This ecologically implies that one of the competing
species can survive and the other two are extinct. Under this non-coexistence situation, we assume
that the diffusion rates D; are so sufficiently small, that is, D; = €2d; with a sufficiently small
parameter €, where d; is some positive constant (i = 1, 2, 3) . The resulting system from (1.6) is

ou 2
E:e D'Au+ Fu) t>0, xe £2, (1.8)

where D’ is the diagonal matrix, with the initial and boundary conditions

u0,x) =uyx) >0, xe 2 (1.9)
and
ou
— =0 t>0,x€e 2. (1.10)
av

Since € is sufficiently small, one can expect that the behavior of solutions of (1.8)—(1.10)
essentially consists of two stages: The first stage is the occurrence of internal layer regions (when
€ tends to zero, they become interfacial curves), which generally divide the domain £2 into three
subdomains £2, 2, and $23 where the solution u(¢, x) is close to one of P;, P, and Ps3. This
indicates the appearance of spatial segregation of three competing species with triple junctions
where three interfacial curves meet. The second stage is the motion of interfacial curves with triple
junctions, that is, the dynamics of segregating patterns.

We demonstrate some numerical simulations of (1.8)—(1.10) in a rectangular domain £2. First,
we show the occurrence of segregating patterns as the first stage in Figs 1a—1d. The domain £2 is
clearly divided into three subdomains £21, £2; and §23, which are separated by interfacial curves with
triple junctions. We consider the second stage. For the completely symmetric case where d; = d,
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ajj = a, a;j = b (i =1,2,3). The dynamics of segregating pattern changes slowly, as in Figs 1d—
1g. We note that interfacial curves which are almost straight they move very slowly, and that angles
between any two neighboring interfacial curves are equal. This angle condition can be intuitively
understood by the fact that three competing species possess completely symmetric property. We
next consider non-symmetric cases. The first example is a semi-symmetric case where d; = d
(i =1,2,3),a1p = a1 = by, ax3 = azp = by and az; = ay;3 = bz but by, by and b3 are not
necessarily equal, that is, 120°. As in Fig. 2, the dynamics of a segregating pattern is qualitatively
similar to the above symmetric case except for the angles at triple junction areas, which seem to be
not necessarily equal. The second is the case with ordering property where a2 < az1, @13 < a3z; and
a3 < az, thatis, the species U, is the strongest of the three. As in Fig. 3, the dynamics of pattern is
much faster than the previous two cases and, as is easily expected, the domain is gradually occupied
by the strongest species Uj. The third is a symmetrically cyclic case where aj; = a3 = a3 = b
and a1 = a3y = a;3 = b’ with b # b'. As the cyclic property suggests, there appear stationary
rotating spiral patterns with three arms, as in Fig. 4. Finally, the fourth is a general case with cyclic
property where aj» < az1, a3 < a3 and a3; < ajs. As in Fig. 5, there is no longer any stationary
rotating spirals but complex spatio-temporal patterns with several clustering spirals, where each
spiral seems to be steadily rotating in a vicinity of triple junction areas.

We have observed qualitatively different behaviors of interfaces with triple junctions, depending
on values of interspecific competition rates. These results suggest several aspects on segregating
patterns of three competing species, which are drastically different from ones of two competing
species: (i) even if £2 is convex domain in R2, it is possible for the three species to coexist;
(ii) although the behavior of solutions to the diffusionless system (1.7) is so simple, solutions of
the corresponding RD system (1.8) exhibit complicated spatio-temporal coexisting patterns; (iii)
there appear rich phenomena on motion of interfaces with triple junctions, comparing with the
ones in other gradient systems including vector-valued Ginzburg—Landau equations with three well
potentials [17].

The paper is organized as follows. In Section 2, we give some preliminaries for a two competing
species model. In Section 3, we numerically study the dynamics of interfacial curves of (1.8),
depending on values of d; and a;; (i, j = 1,2, 3). In Section 4, we derive an angle condition at
triple junction points by a formal asymptotic expansion. Finally in Section 5, we give some remarks
on the results obtained in Sections 3 and 4.

2. Preliminaries

In this section, we briefly mention the known result on the dynamics of interfaces arising in the two
competing species system (1.4) as preliminaries of our study.
We consider (1.4) on the whole plane R? and write it again as

ov ’
o =e€“dyAv + (ro — ayv — byw)v,
t >O,xeR2, 2.1
ow ’
3 =e“dyAw + (ry — byv — ayw)w,

where all of the coefficients are positive constants. We assume

ay/by <1y/1y < by/ay. 2.2)
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Then, as was noted in the previous section, I3v = (ry/ay, 0) and P, = (0, ry/ay) are two stable
constant equilibria of (2.1).

Since € is sufficiently small, there occurs a sharp interface I" which divides R? into two
subdomains £2, and £2,, on which the solution (v, w) is close to f’v and ﬁw, respectively.

Let @(s) = (¢(s), ¥(s)) (s = x — 0¢t) be a one-dimensional traveling front solution of (2.1)
with velocity 8, connecting two stable equilibrium states P, and P,,. Then it satisfies

{ 0=dypss + 005 + (ry — ayd — by )¢

0=dyss +91ﬂy+(rw_aw1ﬁ_bw¢)w -0 <Ss5 <00,

2.3)
®(—00) = Py, D(+00) = Py.
The existence and uniqueness of the solution (@ (s), 8) were proved by Kan-on [8]. The equation of

the interface I"(¢) is given by Ei & Yanagida [4]. Let V be the normal velocity oriented from £2,, to
§2y, . When 6 #0

V = eb. (2.4)

while, when 6 = 0,

V = —€>Lk, (2.5)

where « is the mean curvature of the interface I". The constant L is given as follows: let @°(s) =
(@°(s), ¥(s)) be a solution of (2.3) with & = 0. Then @0 = (¢0(s), ¥(s)) is the eigenfunction
corresponding to zero eigenvalue of the linearized operator around @0, Let (@*(s), ¥*(s)) be the
eigenfunction corresponding to zero eigenvalue of its adjoint operator. Now L is represented as

/ (dod0()6"(5) + duy0()Y*(s)) ds

L

== > 0. (2.6)
f(ﬁwwm+wmwwms

Thus, the interfacial equation derived from (2.1) with a sufficiently small € can be generally
described by

V =€l — €Lk 2.7
and the profile of (v(¢, x), w(¢, X)) in the neighborhood of I is close to @ (dist(x, I")/€).

3. Dynamics of interfacial curves

As in Fig. 6, let I'] be an interfacial curve between 2, and £23, and I and I3 are similarly defined,
and let y be the position of a triple junction at which three curves /7 (i =1, 2, 3) meet.

First, we consider the behavior of solutions u(z, x) which are apart from the triple junction
y. In order to do it, we may consider it only in a neighborhood of one of the interfaces, say I,
where u(z, x) changes rapidly from P, to P3 and the u1-component of u is almost identically zero.
Therefore, one can expect that the dynamics of I is approximately described by
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Vi = €0, — €*Liky, (3.1)

where V| and «; denote the normal velocity measured from £2, to £23 and the curvature of the
interface I respectively, and 6, is the velocity of the one-dimensional traveling front solution
(@' (s), ¥'(s)) which satisfies

{ 0= daop), + 614! + (r2 — ang' — any)g!
O=dsyr ) + 01y! + (r3 — azsy! — azph)yr!

—00 < S§ <00,

(3.2)
@', ¥ (—00) = Po, (¢!, Y1) (+00) = Ps.

Then, it turns out that the profile (u»,u3) in the neighborhood of I7 is close to

(@', v ist(x, ) /e).
Putting @' (s) = (0, ¢'(s), ¥'(5)), we see that @!(s) satisfies

0=D®, +6,0! + F(®@') (—00 <5 < 0) (3.3)
with
@' (—00) = (0, r2/axn,0) = Py, ®'(+00) = (0,0,r3/as3) = P,

and that the profile of u in the neighborhood of I is close to & (dist(x, I) /€).
As was already mentioned in Section 2, the constant L in (3.1) is represented as

+oo
/ (das ()97 (5) + dsvrs ()Y (s)) ds
L === , (3.4)

/ (@5 ()™ (s) + Y5 ()Y (5)) ds

where (¢ (s), ¥(s)) is a solution of (3.2) with §; = 0. Let K be the linearized operator around
(¢ (s), ¥(s)) and K* be its adjoint operator. (¢s(s), V¥s(s)) is the eigenfunction corresponding to
the zero eigenvalue of K and @*(s) = (¢*(s), ¥*(s)) is the eigenfunction corresponding to zero
eigenvalue of K*. Let ¥!(s) = (0,¢(s), ¥(s)) and ¥*(s) = (0, ¢*(s), ¥*(s)). Then L; is
represented as

/Oo (DY) (s), wh*(s) ) ds
L= "% , (3.5)
f (1), wh*(s) ) ds

—00

where ( , ) is an inner product of vectors in R3.
By using the similar discussion to (3.1), the dynamics of I3 and '3 are approximately given by

Vi =€b; —’Lik; (i =2,3), (3.6)
where V;, 0; and «k; are similarly defined and L; is given by
0 . .
/ ( DY, (s), ¥"*(s) ) ds

L= , (3.7)
/ (Wl(s), w"*(s) ) ds

—0oQ
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(a) 2 ,

O
O

=

(b)

dy 2

F1G. 1. Appearance of phase separation and dynamics of interfaces with triple junctions in (1.8)—(1.10) where
e =10x 1072, di =10,r; = 1.0,a;; = 1.0,a;; =300 # j)i,j = 1,2,3). The initial conditions
are ug; (x) = 0.143 with small fluctuations. (a) t = 0, (b) t = 2.5, (c)t = 5,(d) t = 25, (e) t = 1225, (f)
t = 2425, (g) t = 2625.
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2(a) 2
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b

F1G. 2. Dynamics of interfaces with triple junctions in (1.8)—(1.10) where the parameters are the same as those
in Fig. 1 except for ajp = ar1 = 8.0, ap3 = a3p = 4.0and a3; = a3 = 2.0.(a)t = 0, (b) t = 1200, (c)

t = 6000, (d) 1 = 7250.

FI1G. 3. Dynamics of interfaces under situation where U is stronger than U, and Us. The parameters are the
same as those in Fig. 1 except for ajp = 2.0, @13 = 3.0, a1 = 3.0, ap3 = 3.0, a31 = 5.0, azp = 4.0. (a)

t=0,(b)t =50, ()t =100, (d) t = 300.
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y

4(a) 4

Ll 4

4{'.“}1?’ 4(‘”4?’
L
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x

5(a) 4 S0b) 4

F1G. 4. Dynamics of stationary rotating spirals with three arms in (1.8)—(1.10) where the parameters are the
same as those in Fig. 1 except for ajp = a3 = az; =2.0,ap1 =aj3 =a3zp =7.0.(a)t =0, (b) t = 100, (c)
t =200, (d) + = 300.

FI1G. 5. Dynamics of clustering spirals in (1.8)—(1.10) where the parameters are the same as those in Fig. 1
except for ajp = 3.0, a1 = 6.5,a13 = 6.0,a31 =2.9,a3 =35,a3 =6.1.(a)t =0, (b) r = 100, (c)
t =200, (d) + = 300.
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I

FIG. 6. Three phases §21, 2, and §23 with a triple juction y.

where W' (s) and ¥i*(s) (i = 2, 3) are defined similarly to ¥ (s) and ¥ !-*(s).

We may say that if 6; = 0, two species U, and Uz are equal in competition, if 6; > 0, U; is
competitively stronger than Uz and if 6; < 0, vice versa.

The relations among 61, 6, and 65 are essentially classified into four cases:

Casel: 0y =6, =63 =0.
Casell: 6y = 0,0, > 0and 63 < 0.
Case III: 6, < 0 and 83 > 0 (U is the strongest of the three).

Case IV: 6; > 0 (i = 1,2,3) (U is stronger than U,, U is stronger than U3 and U3 is stronger
than Uy, in other words, there is a cyclic property among them).

Other cases are reduced to one of the four cases by appropriately exchanging species with each
other.

For Case II, the whole domain §2 is first occupied by §2; and §23 and eventually by either §2,
or £23. For Case III, as was shown in Fig. 3, the domain 2| expands, and eventually it occupies the
whole domain £2. For Case IV, because of cyclic property, one can expect that certain rotating
behavior appears in the dynamics of interfaces. The resulting patterns crucially depend on the
relation among 61, 6 and 3, as was shown in Figs 4 and 5. For Case I (or even if 9; (i = 1, 2, 3) are
not zero but sufficiently small), one can expect that the interfaces move very slowly by essentially
curvature effect only. However, if triple junctions appear, the information on two competing case
give nothing on dynamics of interfaces.

In the next section, we will study the dynamics of interfaces with triple junctions under this
situation.
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4. Angle condition at the triple junction point y

We consider the situation that all 6; are of order O (¢), that is, §; = ec; for constant ¢; (i = 1, 2, 3).
Then, the interfacial equation (3.6) becomes

Vi = €*(c; — Liki)(i = 1,2, 3). (4.1)

In order to realize this situation, we assume that F (u) depends on €, and express F(u) = F(u; €),
satisfying Fp(u) = F'(u; 0). The resulting system is

0
Z)_ltl = DAu+ F(u; €). 4.2)

Let P;(e) be the constant equilibria corresponding to P; given in Section 1, satisfying Pl.0 =
P;(0) (i = 1,2,3). Then, our assumption on Fy(u) is that there is a solution wl(s) satisfying
the equation

0=DV; + Fp(¥) —o00<s <00 4.3)
with ¥ (—o0) = P20 and ¥ (c0) = P30 . Let ®@!(s; €) be a one-dimensional traveling front solutions
of (3.3) with velocity €6y, connecting P>(¢) and P3(€), satisfying wlis) = lig)l fPl(s; €). We also

€

give the similar assumption on @ (s; €) (i = 2, 3). Under this situation, we shall show that three
interfaces I; (i = 1, 2, 3) which meet at a triple junction point y satisfy a certain angle condition.

With T = €2, we notice by (4.1) that the movement of interfaces [ are in time-scale T . Thus,
we may suppose:

(H1) the triple junction point ¥ moves in time-scale T, that is, y = y (7).

On the other hand, we already know that the profile of the solution u in the neighborhood of I'}
is close to @ ! (dist(x, I') /€), as was stated in Section 3. Since (4.1) and (H1) indicate that the time
change of dist(x, I'1) is in time-scale 7', we know

adist(r, 1)

u, ~ @/ (dist(x, I)/e€) x o

/€

20(62)/6
= 0(e),

and then may suppose:
(H2) u changes in time-scale T = €z, that is, u = u(t, X).

By transforming the coordinates x = (x,y) to (&, n) with (x,y) = y + €(&, n) and using
v(t, &, n) =ult, y() + €&, n)), in view of (H1), Eqn (4.3) is rewritten as

1
vi=DAv+ F(v;€) + ZVV Vi 4.4)
=DAvV+ F(v;€)+€Vv-yr,

where - denotes an operation of Vv on y7. We note by (H2) that v can be written as v = v(z, &, 7).
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A (L) S.  —— B (&n-1po)

F1G. 7. A triple juction with angles «1, ap and «3.

Expanding v as
v=v'4ev +...

and substituting it into (4.4), we have
0= DAV + Fy(v"), (4.5)

which is the lowest order equation of (4.5) with respect to €.

Let vy be the unit vector in the direction toward the tangential direction of the interface I7 at the
triple junction point y and let oy be an angle between v, and v3. ap and a3 are similarly defined.
First, we assume that all angles «; (i = 1, 2, 3) are larger than /2.

For convenience, we rotate the new coordinates (£, 1) in such a way that the direction v,
coincides with the n-axis to the negative direction, as in Fig. 6. Then, v; (i = 1,2, 3) are given
by

v = (—sina3, —cosas),
vy = (0, —1), 4.6)
v3 = (sinay, —cosay).

We now take a sufficiently large triangle with three apexes A = (—&p, —10), B = (€0, —10)
with sufficiently large positive constants &y and 79 , and C = (&1, n1), which is an intersection of
half lines starting at A and B perpendicular to v; and v3. Let S;, t; (i = 1,2, 3) be the sides CA, AB
and BC, and their tangential unit vectors in the directions of CTZ\, AB and ﬁ, respectively, as in
Fig. 7. Since v; is the outward normal unit vectors of the triangle AABC onsides of S; (i =1, 2, 3),
and t; (i =1, 2, 3) are explicitly given by

t; = (cos a3, —sina3),
to=(1,0), “@.7)
t3 = (cosay, sinay).

We now introduce the coordinates (;, n;) with respect to vectors v; and t; by

& m =&t +nv (=1273). (4.8)
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Then, the sides S; are represented as
Si =&t +mivis & <E<E") 4.9)
for positive constants &;, Ei+ and r;? (i =1,2,3), which satisfy

& ==k,
n3 =no,
A=&t + 0l = & 6 + ndwa,
B=&t, + nvy = &5t + s,
C=¢&"t3+n3v3 =&t + 1.
We take the triangle AABC large enough such that all r)? and Eii are sufficiently large and define

the inside region of AABC by R.
Now, we note that v0 satisfies

V0 > ¥l as n; — oo,

that is,

VO, ) = WiE) as g > . (4.10)

Hence, we may suppose
VO, m =W (&),
9y0 4.11)

— ~0
an;

on the sides §;, since 77? are sufficiently large. Here, we use the notation @ >~ b in the sense that
la — b| — 0 when all 17? and Eii go to infinity.

Let Z1(n) and E3(n) (—no < n < 1n1) be values of the &-coordinate of the point (§,n) €
S; (i =1, 3), that is,

0 0
n+nj n+m
g = ———L d () =& — ——B
1(m) anGr — a3) §o an 3(m) = %o anGr — ay)
Since ¥ satisfies (4.3), we have
1 i i i i
0=§(D‘1’s,'1/s )s + ( Fo(¥'), ¥y )
and integrating this from —oo to s,
s o 1 o
/ (Fo(w"), ¥ ) ds:—z(D‘I’;,W; ) (4.12)
—0o0
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and then

/ /S <Fo(wi(s/)),wj(s’nds/ds=/oo<ij(s),w;(s)>ds (4.13)

We consider the quantity

§
// </ (Fo(").v0) d§’> dé d. (4.14)
R E1(n) n

Let v = (v&, v") be the outward normal unit vector of AABC along its sides aR = S1US, U S3.
Since v = v; on the side §;, Green’s formula rewrites (4.14) as

£
/ / ( Fo(WY), vg ) d&’v" ds, (4.15)
oR

E1(m)

where s denotes an arclength parameter on the boundary d R. We divide this into the following three
parts:

£
/ f (Fo(v"). v ) d&"vds = K| + K> + K.
S1USUS3 J E1(n)

=

On the side S1, we know

§
/ (Fo(v"). v ) d&’ =0,

-

E1(n)
because (£, n) € S| means £ = Z;(n). Hence, we have

K, =0. (4.16)

On the side Sy, we know v = vy = (0, —1), s = & and V¥ ~ ¥2(&,) by (4.6) and (4.11). Hence,
by (4.12) and (4.13), we have

Ky~ f f ( Fo(W2(E), w2 ) d&’(—1)ds 4.17)
Sy J =& '
~— f f ( Fo(W2(E), w2(E) ) dE'ds
1
=M. (4.18)

1
On the side S3, by v = (sinaj, —cosay),ds = ——dn and & = Z3(n) K3 is represented as
sin ot

&3(nm)
K3=/ / ( Fov"), v¢ ) d&'(—cos o) ds (4.19)
S3

E1(n)
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1 E3(n) o 0
=z [ R dean
tan o Z1(n)

__ ! /(Fo(vo),vgmsdn.
R

tan o

Since v satisfies (4.5), it holds by integration by parts that
/ (Fov), %0 ) d& dy
R
= / ( DAV, vé ) d&dn
R
=—/ ( DAV, V") 5ds+/ DAVE,
aR R

:—/ (DAVO, V0 ) V& ds +
aR

z:\

VE, DAV
because (4.11) holds on d R. Hence, by (4.6) we have
/ ( Fov). 0 ) d& dy
R
= /(DAV Vg)dfdn
R

1

:——/ (DAVO,V())deS
2 Jor

58

1 1 : 1 3 3
~—— ( DY, y! )(—smag)ds—i (DY> W
S

$3
1
= §(M3 sina; — M sinas).

It follows from (4.19) and (4.21) that
1

tan o

K32—

sin a3

1 1
=——M;5cos -M .
2 3 a1+2 ltanoc]

Therefore, by (4.15), (4.16) and (4.17), (4.22), the quantity (4.14) is written as

£ 1 1
// (/ ( Fo(v"), v¢) ds’) dédn ~ —Mp — =Mz cosa; + —
R \JE1(n) . 2 2 2

On the other hand, the integrand of (4.14) is expanded into

&
( / (Fov).+0) ds/)
E1(n) .
dz

§
— /1010 0 0 0 r
_/El(n) I( Fo(v)vy, ve ) + ( Fo(v)), vg, )} dg &

1
X §(M3 sinoy — M; sinas)

) d&dn

) d&dn,

1

( Fo(W"), Vg ) l&myes; -

ysinaq ds

M,

71

(4.20)

421

4.22)

(4.23)

4.24)
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dz 1
Here, d—nl = ~anan v0 ~ wl(g)) and vg ~ ¥} cos a3 hold on the side S, which imply
d= 0v .0 cos? o3 1 1
——— (Fo(v), v ) s, = — (Fo(Wh), ¥ ). (4.25)
dn sin a3
Since vg ~ ¥l x (—sina3) on the side Sy, it follows
§ 0y 0
[T AT (4.26)
E1(n)

§
=[{( F()(VO),Vg )]EEI(,)) - /ﬁ ( )( Fé(vo)vg,vg ) dg’
E1(y

§
=(Fo(), vy ) = (Fo@"), ¥ ) (—sinaz) — ﬂ 0! Fo(vO)ve, vy ) d&'.
=1

From (4.25) and (4.26), Eqn (4.24) becomes

§
( / ( Fo(v).v) dg’) (4.27)
E1(m)

n
¢
=/EM) {( FyvOv0, v ) — ( By, v )} dg’

cos? a3

+(Fo(V), v ) + <Sina3 + = ) (Fowh, wl)
sin o3

§
=/ . {< Fy(vO)v9,ve ) — ( Fg(vO)ve, vy )} dg’
&
1
F(FR(OW) VY )+ —— (Fowh), ¢ ).
sin o3
Let n = H (&) be the value of n-coordinate of a point (§, n) € S; U Sz, that is,

& +é&)tan(mr —a3)=—(§ + &) tanaz (=& <& < §1),
¢ —ép)tan(mr —a))= (§ —é)tana; (&1 <& < &)

and R(&) be a subdomain of R given by
RE) ={E" . meR; —& <& <&

Then, the integration of (4.27) over R becomes

§
/ / ( / <Fo(v°),v2>ds’) d& dn (4.28)
R \J&1(n) n

& rHE) rE oo o oo /
Z/s/ / {0 ¥ ) = CRIOONE V) | & dnag
o)

1o E1(n)

H($)={
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N E3(n)
f / ( Fowh), wl ) de dy
E1(n)

+/ ( Fo(v"), ¥ ) d dn + —
sin o3

o
/ <//;e(§) FO(VO)V'I’VS ) —( Fo(VO)Vg,V )} dg’ dr]) dé

+Hf <Fo<v°),v2>dsdn+.—/ (Es(m) — Z100) { Fo(wh), w1 ) d
R sina J_y,

=K| + K, + K.

Now, we compute each term K l’ (i =1, 2, 3) in the last equation of (4.28). First, we know

Ké=// ( Fo(v"), vy ) d& dy
R

—/ (DAVO,V?7 y dédn

=—/ ( DAV, VO v”ds—i—// DAV v0) dedp
IR

:—/ ( DAV, V0 v”ds+f/ v , DAV ) d& dp,
IR

because (4.11) holds on the boundary d R. Hence, we obtain

/ / (DAY, V) dt dy (4.29)

—/ ( DAV, V0 ) v ds
2 Jor
1

12

{/ (Dwsi,w2>(—1)ds+/ (DW3 w3 (—cosay)ds
S» S3

(Dw, 1)(—cosog)ds}
S

1
= _§(M2 + M3 cosay + Mj cosa3).

n
Next, we consider K} = / (E3(n) — E1()) { Fo(wh), wl) dn. Let
1o

sin a3

Em=E3() — E1(n)

1 1
= < + ) n+ 0,
tan o tan o3

where Q is a constant given by

1 1
0 =2+ ( + ) 1o-
tan o1 tan o3
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Note that dy = — sinw3 ds and

dz . dz . 1 n 1
— = —sina3— = —sinw3 X
ds 3 dn 3 tana; tanag

hold on the side S;. Then, by (4.12) and (4.13), we know

1
sin a3

K} = / Em (FWh,wl) (—sinaz)ds (4.30)
N

:/ Em(FWwh, wl)ds

=[5(n)/s (Fh, vl ds’]

—00

. dg [ ¢ 1 1 /
—51na3d— (F(), ¥, )ds'ds

N J—ooJ-—0

g x ( 1)<Dq/1w1>oo ! sin ! + L \m
=|Z —= , — —sinu
2 Y o2 3 tana;  tanag !

1 1 1
= ——sin M.
2 3 <tana1 + tana3) :

Finally, we compute K|. Differentiating (4.5) with respect to & or 7, we obtain

F (Vo)vg = —DAV}

%‘ ’
4.31)
Fi(¥)v) =—DAV).
Let [(£) be the line segment defined by
1) ={E n: —no<n< HE}
Noting (4.11) holds on the sides S; U S3, and using (4.31), we know
f / ( Fy()vy. v ) dg’dn (4.32)
R(§)

=_f/R($)(DAv?7,vg ) d&’ dn
avo av?
:—// <v2,DAv2>—/ (D2 v2) = (D—=v9 ) Hds
R(§) 1(%) av v

H(®)
=_//R(S)<v?7,DAvg>—/ {(DV0ev2) = ( DV v ) | a

—7o

H()
:/A(S)(vg,Fé(vo)vg ) _f_m [ DV ) = ( DV V) | a,
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where v is the outward normal unit vector of R(£) on the line segment /(£). Here, we used the fact
that the derivative in the direction of v on /(&) means the derivative with respect to £-variable. Thus,
we find

//R (E){(Fé(vo)vg,vg) ( w2, v )}di;‘ dn (4.33)

H® 0 0 0 0
=—/_n0 [(Dvngsvg>—<DVgg:Vn>]d’7-

Now, we note that

W~ { wlcosas, on Si,
x~ 3
§ wicosay, on S3
and
WO~ —¥lsinas, on Sy,
n lI/S3 sina;, on S3

hold. Hence, by (4.33), K i is calculated as
K (4.34)

= DVY, V) fd—/D, dnd
/dR( Ve, vy Y Vo ds R( ve, v, ) dndé

:f (D) w!)cosas - (—sinaz) - (—sinas)ds
S1

0
+/ (Dlllf, 11/53 ycosoq - sinag - sino ds — // — DVE,VE ) dndé&
s R 0N

~ M sin® a3 cos a3 + M3 sin® o] cos o] — / ( Dvg, vg Y ds.
IR

Here, / ( Dvg, vg Y 1" ds in the last term of (4.34) is written as
dR

( DV?,v2 ) v ds
/BR & 7E

:/ (DY, wl)cos®as - (— cosoeg)ds—i-/ (DW2, W2 ) (=1)ds
M S

—i—/ ( DIIIS3, 11153 )coszozl -(—cosap)ds
S3
=—-M; cos’ o3 — My — M3 cos’ o].

Substituting the above into (4.34), we have
K| >~ Mjcosaz + My + M3 cosa;. (4.35)
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Thus, it follows from (4.30), (4.29) and (4.35) that

3
f/ </ (Fo(vo),vg ) d§/> dsdn~K|+ K, + K} (4.36)
R \JE1(n) 0
lM sin a3 n lM n lM
=—= = —M3cos .
2" angy, 27T 2
(4.23) and (4.36) imply
M, Ms
- ~ — , 4.37)
sinw;  sinos
. M, M, . . .. .
and similarly, — ~ — holds. We thus arrive at the following angle condition at the triple
sin o sin oy

junction point y:
M, M, M3
- = - =—, (4.38)
sino;  sinap  sinos

by taking AABC infinitely large.

It should be emphasized that our system is a non-gradient system but the formula (4.38) is
exactly the same as the one derived from gradient systems with triple well potential [1]. Thus, the
limiting problem to describe interfaces with triple junctions can be derived from the RD system
(1.8), by using (4.1) and (4.38). The local existence result of this problem is shown in [1].

There are some numerical methods which have been developed to track motions of triple
junctions. We should refer to [2, 17], for example.

Although the derivation of (4.38) has been carried out by means of formal asymptotic analysis,
we could numerically confirm that the dynamics of interfaces (2.5) supplemented with the angle
condition (4.38) in time-scale T = €?¢ is a good approximation to that of the internal layers of the
RD system (1.8) when € is sufficiently small, as in Fig. 8.

5. Concluding remarks

We have obtained the angle condition (4.38) at each triple junction, assuming that 8, 8, and 63 are
all sufficiently small.

First we consider the motion of interfacial curves (2.5). A closed curve in R? exhibit the curve
shortening property when its dynamics is governed by mean curvature flow [5]. It is also indicated
that the same property holds in the case of interfaces with triple junctions if all the angles are equal
and velocities 0, 6> and 63 vanish [18]. This fact shows that surface energy decreases with time,
but the angle condition (4.38) guarantees that the interfacial energy preserves at triple junctions; we
define the energy E as

E = M1 + Myly + M3l3,

where /; is the length of I (i = 1, 2, 3). Changing rate of E at the junction point is
—Mi(yr - v1) — Ma(yr - v2) — M3(yr - v3) = —yr - (Mivi + Mava + M3v3)

=—yr-0
=0.
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8 (a)

10(b) 5

10(c) ,

y

F1G. 8. Comparison of phase-separating pattern of the RD system (1.8) and interfaces with triple juction as
€ | 0. The parameters are completely the same as those in Fig. 1. Here M; = 0.33795. (a)t = 0(T = 0.0),
(b) r = 1000 (T =0.1), (c) t =2000(T =0.2).

F1G. 10. Dynamics of interfaces with triple junctions in (1.8)—(1.10), where € = 1.0 x 10_2, di =11/6d, =4,
dy=1,r1=1/8rp=1,r3 =1and

ayp ap a3 1/18 11/72 11/18
ary ay ay = 13/8 1 4/3
az; azp asj 7/6 7/3 1

(@)t =0,()t =060, ()t =120.
For these parameters, 6] = ==, 6, =

\/gs

_3_

2\/gand93=—

1
46"
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F1G. 9. Stationary interfaces with a triple junction in some triangular domain.

F1G. 11. Taylor’s motion of interfaces.
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On the other hand, Lemma 3.1.2 in [5] is modified for an open curve as follows;

di; (¢ ar: or "
ﬁ — _Li[ Kiz ds + il . i i
dr I ot ds |

where s is the arc length parameter. Thus we get

dE

=—-M <L1 / ki ds — (—yr - v1)> - M <L2/ K3 ds — (—yr - Vz))
dr n b
M <L3 / K2ds — (—yr v3)>
I3

=—M1L1/ K'lzdS—MQLQ/ K22dS—M3L3/ K32ds
I Iy I3

<0.

From this result, we can conjecture that a stationary solution will be stable, if £2 is specified as some
suitable triangular domain as in Fig. 9. More general results on properties of energy are obtained in
[16].

Secondly we consider the RD system (1.8) when parameters are fixed such that the velocities

01, 6> and 63 satisfy 0; = = —— and 63 = —R [15]. The resulting numerical

2 0

\/6, 2 2\/6

pattern qualitatively resembles the unique consistent motion constructed by Taylor [19]. However,
behavior of interfaces arising in Figs 4 and 5 cannot be understood through the notion of the unique
consistent motion. As far as we know, there is no theory which explains why such spirals stably
exist. According to [19], if 0 < 6] < 6 < 63, then a triple junction point moves with a constant
velocity in one direction. The results of numerical simulations cannot be understood from this point
of view. We must, therefore, develop another approach to this problem.
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