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One of the many ways of solving free-boundary problems is, when possible, to put them (perhaps
after suitable transformations) in the framework of variational or quasi-variational inequalities. It
then remains to solve them numerically, a task which has been studied by Glowinski, Lions, &
Tremolieres [9] without reference to parallel algorithms.
On the other hand, systematic attempts to decompose the problems of the calculus of variations

and of control theory have been made by Bensoussan, Lions, & Temam [4], using, among other
things, ideas arising from splitting methods (see Marchuk [25] and the bibliography therein).
We propose here a general method for obtaining, in in"nitely many ways, stable parallel

algorithms for the solution of variational inequalities of evolution. This method was introduced in
[12] for equations of evolution. We show here how it can be adapted to variational inequalities (what
is needed from [12] is recalled here).

1. Introduction

We want to introduce parallel algorithms for the analysis and control of free-surface problems.
We consider here some particular free-surface problems which can be expressed in the framework
of variational inequalities. The formulation of variational inequalities will be (brie#y) recalled in
Section 2 below. For the time being, to "x ideas, let us recall merely that the classical Stefan
free-surface problem can be formulated in the framework of variational inequalities. There is a
huge literature devoted to parallel algorithms. Many of them are based on domain-decomposition
methods, see P. L. Lions [24] Glowinski, Periaux, Shi, Widlund [10] and the bibliography therein.
We have introduced in [12], and we have begun to develop in [13]�[16], a very general formulation
of decomposition methods. This method is introduced and used here for the `parallel solution'
of variational inequalities. The general (abstract) decomposition is presented in Section 3, some
examples being given in Section 4. Parallel algorithms are then given in Section 5. Section 6 presents
further remarks and problems. We do not study here the stabilization and control of variational
inequalities using the method of decomposition of Sections 3 and 5.

The numerical solution of variational inequalities has been studied by Glowinski, Lions, &
Tremolieres [9], but without decomposition and parallelism.

Systematic methods of decomposition of problems of the calculus of variations and of control
have been introduced by Bensoussan, Lions, & Temam [4], based on the decomposition of operators
related to splitting methods (see the bibliography therein) and on the splitting of constraints, such
as introduced by Lions & Temam [23]. All these methods could be combined with those introduced
here, but the bene"ts would be unclear. We note also that the penalty arguments used here could
be replaced by Lagrange-multiplier techniques. This is developed in current work by Lions &
Pironneau [20, 21].
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2. Formulation of the variational inequalities of evolution

Variational inequalities of evolution were introduced by Lions & Stampacchia [22]. We give here a
simple presentation of them.

We are given two real Hilbert spaces V and H such that

V ⊂ H, V dense in H, V → H being continuous. (2.1)

We identify H with its dual, so that if V ′ denotes the dual of V , then

V ⊂ H ⊂ V ′. (2.2)

We are also given a set K ⊂ V such that

K is a closed convex subset of V . (2.3)

We do not restrict generality (it suf"ces to make a translation) by assuming that

0 ∈ K . (2.4)

Let f be given such that
f ∈ L2(0, T ; V ′). (2.5)

We consider now a bilinear form

u, û → a(u, û) which is continuous on V × V ,
a(u, û) is symmetric or not, (2.6)

a(u, u) > α‖u‖2V , α > 0, ∀u ∈ V
(where we denote by ‖u‖X the norm of u in X ).

We are interested in the solution of the following variational inequalities of evolution: "nd u
such that

u ∈ L2(0, T ; V ) ∩ L∞(0, T ; H), u(t) ∈ K a.e.,(
∂u

∂t
, û − u

)
H
+ a(u, û − u) > ( f, û − u) ∀û ∈ K , (2.7)

u(0) = 0.
REMARK 2.1 The solution has to be thought of as being a weak solution of (2.7); otherwise the
condition `u(0) = 0' in (2.7) is somewhat ambiguous. This condition becomes precise if we add the
condition

∂u

∂t
∈ L2(0, T ; V ′), (2.8)

but this condition can be too restrictive. We can introduce weak solutions in the following form.
We consider smooth functions û such that

û ∈ L2(0, T ; V ), ∂ û

∂t
∈ L2(0, T ; V ′), (2.9)

û(t) ∈ K for a.e. t, û(0) = 0.
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Then, if u satis"es (2.7) and is supposed to be smooth enough, we have (we write (u, û) instead of
(u, û)H ) ∫ T

0

[(
∂ û

∂t
, û − u

)
+ a(a, û − u)− ( f, û − u)

]
dt

=
∫ T

0

[(
∂u

∂t
, û − u

)
+ a(u, û − u)− ( f, û − u)

]
dt

+
∫ T

0

(
∂(û − u)
∂t

, û − u
)
dt.

The last term equals 12‖û(T )− u(T )‖2H (since u(0) = 0, û(0) = 0), so that∫ T

0

[(
∂ û

∂t
, û − u

)
+ a(u, û − u)− ( f, û − u)

]
dt > 0 (2.10)

for all û satisfying (2.9).

We then de"ne a weak solution of (2.7) as a function u such that

u ∈ L2(0, T ; V ), u(t) ∈ K a.e., (2.11)

and which satis"es (2.10) for all û satisfying (2.9). See Lions [17] and a simple presentation in [18].

REMARK 2.2 Let us show how formally (2.7) `follows' from (2.10). Let us take, in (2.10),

û = θw + (1− θ)u, 0 < θ < 1,

where w is smooth and satis"es conditions analogous to those of (2.9).
Then, after dividing by θ , we have∫ T

0

[(
θ
∂w

∂t
+ (1− θ)∂u

∂t
, w − u

)
+ a(u, w − u)− ( f, w − u)

]
dt > 0.

Letting θ → 0, we obtain∫ T

0

[(
∂u

∂t
, w − u

)
+ a(u, w − u)− ( f, w − u)

]
dt > 0 (2.12)

for allw ∈ L2(0, T ; V ) such that w(t) ∈ K a.e. .

By taking

w =
{
û in a neighbourhood σ of to ∈]0, T [,
u elsewhere,

and letting |σ | → 0, we obtain (2.7).

REMARK 2.3 For the proofs of existence and uniqueness of the solution of (2.7) or (2.10), we
refer to Lions & Stampacchia [22], and to the books [17, 18].
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REMARK 2.4 The formulation of Stefan's problem in the framework of variational inequalities is
due to Duvaut [5]. For simple proofs, see for instance [18] or the recent course [28]. Very many
free-boundary problems in the framework of variational inequalities are introduced and studied by
Duvaut & Lions [6], Baiocchi & Capelo [1], Kinderlehrer & Stampacchia [11], Elliott & Ockendon
[7], Friedmann [8], Meirmanov [26], and Rodrigues [27].

REMARK 2.5 The methods which follow apply to all the variational inequalities introduced in
these references�with the exception of non-local problems: see Section 6.

3. Decomposition method

We introduce N couples of Hilbert spaces Vi and Hi , and N convex sets Ki :

Vi ⊂ Hi ⊂ V ′i (i = 1, . . . , N ), (3.1)

Ki ⊂ Vi , Ki closed convex subset of Vi , non empty. (3.2)

We are given linear operators ri such that

ri ∈ L(H ; Hi ) ∩ L(V ; Vi ) (i = 1, . . . , N ), (3.3)

ri maps K into Ki .

We are also given a family of Hilbert spaces Hi j such that

Hi j = Hji ∀i, j ∈ [1, . . . , N ], (3.4)

and a family of operators ri j such that

ri j ∈ L(Hj ; Hi j ). (3.5)

The following hypotheses are made:

rj rjiϕ = riri jϕ ∀ϕ ∈ V, (3.6)

if N elements ui are given such that

ui ∈ Ki ∀i, ri j u j = rji ui ∀i, j
then there exists u ∈ K such that (3.7)

ui = ri u, and moreover ‖u‖2V 6 c

(
N∑
i=1
‖ui‖2Vi

)
.

REMARK 3.1 Examples are given in Section 4.

REMARK 3.2 If Ki = Vi for all i , we are in the situation of equations (see [13, 14]).

REMARK 3.3 The hypothesis

Ki = Vi for a subset of [1, . . . , N ] (3.8)

is perfectly acceptable!
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We now proceed with the decomposition of the problem. We introduce the following bilinear forms:

ci (ui , ûi ) is continuous, symmetric, on Hi × Hi , and it satis"es (3.9)

ci (ui , ui ) > γi‖ui‖2Hi , γi > 0,∀ui ∈ Hi ,

ai (ui , ûi ) is continuous, symmetric or not, on Vi × Vi , and it satis"es (3.10)

ai (ui , ui ) > αi‖ui‖2Vi , αi > 0,∀ui ∈ Vi ,
We assume that

N∑
i=1

ci (ri u, ri û) = (u, û)H ∀u, û ∈ H, (3.11)

N∑
i=1

ai (ri u, ri û) = a(u, û) ∀u, û ∈ V . (3.12)

Finally, we assume that the function f is also `decomposed' as follows:

we are given functions fi ∈ L2(0, T ; V ′i ) such that (3.13)
N∑
i=1
( fi , ri û) = ( f, û) ∀û ∈ V .

We are now ready to introduce the decomposed approximation.
We look for functions ui (i = 1, . . . , N ) such that

ci

(
∂ui
∂t
, ûi − ui

)
+ ai (ui , ûi − ui )+ 1

ε

∑
j

(rji ui − ri j u j , rji (ûi − ui ))Hi j (3.14)

> ( fi , ûi − ui ) ∀ûi ∈ Ki ,

ui ∈ L2(0, T ; Vi ), ui (t) ∈ Ki a.e., ui (0) = 0. (3.15)

REMARK 3.4 Each of the variational inequalities (3.14) has to be thought of in its weak
formulation, as introduced in Section 2.

REMARK 3.5 In (3.14), ε is positive and small. The corresponding term in (3.14) is a penalty
term.

REMARK 3.6 In the examples, ‖rji‖ is a sparse matrix. For a given i , the only j used in (3.14) are
those such that

rji 6= 0
(they are the `neighbours' of i).

One can prove
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THEOREM 3.1 The set of (decomposed) variational inequalities (3.14), (3.15) admits a unique
solution ui = uεi (i = 1, . . . , N ). Further, as ε→ 0, one has

uεi → ui in L2(0, T ; Vi ) weakly (3.16)

and
ui = ri u, (3.17)

where u is the solution of (2.7) (actually of (2.10)).

We now present a sketch of the proof.
Step 1: A priori estimates
We can assume, without loss of generality, that 0 ∈ Ki . Therefore taking ûi = 0 in (3.14) is allowed
(for a complete proof, the technical details are much more complicated. One has to work "rst on
approximations of (3.14), by using (other) penalty arguments; see the bibliographical references).
This simpli"ction gives (we write ui instead of uεi for the time being)

ci

(
∂ui
∂t
, ui

)
+ ai (ui , ui )+ 1

ε
Xi 6 ( fi , ui ) (i = 1, . . . , N ), (3.18)

where
Xi =

∑
j

(rji ui − ri j u j , rji ui )Hi j . (3.19)

We can write

Xi = 1

2

∑
j

‖rji ui − ri j u j‖2Hi j +
1

2

∑
j

‖rji ui‖2Hi j −
1

2

∑
j

‖ri j ui‖2Hi j . (3.20)

But one veri"es easily that ∑
i

Xi = 1

2

∑
i, j

‖rji ui − ri j u j‖2Hi j . (3.21)

Therefore by integration in t , in the interval (0, t), of (3.18), and by summing in i , using (3.21), we
obtain

1

2

∑
i

ci (ui (t))+
∑∫ t

0
ai (ui (s)) ds + (3.22)

+ 1

2ε

∑
i, j

∫ t

0
‖rji ui (s)− ri j u j (s)‖2Hi j ds 6

∑
i

∫ t

0
( fi , ui ) ds.

Step 2
It follows easily from (3.22), (3.9), and (3.10) that, as ε→ 0 (and we now use the notation uεi ),

uεi remains in a bounded set of L
2(0, T ; Vi ) ∩ L∞(0, T ; Hi ), (3.23)

uεi (t) ∈ Ki ,
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1√
ε
(rji u

ε
i − ri j uεj ) remains in a bounded set of L2(0, T ; Hi j ). (3.24)

Therefore we can extract a subsequence, still denoted by uεi , such that

uεi → ui in L2(0, T ; Vi ) weakly, (3.25)

ui (t) ∈ Ki ,
and, by virtue of (3.24), we have

rji ui = ri j u j ∀i, j. (3.26)

Notice that we have not used the fact that uεi remains in a bounded set of L
∞(0, T ; Hi ).

It follows from (3.25), (3.26), and the hypothesis (3.7) that

ui = ri u∗, u∗(t) ∈ K a.e., u∗ ∈ L2(0, T ; V ). (3.27)

It remains to show that u∗ = u, the solution of (2.7) or (2.10).
Step 3
We use the weak formulation recalled in Section 2. To avoid slight technical dif"culties, we further
weaken (2.10), by writing it (in a perfectly legitimate way!)∫ T

0

[(
∂ û

∂t
, û − u

)
+ a(û, û − u)− ( f, û − u)

]
dt > 0 (3.28)

for all û satisfying (2.9).

We introduce ûi such that

ûi ∈ L2(0, T ; Vi ), ∂ ûi
∂t
∈ L2(0, T ; V ′i ), (3.29)

ûi (t) ∈ Ki for a.e. t, ûi (0) = 0,
and we replace (3.24) by its (very) weak form∫ T

0

[
ci

(
∂ ûi
∂t
, ûi − uεi

)
+ ai (ûi , ûi − uεi )+

1

ε

∑
j

(rji ûi − ri j û j , rji (ûi − uεi ))Hi j
]
dt (3.30)

>
∫ T

0
( fi , ûi − uεi ) dt.

Let us now assume that

ûi = riϕ, (3.31)

ϕ ∈ L2(0, T ; V ), ∂ϕ

∂t
∈ L2(0, T ; V ′), ϕ(0) = 0, ϕ(t) ∈ K .

Since rji riϕ = ri j rjϕ, the 1
ε
terms in (3.30) drop out, so that∫ T

0

[
ci

(
∂

∂t
(riϕ), riϕ − uεi

)
+ ai (riϕ, riϕ − uεi )

]
dt (3.32)

>
∫ T

0
( fi , riϕ − uεi ) dt.
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We can pass to the limit in ε in (3.32). Because of (3.27), we obtain∫ T

0

[
ci

(
∂

∂t
(riϕ), riϕ − ri u∗

)
+ ai (riϕ, riϕ − ri u∗)

]
dt (3.33)

>
∫ T

0
( fi , riϕ − ri u∗) dt.

Summing (3.33) in i and using (3.11), (3.12), and (3.13), we obtain∫ T

0
[(
∂ϕ

∂t
, ϕ − u∗)+ a(ϕ, ϕ − u∗)− ( f, ϕ − u∗)] dt > 0

so that (by uniqueness) u∗ = u. 2

4. Examples

Let Ω be an open set of Rd(d = 1, 2, 3 in the applications). Let us consider, with the notation of
Lions & Magenes [19].

V = H10 (Ω) ⊂ H = L2(Ω), (4.1)

K = {v|v > 0 in Ω, v ∈ V }, (4.2)

(u, v) =
∫
Ω

uv dx, (4.3)

a(u, v) =
∫
Ω

∇u · ∇v dx .

For these choices of the data, variational inequalities (2.7) becomes, in an explicit form:

∂u

∂t
−1u − f > 0, (4.4)

u > 0,(
∂u

∂t
−1u − f

)
u = 0 in Ω × (0, T ),

u = 0 on ∂Ω × (0, T ), (4.5)

u|t=0 = 0. (4.6)

This is (after a transformation of the unknown as by Duvaut [5]; see [18] or [28]) the Stefan problem
(with one phase). The free surface (resp. free region, resp. mushy region) is de"ned by

u = 0 and
∂u

∂t
−1u − f = 0 in {u > 0}. (4.7)

We now decompose this problem, using the tools introduced in Section 3. We consider an
overlapping covering of Ω , consisting of sets Ωi such that

Ω = ∪Ωi , (4.8)
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for all i, there exists at least one j (a neighbour of i) such that (4.9)

Ωi ∩Ωj 6= ∅.
We introduce partitions of unity :

ρi are de"ned in Ωi , (4.10)

(and can be extended by 0 outside Ωi ),

ρi > 0 in Ωi ,

N∑
i=1

ρi = 1 in Ω,

σi has the same properties as ρi . (4.11)

REMARK 4.1 One can have σi = ρi or not. The hypothesis σi = ρi is needed for precise error
estimates, as will be shown elsewhere.

We now introduce

Hi =
{
ui |
∫
Ωi

ρi u
2
i dx <∞

}
, (4.12)

Vi =
{
ui |
∫
Ωi

σi |∇ui |2 dx <∞, ui = 0 on ∂Ωi ∩ ∂Ω
}
. (4.13)

REMARK 4.2 If Ω̄i ⊂ Ω , there are no boundary conditions in (4.13). If ∂Ωi ∩ ∂Ω 6= ∅, the
condition ui = 0 on ∂Ωi ∩ ∂Ω does make sense.

We now de"ne

ci (ui , ûi ) =
∫
Ωi

ρi ui ûi dx, (4.14)

ai (ui , ûi ) =
∫
Ωi

σi∇ui · ∇ûi dx . (4.15)

We introduce next
Hi j = L2(Ωi ∩Ωj ), (4.16)

ri u = restriction of u ∈ H (resp. V) to Ωi , (4.17)

rji ui = restriction of ui ∈ L2(Ωi ) to Ωj .

One de"nes

Ki = {ui |ui ∈ Vi , ui > 0 in Ωi }. (4.18)

Let us assume that
f ∈ L2(Ω × (0, T ))

and let τi be still another decomposition of unity. If we set

fi = τi f, (4.19)
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then all the hypotheses of Section 3 are satis"ed, and one can use the decomposition (3.14).
The set of inequalities (3.14) can be made explicit. Let us de"ne

Pi {u1, . . . , uN } = ρi ∂ui
∂t
−
∑
k

∂

∂xk

(
σi
∂ui
∂xk

)
+ 1
ε
(rji ui − ri j u j ). (4.20)

Then

Pi {u1, . . . , uN } − fi > 0, (4.21)

ui > 0,
(Pi {u1, . . . , uN } − fi )ui = 0 in Ωi × (0, T )

with
ui = 0 on ∂Ωi ∩ ∂Ω (4.22)

and no other boundary conditions if σi is (suitably) zero on ∂Ωi\(∂Ωi ∩ ∂Ω). (Otherwise there are
some Neumann boundary conditions, since the test functions do not satisfy boundary conditions
outside ∂Ωi ∩ ∂Ω).
REMARK 4.3 For a given i , only those j such that

Ωj ∩Ωi 6= ∅
appear in (4.21).

REMARK 4.4 The decomposition can be achieved in in"nitely many ways.

REMARK 4.5 Several interfaces (actually N ) appear. We do not know if this fact can be used to
de"ne a kind of mushy region.

REMARK 4.6 It is clear that the method presented for this particular example completely general,
as far as the convex set K is de"ned by local constraints. See Section 6 below.

REMARK 4.7 All what has been said can be adapted to non-overlapping coverings (see [13]).

We now introduce a parallel algorithm based on the decomposition method introduced in Section 3.

5. Parallel algorithm

We introduce the time step ∆t and a semi-discretization. We denote by uni (what we hope is) an
approximation of ui (n∆t).

We then de"ne uni by

ci

(
uni − un−1i

∆t
, ûi − uni

)
+ ai (uni , ûi − uni ) (5.1)

+ 1
ε

∑
j

(rji u
n
i − ri j un−1j , rji (ûi − uni ))Hi j > ( f ni , ûi − uni ) ∀ûi ∈ Ki ,

uni ∈ Ki (n = 1, 2, . . .),
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where

f ni =
1

∆t

∫ n∆t

(n−1)∆t
fi (t) dt, uoi = 0. (5.2)

REMARK 5.1 The algorithm (5.1) is parallel. Each uni is computed through the solution of a
stationary variational inequalities. Once the un−1j are computed, in the computation of uni , only
those j such that ri j 6= 0 are used.
REMARK 5.2 Methods other than the penalty method could be used as well�such as Lagrange-
multiplier methods. This will be reported elsewhere (see Lions & Pironneau [21]).

Let us show now the stability of the algorithm. Replacing ûi by 0 in (5.1), we obtain

ci (u
n
i − un−1i , uni )+ ai (uni )+

1

ε
Xni 6 ( f ni , uni ), (5.3)

where
Xni =

∑
j

(rji u
n
i − ri j un−1j , rji u

n
i )Hi j . (5.4)

We observe that

ci

(
uni − un−1i

∆t
, uni

)
= 1

2∆t
ci (u

n
i − un−1i )+ 1

2∆t
(ci (u

n
i )− ci (un−1i )),

so that
m∑
n=1

ci

(
uni − un−1i

∆t
, uni

)
= 1

2∆t
ci (u

m
i )+

1

2∆t
ξim, (5.5)

where

ξim =
m∑
n=1

ci (u
n
i − un−1i ). (5.6)

We observe next that

Xni =
1

2

∑
‖rji uni − ri j un−1j ‖2Hi j +

1

2

∑
j

‖rji uni ‖2Hi j (5.7)

− 1
2

∑
j

‖ri j un−1j ‖2Hi j .

If we de"ne

Yn = 1

2

∑
i, j

‖rji uni ‖Hi j , (5.8)

then ∑
i

Xni = Zn + Yn − Yn−1, (5.9)

where

Zn = 1

2

∑
i, j

‖rji uni − ri j un−1j ‖2Hi j . (5.10)
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Consequently, by summing (5.3) in i and in n, we obtain

1

2∆t

∑
i

ci (u
m
i )+

1

2∆t

∑
i

ξim +
m∑
n=1

∑
i

ai (u
n
i ) (5.11)

+ 1
ε
Ym + 1

ε

m∑
n=1

Zn 6
m∑
n=1

∑
i

( f ni , u
n
i ).

But

( f ni , u
n
i ) 6

1

2
ai (u

n
i )+

c

2
‖ f ni ‖2V ′i ,

so that (5.11), after multiplying by 2∆t , gives∑
i

ci (u
m
i )+

∑
i

ξim +∆t
m∑
n=1

∑
i

ai (u
n
i ) (5.12)

+ 2∆t
ε
Ym + 2∆t

ε

m∑
n=1

Zn 6 c∆t
m∑
n=1
‖ f ni ‖2V ′i 6 c4;

hence stability follows.

REMARK 5.3 Of course other time-discretization schemes could be used in (5.1).

6. Remarks and problems

REMARK 6.1 An open problem. The previous methods do not apply (at least without new ideas)
for nonlocal constraints�for example, for variational inequalities of the type(

∂u

∂t
, û − u

)
H
+ a(u, û − u)+ j (û)− j (u) > ( f, û − u) ∀û ∈ V, (6.1)

u(t) ∈ V, u(0) = 0,
where V = H10 (Ω), H = L2(Ω), and where for instance

j (û) =
(∫

Ω

|∇û|2 dx
) 1
2

.2 (6.2)

REMARK 6.2 Bingham's #ow (see Lions & Duvaut [6]) is an example of physical interest
of variational inequalities with nonlocal constraints, similar to (but more complicated than) the
previous example of Remark 6.1.

REMARK 6.3 One can extend the methods of the present paper to some quasi-variational
inequalities (see [2] or [1]).

REMARK 6.4 The examples of decomposition given here (Section 4) correspond to decompo-
sition of domains. Other possibilities can be envisioned, such as multi-Galerkin methods, using
replica equations (in our case, replica variational inequalities). We shall investigate this topic in
future research. Replica equations have been introduced in the paper [16], dedicated to the memory
of G. Stampacchia.
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