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In this paper, we discuss numerical schemes to model the motion of curves and surfaces under
the intrinsic Laplacian of curvature. This is an intrinsically dif"cult problem, due to the lack of
a maximum principle and the delicate nature of computing an equation of motion which includes a
fourth derivative term.We design and analyze a host of algorithms to try and follow motion under this
#ow, and discuss the virtues and pitfalls of each. Synthesizing the results of these various algorithms,
we provide a technique which is stable and handles very delicate motion in two and three dimensions.
We apply this algorithm to problems of surface diffusion #ow, which is of value for problems in
surface diffusion, metal re#ow in semiconductor manufacturing, sintering, and elastic membrane
simulations. In addition, we provide examples of the extension of this technique to anisotropic
diffusivity and surface energy which results in an anisotropic form of the equation of motion.

1. Introduction

In this paper, we discuss numerical schemes to model the motion of curves and surfaces under the
intrinsic Laplacian of curvature. By this, in two dimensions we mean motion in a direction normal
to a closed, simple curve with a speed function F that depends on the second derivative of the
local curvature with respect to arc length; in three dimensions, this translates into the motion of
a surface normal to itself with speed that depends on the Laplacian of the mean curvature, where
the Laplacian on the surface is constructed from the derivative with respect to arc length in each
principal direction. This is an intrinsically dif"cult problem for three reasons. First, owing to the
lack of a maximum principle, an embedded curve need not stay embedded, and this has signi"cant
implications in attempting to analyze motion which results in topological change. Second, the
equations of motion contain a fourth derivative term, and hence are highly sensitive to errors. Third,
this fourth derivative term leads to schemes with very small time steps. In this paper, we design and
analyze a host of algorithms to try and follow motion under this #ow, and discuss the virtues and
pitfalls of each. Synthesizing the results of these various algorithms, we provide a technique which
is stable and handles very delicate motion in two and three dimensions.
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We apply this algorithm to problems of surface diffusion #ow, which is of value for problems in
surface diffusion, metal re#ow in semiconductor manufacturing, sintering, and elastic membrane
simulations. For these #ows, a local existence proof for this #ow has been given by Elliott &
Garcke [13] as well as a proof of the stability of a circle as a limiting shape. Giga & Ito [16] also
give an existence and uniqueness proof and in addition prove that embedded plane curves need not
remain embedded as they evolve, but can form singularities where they pinch off. An existence and
uniqueness proof for certain smooth initial conditions has been found by Escher, Mayer & Simonett
[14] as well as a proof of conservation of area/volume and some computational examples. Coleman,
Falk & Moakher [11] demonstrate pinch-off in the case of three-dimensional axisymmetric surfaces
using a "nite element approach.

In addition, we provide examples of the extension of this technique to anisotropic diffusivity and
surface energy which results in an anisotropic form of the equation of motion. This anisotropic #ow
was "rst proposed by Mullins [19] to model curvature driven diffusion on the surface of a crystal.
More mathematical derivations have been examined by both Davi & Gurtin [12], Cahn & Taylor
[7], and by Cahn, Elliott & Novick-Cohen [6].

This paper does not present a de"nitive algorithm for computing fourth derivative surface
diffusion interface #ows. Instead, our goal is to carefully analyze and discuss some approaches,
and to try to extract a workable technique for many problems from the information gleaned. The
outline of this paper is as follows. First, we brie#y review some background on Level Set Methods
and Fast Marching Methods, which lie at the core of our approach. Then, we cast evolution by
Laplacian of the curvature in this embedded level set framework. Next, we design several different
approaches to solving this embedded level set framework, and discuss the virtues and drawbacks.
This leads to a hybrid algorithm which is presented in detail in the following section, accompanied
by a collection of numerical results. Finally, we end with a discussion of additional issues that need
to be considered in devising an all-purpose algorithm.

2. Background

The straightforward approach to the problem of motion by the second derivative of curvature is
through a parameterized view of the equations of motion. Begin by letting γ be a simple, smooth,
closed initial curve in R2, and let γ (t) be the one-parameter family of curves generated by moving
γ along its normal vector "eld with speed F . Here, F is the given scalar function. Thus n · xt = F ,
where x is the position vector of the curve, t is time, and n is the unit normal to the curve. Let the
position vector x(s, t) parameterize γ at time t , where 0 6 s 6 S, and assume periodic boundary
conditions x(0, t) = x(S, t). The curve is parameterized so that the interior is on the left in the
direction of increasing s. Furthermore, let n(s, t) be the parameterization of the outward normal
and let κ(s, t) be the parameterization of the curvature. Then, in the case where the speed function
F depends on the second derivative of the curvature, we have

F = −κss = − 1√
x2s + y2s

{
1√

x2s + y2s

[
yss xs − xss ys
(x2s + y2s )

3/2

]
s

}
s

where here we have used the parameterized expression for the curvature, namely

κ = yss xs − xss ys
(x2s + y2s )

3/2
.
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Thus, the equations of motion can then be written in terms of individual components x = (x, y) as

xt = − 1√
x2s + y2s

{
1√

x2s + y2s

[
yss xs − xss ys
(x2s + y2s )

3/2

]
s

}
s

(
ys

(x2s + y2s )
1/2

)
,

yt = 1√
x2s + y2s

{
1√

x2s + y2s

[
yss xs − xss ys
(x2s + y2s )

3/2

]
s

}
s

(
xs

(x2s + y2s )
1/2

)
.

Here, we have used the fact that the normal is given by

n = (ys,−xs)/(x2s + y2s )
1/2.

This is a `Lagrangian' representation because the moving front is represented by the range of
(x(s, t), y(s, t)).

In this formulation, the speed depends on the fourth derivative of the position vector. An
approach using marker particles to follow this motion is very hard to make workable, owing to the
high sensitivity of computing fourth derivatives along the front itself (see [22]). The dif"culties of
such an approach are eloquently described by Van de Vorst [29], who uses marker particle schemes
together with elaborate remeshing strategies to keep the calculation alive.

One of the most versatile and effective ways of computing the motion of curves and surfaces
under geometry-dependent speed laws is the level set methodology developed by Osher & Sethian
[20]. This level set approach grew out of the theory and numerics of curve and surface evolution
developed by Sethian in [21�23], which constructed the notion of weak solutions and entropy
limits for evolving interfaces, linked upwind numerical methodology for hyperbolic conservation
laws to front propagation problems, and developed numerical schemes for curvature-based #ows.
Geometric calculations using these techniques were presented in [24], in which the breaking
singularities of mean curvature #ow were studied in detail. The calculations and numerical
methodologies introduced in [20, 22, 24] have, in recent years, provided the basis for a large
collection of calculations in such areas as combustion and #uid mechanics [30], medical imaging
[18], and etching and deposition in semi-conductor manufacturing [2, 3, 5]. For a review and
resource on level set methods, see [25].

In the level set approach, both the interface of interest and the interface velocity "eld are
embedded in higher dimensional functions. The standard advantages of a level set approach are
that topological changes are handled naturally, that the technique is unchanged in three and higher
dimensions, and that "nite difference schemes can be used for approximation operators on a "xed
Eulerian mesh. It is this last property that will be crucial for studying motion of the second derivative
of curvature; calculation of intrinsic geometric properties of the front, including the curvature,
comes not solely from information about the interface, but through consideration of the neighboring
level sets which carry the embedding. Figuring out how to exploit this embedding is the challenge
in devising techniques for surface diffusion driven motion.

3. The level set formulation

3.1 Equations of motion

Imagine a closed curve Γ in the plane propagating normal to itself with speed F . We can embed the
initial position of the front as the zero level set of a higher dimensional function φ, and then identify
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the evolution of this function φ with the propagation of the front itself through a time-dependent
initial value problem. At any time, the front is given by the zero level set of the time-dependent level
set function φ. In order to derive an equation of the motion for this level set function φ, we note
that the stipulation that the zero level set of the evolving function φ always match the propagating
hyper-surface means that

φ(x(t), t) = 0. (3.1)

By the chain rule,

φt +∇φ(x(t), t) · x ′(t) = 0. (3.2)

Since F supplies the speed in the outward normal direction, then x ′(t) ·n = F where n = ∇φ/|∇φ|
and this yields an evolution equation for φ, namely,

φt + F |∇φ| = 0, (3.3)

given φ(x, t = 0).
This is the level set equation introduced by Osher & Sethian [20].

As analyzed by Sethian in [23], the ef"cient solution of these front propagation problems
requires the use of upwind difference schemes and schemes borrowed from the solution of
hyperbolic conservation laws. A detailed discussion of such schemes in the context of interface
propagation schemes may be found in [25].

3.2 Adaptivity: The Narrow Band Method

Note that the embedding of the interface as the zero level set of a higher dimensional function means
that calculations are performed over the entire computational domain; which is wasteful. Instead,
an ef"cient modi"cation is to perform work only in a neighborhood of the zero level set; this is
known as the Narrow Band Approach. This results in an optimal technique which has a much lower
operation count. The strategy was introduced in Chopp [9], used in recovering shapes from images
in Malladi, Sethian & Vemuri [18], and analyzed extensively by Adalsteinsson & Sethian in [1].
Brie#y, the interface propagates until it reaches the edge of its narrow band, at which point a new
narrow band is built by re-initializing a new narrow band around the current front's position. The
width of the narrow band is a balance between the labor involved in re-initializing and calculations
performed on far away points. A narrow band one or two grid cells large requires re-initialization
every time step; an in"nitely large narrow band requires no re-initialization, but defaults to the
regular level set method. For details, see [1].

3.3 Construction of extension velocities

In order to apply the level set method, the velocity "eld F itself must be de"ned on the entire
domain of φ, not just the zero level set corresponding to the interface itself. We can be more precise
by rewriting the level set equation as

φt + Fext|∇φ| = 0 (3.4)
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where Fext is some velocity "eld which, at the zero level set, equals the given speed F . In other
words,

Fext = F on φ = 0.
This new velocity "eld Fext is known as the `extension velocity'.

In [4], a technique was introduced for building this extension velocity "eld Fext from a velocity
"eld given on the front in a highly ef"cient and accurate manner. This technique relied on the Fast
Marching Method [26], which is the optimal technique for solving the Eikonal equation.

Brie#y, the Fast Marching Method solves

|∇u| = 1

F(x, y, z)
(3.5)

by "rst replacing the gradient by suitable upwind operators, and then systematically advancing the
front by marching outwards from the boundary data in an upwind fashion. The key to the algorithm
lies in the observation that an upwind operator implies a causality, and hence grid points with a given
value for u cannot be affected by those with a bigger value. Hence, as the solution is advanced, we
can maintain a heap sort which keeps track of the smallest element to be updated, and thus always
advances the solution `downwind' of that point. Through the use of this sorting algorithm, each
point in the domain is visited only once, rather than requiring any iteration; the resulting technique
has a total operation count of O(N log N ).

This technique is then used to construct the extension velocity Fext by computing the signed
distance function φ (obtained by letting F = 1 in Eqn 3.5) while simultaneously solving the
associated equation

∇Fext · ∇φ = 0. (3.6)

The resulting velocity "eld Fext equals the velocity on the front, and is reasonably smooth off
of the front. We shall use both the Narrow Band Method and a variation of the velocity extension
methods based on the Fast Marching Method to construct a stable algorithm for #ow under the
Laplacian of curvature.

4. Equations of motion for evolution by Laplacian of curvature

4.1 Flow under curvature

In the case of #ow under curvature, a natural extension velocity is provided by the embedding of the
interface as the zero level set of a higher dimensional function. We may let the speed of each level
set be the curvature of that particular interface. Thus, we have the equation of motion

φt − κ|∇φ| = 0. (4.1)

To be precise about what is happening, consider a point (x, y). Then the value of φt (x, y) depends
on the curvature of the level set passing through the point (x, y). This `natural' embedding gives us
a velocity "eld by which to move all the level sets in the narrow band, not just the zero level set.

Why does this work? In the case of curvature #ow, there is a maximum principle which prevents
disjoint parts of the interface from colliding with each other; an embedded curve remains embedded.
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In this level set formulation, each level set in the #ow moves according to the same speed law. In
the case of curvature #ow, Evans, Soner & Souganidis [15] proved that the level sets behave nicely
in the sense that two different level sets do not cross and in fact remain roughly evenly spaced in
time. In terms of the level set function φ, this corresponds to the fact that the gradient of φ at any
given point of a level set, does not change dramatically over time. For the numerical method this
translates into numerical stability. The "nite difference algorithm to approximate the equations of
motion is a straightforward explicit-forward time central-difference space scheme.∗

4.2 Flow under Laplacian of curvature

Let us try and mimic this technique to produce a level set equation of motion for #ow under the
Laplacian of curvature.� Let the initial curve γ be described as the zero level set of a function
φ(x, y),

γ = {(x, y) : φ(x, y) = 0}.
From this, we can build an evolution equation for the level set function φ given by

φt + κss |∇φ| = 0.
Note that κ is the local curvature of the level curve passing through the point (x, y) and can be
expressed entirely in terms of the level set function φ by

κ = ∇ · ∇φ|∇φ| .

From this we can express the Laplacian of curvature by

κss = ∇
[
∇
[
∇ · ∇φ|∇φ|

]
· (φy,−φx )|∇φ|

]
· (φy,−φx )|∇φ| (4.2)

= κxxφ
2
y − 2κxyφxφy + κyyφ2x

φ2x + φ2y
− (κxφx + κyφy)κ√

φ2x + φ2y
. (4.3)

One can see from this expression that κss is a non-linear term involving up to fourth order derivatives
of the function φ. For anisotropic surface diffusion, we follow the derivation in [12] where the
anisotropic surface diffusion can be written as

κss = ∇
{
D(θ)∇

[
(g0(θ)+ g′′0 (θ))

(
∇ · ∇φ|∇φ|

)
+g′0(θ)

(
(φxx − φyy)φxφy + φxy(φ2y − φ2x )

(φ2x + φ2y)3/2
)]

· (φy,−φx )|∇φ|
}
· (φy,−φx )|∇φ|

∗ For a web page and java script demonstrating this application, see http:/math.berkeley.edu/∼ sethian/level set.html
� From now on, `second derivative with respect to curvature (or mean curvature)' shall always mean with respect to the

local arc length; we shall just abbreviate and say motion under the Laplacian of curvature.
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where θ is the direction of the outward normal, D(θ) is the diffusivity, and g0(θ) is the surface
energy. The anisotropic #ow reduces to the isotropic #ow when D(θ) ≡ 1, g0(θ) ≡ 1.

It is natural to conjecture that a numerical method similar to the evolution of mean curvature
#ow, see for example [10] and [8], will result in an equally stable method for speed κss . In fact
this is not the case. The nice properties of curvature #ow do not carry over to the Laplacian of
curvature #ow. In particular, there is no reason to expect |∇φ| even to remain bounded in time for
any particular point traveling with the front. This means the long term stability of such a numerical
method is heavily dependent upon the initial data. For initially convex interfaces, we "nd that long
term stability can be maintained. For more complicated interfaces, however, the stability of this
method cannot be guaranteed.

The problem is also complicated by the fact that the evolving zero level set under this #ow can
collide with itself. To see that this is so, we "rst observe that a circle remains stationary under this
motion, since the second derivative of the curvature of a circle is zero and hence there is no motion.
Another initial front placed next to this circle can bump into it under its own motion, and hence
we cannot guarantee that the level set curves stay separated under this #ow; additional examples of
this behavior can be found in [14]. Thus, without suitably de"ning an appropriate model for what
happens when fronts collide, the level set function itself need not remain a function for all time.
Finally, there are issues related to the sensitivity of κss to numerical errors. In the next section, we
discuss several approaches to devising an algorithm for this problem.

5. Various techniques for approximating the equations of motion

5.1 A straightforward embedding

As a "rst attempt, we tried to follow the algorithm for curvature #ow and use the second derivative
of the curvature of each level set to advance that particular level set. Thus, we used the `natural'
embedding. The dif"culty with this approach stems from the numerical accuracy of approximating
the second derivative of curvature, as well as the behavior of the velocity "eld near critical points of
the level set function.

Consider a grid point where the level set function φ has a local maximum. The curvature of the
level sets near such points, and hence the approximations of the curvature, become very large. In the
case of curvature #ow, this does not compromise the calculation because the growth of the curvature
is balanced by |∇φ| → 0, and by the fact that the velocity "eld near such points remains smooth.

The same cannot be said of the derivatives of curvature. The large values in the curvature near
such points leads to even larger values for the derivative of curvature, which still is only balanced
by |∇φ|. The consequence is that the straightforward approximations for κss near such singularities
yield unstable results. This discussion can also be applied to all other points where |∇φ| ≈ 0.

5.2 Using the narrow band approach

Of course, except for changes in topology, |∇φ| 6= 0 on the interface φ = 0 we are evolving. This
means that if we take a "ne enough mesh, and restrict our calculations to a very narrow band around
the level set φ = 0, we can effectively eliminate almost all troublesome calculations near where
|∇φ| = 0. Depending upon the complexity of the initial interface, this may require an exceptionally
small mesh and we must bear in mind that the time step restriction for an explicit method scales as
∆t ∼ ∆x4. We therefore searched for an alternative which would allow for larger mesh sizes while
addressing the problems near points where |∇φ| = 0.
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5.3 Variations on velocity extensions

5.3.1 A straightforward velocity extension. As an alternative approach, we tried using the
velocity extension methodology of [4]. This method assumes that the velocity is known everywhere
on the interface itself, and that velocity is then extended outward in the direction normal to the
interface. First, we used fourth order spatial derivatives in computing κss from the neighboring level
sets, and second, we extended this velocity throughout the narrow band. The numerical computation
of κss is given by

φx ≈ 1

12∆x

(−φi+2, j + 8φi+1, j − 8φi−1, j + φi−2, j ) (5.1)

φxx ≈ 1

12∆x2
(−φi+2, j + 16φi+1, j − 30φi, j + 16φi−1, j − φi−2, j ) (5.2)

φxy ≈ 1

48∆x∆y

(−φi+2, j+2 + 16φi+1, j+1 + φi−2, j+2 − 16φi−1, j+1
+φi+2, j−2 − 16φi+1, j−1 − φi−2, j−2 + 16φi−1, j−1

)
(5.3)

κ = φxxφ
2
y + φyyφ2x − 2φxyφxφy
(φ2x + φ2y)3/2

(5.4)

κss =
κxxφ

2
y − 2κxyφxφy + κyyφ2x

φ2x + φ2y
− (κxφx + κyφy)κ

(φ2x + φ2y)1/2
(5.5)

where the approximations for φy , φyy , κx , κy , κxx , κxy , and κyy are done using the same stencils as
for φx , φxx , and φxy .

While this approach showed marginal success, we found that the use of velocity extensions
reduced the numerical accuracy below that necessary to maintain good approximations for κss .
Using this technique for all points resulted in insuf"cient accuracy.

5.3.2 Use of splines. Next, we tried using splines to approximate κss on the interface. The hope
here was to provide a more accurate formulation of the second derivative of the curvature to use in
the extension velocity. Given a set of points on the interface φ = 0, we constructed a spline γ (s)
passing through those points. The value of κss could then be generated using the parametric formula
for κss from γ (s). In order to generate a smooth velocity "eld, we required that γ be at least C4, so
for polynomial splines this required quintic polynomials.

As a test, we achieved very good results approximating motion by curvature. However, for
Laplacian of curvature, we again encountered the problems associated with velocity extensions
which are of lower order accuracy than required for good approximations of κss . Furthermore,
the quintic polynomials tended to generate very slight oscillations, which led to oscillatory
approximations for κss , and consequently instability.

5.3.3 Isolated special points. These experiments led us to treat points in the narrow band
differently depending on whether or not they were either located more than a certain distance from
the interface or had gradients below a tolerance threshold. To that end we identify a set of grid
points K , described below, which are in the narrow band around φ = 0 and where κss can be
stably computed. For the points in K , φt is computed using the original level set method as used for
curvature #ow, employing the above fourth order "nite difference stencil. For all other points, we
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use a velocity "eld determined from a velocity extension method.
Thus, the idea is to use the `natural velocity' value away from troublesome points, and use the

extension velocity technique to "ll in the gaps. This is the hybrid technique presented below.

6. A hybrid approach

6.1 Extension of the velocity "eld

Based upon our discussions above, our method must consist of directly computing κss where
|∇φ| >> 0, i.e. on some set of grid points K , and using some form of velocity extension for
the remaining points in the narrow band.

We designate a grid point to be in K if it is at most "ve grid points away from the zero level set
of φ and is not a #at point or immediate neighbor of a #at point. A #at point, our discrete equivalent
to a critical point, is a point where |∇φ| ≈ 0 and can be identi"ed by any one of the following
criteria:

1. φi j > max(φi−1, j , φi+1, j , φi, j−1, φi, j+1)
2. φi j 6 min(φi−1, j , φi+1, j , φi, j−1, φi, j+1)
3. |∇φ| < ε for some parameter ε.

Before we continue, we make a few comments about the set K . First, the number of grid points
in the narrow band that are excluded from the set K is "xed with respect to mesh re"nement; as
the mesh is re"ned, the size of the regions where the velocity extension is used shrinks. Second, the
width of "ve grid points is not arbitrary but is based upon the fact that the stencil for computing a
fourth order accurate approximation of κ is 5 × 5. Third, #at points include all local extrema and
saddle points.

Again, for the points in the set K , the velocity is computed directly from Eqn (4.2) as
approximated in Eqns (5.1�5.5). For the remaining points, we need to patch up the velocity "eld
so that the evolution of φ remains stable. The velocity "eld extension is accomplished by means
of a modi"ed version of the Fast Marching Method described above. We tried other versions of
velocity extensions and found the results to be unsatisfactory for this particular #ow. The goals of
the velocity extension for this problem were that the extended velocity should be the same as the
nearest directly computed velocity value, the velocities at points in K should not be altered by the
velocity extension, and the direction of #ow of velocity information may need to be bidirectional in
the event that a point adjacent to the zero level set requires an extended velocity value. In fact, we do
not extend the interface velocity, κss , but the speed of the level set function itself, δφ = −κss |∇φ|
as is done in [4].

The velocity extension method we use here is based upon the principle that where the extension
velocity is needed, we use the velocity of the nearest point in the set K . This is a different approach
than was used in [4]. For this approach, we simultaneously solve |∇u| = 1 using the fast marching
method, and then solve

∇u · ∇(δφ) = 0 (6.1)

where the gradients are computed using upwind differences. The difference between this method
and that in [4] is that the function u is initialized to be 0 for every point which is in K , and the rest
of the points are computed to be the distance to K . We found that this form of extending the velocity
gave the best results.
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6.2 Reinitialization

As we discussed above, we do not have the property that the level sets remain evenly spaced in time.
Although this is not a problem for all initial data, e.g. an oval, it is easy to construct initial data for
which the level set function will develop sharp gradients. When this occurs, the computation of κss
can break down, and the method becomes unstable.

A remedy for this is to periodically reconstruct the level set function to force the level sets back
into an evenly spaced con"guration. This process is called reinitialization. Reinitialization was "rst
introduced in [9] and later improved upon in [1]. An alternative form of reinitialization can be found
in [28]. Here we follow the procedure outlined in [1].

We use the Fast Marching Method to solve the equation |∇φ| = 1. The resulting function retains
the current level set φ = 0 in the same location while repositioning the other level sets to be equally
spaced.

The use of reinitialization provides the extra stability required to complete the numerical
method, however, it comes at a price. Reinitialization can also be seen as a form of arti"cial
diffusion. The amount of arti"cial diffusion added to the problem, and the amount of the error
introduced in slight movement of the interface varies between reinitialization methods. In any case,
we use reinitialization as little as possible without compromising the stability of the method.

Improvements in the method which will reduce the need for reinitialization are the subject of
ongoing research.

6.3 The algorithm and examples

We now put together the pieces we have detailed above and outline the iterative step. We assume
that the initial data is given in the form of a parametric curve γ (s).

1. Construct the initial level set function φ0 from γ (s) by using the signed distance function.

2. In a band of grid points around the interface, i.e. the set K , compute δφ = −κss |∇φ|.
3. Find all #at points, grid points where φ is a local maximum, minimum, or where |∇φ| < ε.
Remove all such grid points and their neighbors, including diagonally, from the set K .

4. Extend the velocity of the set K to the remainder of the points in the domain using the fast
marching method.

5. Advance φ in time by an explicit time stepping scheme.

6. Reinitialize if a set number of time steps have elapsed, or if the average of |∇φ| has exceeded
some threshold.

7. Go to step 2.

Note that the above computation can be done using either a narrow band method where the
number of grid points outside the set K is at least two additional grid points, or the velocity can be
extended to the entire domain of φ with the same results.

We show some examples of this algorithm. We begin with the example of a star shape in Fig. 1
#owing under isotropic Laplacian of curvature. In this example, we use a 60×60 mesh with a space
step size of ∆x = 0.0667. The time step size for this calculation was ∆t = 5 × 10−6. The shape
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FIG. 1. Evolution of a star shape.

FIG. 2. Evolution of a oval shape.
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FIG. 3. Computation of initial oval with different spatial resolutions.

is roughly circular within 15 000 iterations, and 43 reinitializations were used. This illustrates how
sparingly we apply reinitializations.

Next in Fig. 2, we illustrate how an initially convex oval becomes non-convex before relaxing
to a circle. In this example, we use a 60 × 60 mesh with a space step size of ∆x = 0.0667. The
time step size for this calculation was ∆t = 5× 10−6. The shape is roughly circular within 20 000
iterations.

We use this same initial oval to verify the convergence and conservation properties of this
method. We computed the oval solution to a "xed time using 30×30, 60×60, and 120×120 meshes.
The comparison of these different computations can be seen in Fig. 3. Besides the convergence in
shape, we can also observe convergence in the area conservation property where these meshes lose
approximately 39%, 10%, and 4% of the initial area respectively. It should be noted that the primary
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FIG. 4. Motion of non-convex curves under speed F = κss .
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FIG. 5. Example of two shapes merging.

FIG. 6. Anisotropic #ow with four-way anisotropy.

cause of loss of mass is due to the occasional reinitialization steps.
We continue in Fig. 4 by showing the motion of two more shapes under this motion.
Our last two-dimensional isotropic example demonstrates merging in a more re"ned calculation,

here we use a 100× 100 mesh which seems to be the bare minimum resolution to obtain adequate
results. The evolution is depicted in Fig. 5.

In Fig. 6, we illustrate an anisotropic #ow. The diffusivity and surface energy functions have
been normalized so that they have mean value 1, and the plots for these functions are given in
Figs 7 and 8. Note that in Fig. 8, we plot both the energy function g0(θ) (solid line) and the sum
g0(θ)+g′′0 (θ) (dashed line). The surface energy function is based upon data for Aluminum diffusion
from Stumpf & Schef#er [27], and the diffusivity function is derived from molecular dynamics
modeling provided by Huang, Gilmer & D1́az de la Rubia [17]. The surface starts initially as a
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FIG. 7. Plot of diffusivity vs angle of the normal.

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

FIG. 8. Plot of energy functions g0(θ) and g0(θ)+ g′′0 (θ).

FIG. 9. Relaxation of three-dimensional shape to sphere.

circle, and then evolves towards faceting. Here we have taken a four-fold anisotropy resulting in
evolution towards a square.

In our "nal examples, in Fig. 9 we show isotropic #ow in three dimensions. We start with an
initially non-convex surface and show how it relaxes to a sphere. For this computation, we used a
30× 30× 30 mesh with a space step size of ∆x = 0.1. The time step size for this calculation was
∆t = 1× 10−6. The time step restriction is not dramatically worse than for two dimensions, but it
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FIG. 10. Pinch-off of a dumbbell shape.

is a little more restrictive as would be expected.
Finally, we start with an initial dumbbell shape consisting of two spheres connected by a thin

cylinder as shown in Fig. 10. There is a known instability in the #ow which causes perturbations in
a cylinder to eventually pinch-off. This example shows the computation passing through pinch-off.
The computation used a 60 × 30 × 30 mesh with space step size ∆x = 0.2 and time step size
∆t = 5× 10−6.

7. Conclusions and comments

In this paper, we have presented an algorithm for applying the level set method to the #ow by
Laplacian of curvature. We have shown how to make such a computation stable, with good accuracy
for most initial data. At present, the algorithm does not preserve volume perfectly, but improves with
re"nement of the mesh.

The method extends in a straightforward manner to three-dimensional simulations as
demonstrated above. Both the extension velocity methodology and the fourth-order "nite difference
approximation to the Laplacian of the curvature are unchanged. The more restrictive time step
requirement for stability of the method does not appear to change appreciably when going to higher
dimensions.

Topological changes in the method can be achieved if the front is more "nely resolved. This
restricts the time-stepping considerably and we would like to "nd an alternative approach that will
allow topological changes in our more coarse-grained approach. This is the subject of ongoing
research.

Simulating this #ow using the level set method has proven to be an exceptionally dif"cult
challenge, and the story is not yet complete. We plan to study this and similar #ows further in
order to improve our method and also to expand the capabilities of the level set method in general.
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