Interfaces and Free Boundaries 1, (1999) 125-173

On the justification of the quasistationary approximation in the problem of
motion of a viscous capillary drop

V. A. SOLONNIKOV

V.A. Steklov Institute of Mathematics, St Petersburg Department,
Fontanka, 27, 191011 St Petersburg, Russia

[Received 25 May 1998 and in revised form 8 January 1999]

We prove that the free boundary problem governing the motion of an isolated liquid mass in the case
of a small Reynolds number ¢ has a unique solution in a certain time interval (0, 7p) independent
of ¢ and we show that the difference of the solution and of the quasistationary approximation to the
solution has order O (¢) for ¢ € (ty, Tp) with arbitrary positive 7.

1. Introduction

The problem considered in the present paper consists of the determination of a bounded domain
£2;, t > 0, which is given at the initial moment of time # = 0, of the vector field of velocity
v(x,t) = (v, v2, v3) and of a scalar pressure p(x, ¢) satisfying in §2; the Navier—Stokes equations
(in a dimensionless form)

eV + (V- V)V =V +Vp=0, V.v=0 (xe2, t>0), (1.1)

initial conditions
v(x,0) = vo(x) (x € L20), (1.2)

and conditions at the free (unknown) boundary I; = 952;
v-nlr,=V,, T(v,pn—Hn|r, =0. (1.3)

Here V, is the velocity of the motion of the free surface I} in the direction of the exterior (with
respect to £2;) normal n, H is the doubled mean curvature of I}, negative for convex surfaces,

T (v, p) = —pl+S(v) is the stress tensor, S(v) = (g—;; + v

o )i i12a is the doubled rate-of-strain
tensor, [ is a unit matrix, and ¢ is a small positive parameter. T

The first kinematic boundary condition (1.3) means that at every point of the surface I; the
velocity of evolution of this surface in the direction n coincides with the normal component of the
velocity of the liquid. The second (dynamic) condition says that the tangential stresses at the free
boundary vanish, and the normal stress is equilibreated with a capillary force. According to (1.1),
there are no external forces acting on the drop £2;.

For a fixed positive ¢, problem (1.1)—(1.3) has been studied in [12—-15]. It has been shown that
the solution exists in a certain finite time interval, however, if £2( is close to a ball and vy (x) is
small, then it is defined for all positive values of time, and a limiting regime as t — o0, depending
on initial data, is rotation of the liquid as a rigid body about a certain axis moving with a constant
speed. It has been also proved that for 1 — o0, £2; tends to a circle in the case of two spacial
variables and to a certain equilibrium figure in the three-dimensional case.
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In [5] an important special case of a two-dimensional problem (1.1)—(1.3) is studied, namely, the
problem of motion of a ring filled with a viscous capillary liquid. In this case it turned out possible
to make a complete analysis of the behaviour of the solution for + > 0, without any smallness
assumptions on the data.

In a recent paper [4] by M. Giinther and G. Prokert the same problem (1.1)—(1.3) is considered
in a quasistationary approximation. This approximate model consists in the elimination of the terms
v; + (v - V)vin (1.1) by setting ¢ = 0 and of initial conditions (1.2) for v(x, ¢). Thus, the problem
reduces to the solution of a linear elliptic (for ¢ = 0) system (1.1) in a time-dependent domain £2;
whose evolution is determined completely by conditions (1.3). It has been proved in [4] that the
solution of this problem is determined in a certain finite time interval, or for all # > 0, if £2y is close
to a ball. Another proof of the local solvability of the same problem in the Holder spaces was given
in [17]. The discussion of the range of applicability of quasistationary approximation is contained
in [9].

In the present paper we prove that the problem (1.1)—(1.3) is solvable in a certain finite time
interval independent of ¢ € (0, &g), €9 < 1. This is done by comparing (v, p) with a quasistationary
approximation (w,r) and by making a better analysis of the corresponding linear problem than
has been done in [7, 8, 16]. In comparison with these papers, our arguments here are much
simpler. For the differences v — w, p — r written as functions of the Lagrangean coordinates
we obtain representation formulas (1.18) and estimates (1.14), (4.20), (1.20) which show that these
differences have order O(¢) fort > 1y, Vfo > 0. This provides justification of the quasistationary
approximation.

The relation between the Eulerian coordinates x = (x1,x2,x3) € §2; and the Lagrangean
coordinates £ = (&1, &2, &3) € §29 = £2 is given by the formula

t
x=§ +/ u(§, r)ydr = X, (€, 1), § e, (1.4)
0

where x and & are radii-vectors corresponding to the points x and &, and u(§, ¢) is the velocity
vector field written as a function of the Lagrangean coordinates. This formula determines a mapping
x = X, (&,1) of £2 onto £2, and of Iy = I" onto I; (sometimes, in order to avoid confusion, we
denote I by I7,(¢) and the normal n to I'; by ny,). By virtue of V - v = 0, this mapping is invertible,
and the determinant of its Jacobi matrix equals 1. It tranforms (1.1)—(1.3) into

eu, —Vu+V,g=0, V,-u=0, EeR, 1>0,

u(§,0) =vo(é), (1.5)
Ty (u,g)n — Hn|r =0

(condition v - n = V,, is equivalent to X, (£2) = £2;). Here

3
0
Vu:.sz(E A,-j—a ) ,
j=1 SJ' i=1,2,3

A;j is a cofactor of the element a;; (§,1) = §;; + fot %f dt of the Jacobi matrix of the transformation
? J
Xu’ Cl(é, t) = p(X(Ev t)’ t)v Tu(uv CI) = _f]I + Su(u)? and

3
ouj 8u,~
Sy (w) = (E (Aik —L + Aj —)) .
=1 08 08k ij=123
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It is convenient to modify (1.5) by introducing some additional terms into the Navier—Stokes

equations and by using the well known formula Hn = A, (t)x = A, ()X, (€, ) where A, (t) is the
Laplace—Beltrami operator on ;. Instead of (1.5), we consider the problem

6
eu; 4 £,() = Viu+ Vg = Y i @ (Xu(&. 1)),

k=1
Vv, -u=0, (EeR, t>0),
u(&,0) = vo(), (1.6)

T,(w,g)n — A, (1) Xylr =0

where @ (x), k = 1, ..., 6, are linearly independent vector fields in the space of vectors ¢(x) =
a + b x x of rigid displacement, for instance, ¢; = (1,0,0) = e;, ¢, = (0,1,0) = ez, ¢35 =
(0’ 07 1) = €3, ‘P4 = (O —X3, x2) (ps (x3’ ) xl)’ ‘P6 = (_x2’ x]30)9

6
AOEDY ( fg (1) @ (Xu(€', 1) d%“) PL(Xu (. 1)),

k=1

s = /QVO(X) () dx. (1.7)
Multiplying (1.61) by ¢,, (X, (£, 1)) and integrating over §2, we obtain (see details in [12])

6
—’"+Zkk(t)/ P @ dx =0
k=1 2

where

)»k(t)=/9 V(y,t)~¢k(y)dy—uk=/Qu(§,t)~¢k(Xu(é,t))d§—Mk,

and, as a consequence,

e d 6 2 6 2
EaZ,\m(r)Jcmxm(z)
m=1 m=1
ed 6 2
Ed—Z)\m(I)-‘r Z MO In(®) | @i oy dr =0.
k,m=1

Since A, (0) = 0, we conclude that A,,(t) = 0, i.e.

/g WE. 1) - 9 (Xu (€, 1)) dE = i

for all + > 0, so (1.6) is equivalent to (1.5).

We prove the solvability of this problem by comparing (u, g) with the solution (w, r) of the
same problem in a quasistationary approximation [4,17]. In the Lagrangean coordinates, the latter
problem can be written as follows:

6
—VaW A+ Vor 4+ £y(W) = Y e (X (€. 1)),
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Vo - Ww=0, &£, 1t>0, (1.8)

Tw(w,q)ny, — Ay () Xy (&, )| =0.

Here X, (§,1) = & + fot w(&,t)dt, Ay(t) is the Laplace—Beltrami operator on I3, (¢) = X, (1),
n,, is a unit exterior normal to I3, (¢), (4 are the same numbers as in (1.7) and

6

(M) =Y (/Q VEL D o (X (@ t))d$/> i (Xw (&, ).

k=1

The solvability of problem (1.8) on a certain finite time interval in the Holder spaces of functions
was established in [17] where the following theorem was proved.

THEOREM 1.1 Let I' € C3*! where [ is an arbitrary fixed positive non-integral number. There
exists such 7p > 0O that problem (1.8) is uniquely solvable on the time interval (0, Tp). The solution
satisfies the conditions

/Qw@, 0 0 (Xu(€, 0)dE = i, k=1,...6, (1.9)
and the inequality
6
sup |W(, l)|C2+l(_Q) + sup |r(~, l)|cl+l(9) < C<|H0|Cl+l([') + Z |/Lk|> (110)
t<Ty t<Tpy k=1

where Hj is the doubled mean curvature of I".

Here C!(£2) means a standard Holder space of functions (or vector fields) u(x), x € §2, with
the norm

1 l
lulciggy = Y sup DI u(x)| + [ulfy.
ljl<t £

l ) 4 4
(g = > sup |x — y[7 | DIu(x) — DIu(y)l.
|j1=11 %~y €2

and C!(I") is defined, as usual, with the help of partition of unity on I" and of local maps. The norm
in the space C”/Z(.Q x (0, T)) may be defined by the formula

lu| _ . N1@/2)

cli@xo,ry = sup |uC, tlcrg) +suplulx, )lg7)
1€(0,T) Q

but most often another equivalent norm in this space is used; it contains maxima moduli and Holder
constants of the mixed derivatives Df Dlu(x,t), 2k+|j| < I. Finally, by C(0, T; C'(£2)) we mean
the space of functions (or vector fields) continuous with respect to (x, ¢) € §£2 x (0, T) and having
a finite norm

sup [u(-, H)lcr ey
te(0,T)

(unfortunately, in [17] a misleading notation C(0, T'; C ! (£2)) for this space was used).
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We also consider two linear evolution problems:
eV, = ViV 4 0,(V)+V,P =0,
Vuw -V =0, EeR, t<T, (1.11)
V=0 =vo(§) —uo(§) = Vo(§),
Tw(V, P)n,|r =0

and
8"[ - ngn +£u}(n) + ij-[ = f(év t)’

anzg(%-at)v geg, t<T0’
Nli=0 =0, (1.12)

Iy Symny|r = b,
t 1
- Tormm, =, 400 [ nde| =+ [ BE 0
0 0
where [T, is a projector onto the tangent plane to I, (¢) at the point X, (&, 1), i.e.
I, f=f—n,m, -f).
By I1p we mean a projector onto the tangent plane to I” at the point &, i.e.
Iof =f—mno(ng - ),

ng being the exterior normal to I".
We prove the following theorems.

THEOREM 1.2 If I' € C3*, vy € C?>T(2) (x € (0, 1)) and V - V(&) = 0, IToS(Vo)ng| =
0, then problem (1.11) has a unique solution in the interval (0, Tp), and the solution satisfies the
inequalities

esup |V (-, Dlcae) +sup [V, Dleara(gy + 5up [P, Dl gy < clVolearagys  (1.13)
<t

<t <t
VG, DllL,2) < cllVolr,e) exp(—bre™ 1), b>0, te(,Tp), (1.14)
To
/ |V|C2+a(9) dr Lce |VO|C2+0¢(Q). (115)
0

If I' € C*t2, then also

Ty
/ |V|C3+"‘(F) dt <ce |V0|C2+a(9). (116)
0

The constants in (1.13)—(1.16) are independent of ¢.
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THEOREM 1.3 Assume that I' € C3* f e C(0,To; C*(2)), g € C(0,Tp; C'T(82)),
g&,t) = V - hE 1) + ho6,t), hy € C(0,Tp;C*(82)), hor € C(0,To; C(£2)),
b e C1H*U+0/2(1 5 (0, Ty)), b € C(0, Ty; C'T%(IM), B € C(0, Ty; C*(I")), and b, g satisfy
the conditions

b-ng=0, b(£,0) =0, g(£,0)=0.

Then prob}em (1.12) has a unique solution n € C(O, To; C*TH(2)), w € é(O, Tp; C'1*(£2)) such
that n, € C(0, Tp; C*($2)), and

esup 0. (-, Dlce (@) +supn(, T)|c2te(gy +8up |7 (-, T)|ci+e(g) <
<t <t <t

<t T

<c (sup I, Dlcaq@) + sup g (-, Dletrag) + € 5up [he (-, T)lcx(a)
<t <t

+e& sup |hor(x, T)| + sup [b(:, T)|crte(y +8up [B(, T)eite (1.17)
£2x(0,1) T<t <t .

1 2
+ 049/ suplb(&, )1 " + sup | BC, r)lcam)
r <t

for arbitrary ¢ € (0, Tp).
To prove the solvability of non-linear problem (1.6), we introduce new unknown functions
n=u—w-YVY, m=q—r—P. (1.18)

It is easy to see that (1.6) is equivalent to the problem

en, — V2N + L) + Vo = —ew, + L1(n, 1),

V-1 = La(n), §ef2, 1<,
Nli=0 =0, (1.19)
I1y Sw(mny | = L3(n),
ny, - Ty, )0y, — y - Ay ()X, — Xy)| - = L, )
where

Li(n,m) = (V2= V2)u— (V, — Vy)q

6
+ Ly (@) — L) + > sk (X (&, 1) — 9 (X (€, 1),
k=1

Lr(n) = (Vy —Vy) -,
L3(n) =11, (anw(u)nw - HuSu(u)nu)a

Ln.7) = ny - (T @ny = Ty @n, ) + 1y - (440 = A () X 1)

andu=w+V+n, g=r+P+m.
Applying Theorem 1.2 and using estimates of the coefficients of the operators V,, — V,, and
Ay (t) — Ay (t), we prove the following main result of the paper.
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THEOREM 1.4 If I' € C**®, then problem (1.19) has a unique solution n, 7 in a certain time
interval r € (0, T1), T < To, and the solution satisfies the inequality

esup 0. (-, Tlce(@) + sup N, T)lc2ta(y +SUp |7 (-, T)lci+e(gy < CE, (1.20)
<t

<t <t

with arbitrary ¢ € (0, T1) and with the constant ¢ independent of ¢.

This theorem guarantees the existence of solutionu =n+w+V, ¢ =7 +r + P of problem
(1.6) for t € (0, T1), moreover, the difference u — w is represented as the sum of a boundary layer
type function V (at + = 0) and of the vector field 5 for which uniform estimate (1.20) is obtained.
Hence, for t > 9 > 0 this difference does not exceed c(p)e.

Finally, we prove that the solution of problem (1.6) can be extended into the whole interval
t € (0, Tp).

The paper is organized as follows. In Sections 2 and 3 we study a linear problem

eV — V2V+Z(V) + Vp =f,

V.v=g=V_.h, xef2, te(0,T), (1.21)
V|l=0 =09
IoS(v)ng| = b, (1.22)

t t
n()'T(V,p)n()—no-A()/ Vd‘L" =b+/ Bdr
0 r 0

where £(v) = Z,le (fg V(€' 1) @&, 1) d";“’) o (&, 1), A is the Laplace-Beltrami operator on
I', and the corresponding model problem in the half-space R3 = {x3 > 0}. In the case of a fixed
& > 0, this problem was considered earlier in [7, 8, 16], in particular, in anisotropic Holder spaces
Ccrrelte/2(0 % (0, T)), and one of the most difficult technical points was the estimate of the
Holder constants of the time derivative of v with respect to ¢. For our purposes here a more modest
estimate of the norm

Yi(v, p) = esup |v¢ (-, T)[ce(s2) + sup|v(., T)|C2+a(_(2) +sup |p(., T)|cl+a(_(z)
<t <t <t

is sufficient, and it is proved by simpler arguments. For instance, we do not use the theory of Fourier

multipliers in the Holder spaces which is replaced here by Proposition 2.2 on the pointwise estimates

of the kernels (2.27) made in the spirit of [1]. The final results of Sections 2 and 3 are contained in

the following theorem.

THEOREM 1.5 Let I' € C** f e C(0,T;C%R)), g € CO,T; C*T(R)), h, «
C(0,T:C%(82)), ho, € C(2 x (0,T)), b € CTUFI/2(I" % (0,T)), b € CO, T; C'(I')),
B e C(0,T;C*(I")),and letb, g satisfy the compatibility conditions

b-ny =0, b(x,0) =0, g(x,0)=0.
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Then problem (1.21)—(1.22) has a unique solution v € C(0, T; C*(2)), pE C(, T; C*(£2))
with v, € C(0, T; C*($2)), and the solution satisfies the inequality

Yi(v,p)<c (SUP (-, Dlce(2) +sup g(, Tleite(g)
<t

<t T

+ sup |he (-, T)[ce(2) + supsup [hor (§, T)| + sup [b(-, T)|ci+e(r)
<t <t 2 <t

1 2
615072 supfb(e, )1 4 sup 16, )l crva e + sup |BC- ”'““”) 0
1" <t <t

We also consider the initial-boundary value problem for (1.21) with initial and boundary
conditions

V|r=0 = vo (&),
T(v, p)no| = a. (1.24)
THEOREM 1.6 Let I' € C* f e C@O,T;C%)), g € CO,T;C*"(2)), h; €

C(,T; CY(£2)), hor € C(£2 x (0,T)), vo € C* (), Hpa € CHUTI2( x (0, T)),
a-npeCO,T;C 4o (I')), and let the compatibility conditions

V-vo(x) = g(x,0), Hovo(x)|r = ITpa(x, 0)

be satisfied. Then problem (1.21)—(1.24) has a unique solution v € C(0, T; C*t(2)), p €
C(0, T; C'*(2)) with v, € C(0, T; C*(£2)), and the solution satisfies the inequality

Yi(v,p)<c (SHP (-, Dlce@) +sup g, Dlcite(g)
<t <t

+sup [he (-, T)[ce () + supsup [hor (§, T)| + Vol c2+e () (1.25)
<t <t 2

+suplaC, D)l ciea ry + £ supl Moals, -)]Eg{,t"‘)/”) :
T<t r

For a fixed ¢ > 0, problem (1.21)—(1.24) is considered in [10,11] and estimate (1.25) is proved in
[18]. A uniform (with respect to ¢ > 0) estimate (1.25) is obtained in the same way as the inequality
(1.23), and we omit the details.

In Section 4 we consider the problem (1.8), estimate the time derivative w, (&, #) and prove
theorems 1.2 and 1.3. Finally, in Section 5 we prove Theorem 1.4.

2. Model problem in the half-space
2.1 Construction of the solution
In this section we consider the model initial-boundary value problem in the half-space Ri (x3 > 0):

eV, —VV+Vp=0, V.v=0 (xeR}, t>0),

Q2.1

v =0,
=0
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ov; av3

=b;(x',t), j=1,2,
9x3  0xj |x,—0 / /

2.2)

=bi(x', 1) (X' = (x1,x) eR%, 1> 0),
X3:0

av3 , !
—P—I-Z@—i-A v3(x, 1) dt
0

2 2 . . . .
337 + 837. We assume that by, by, by are smooth functions decaying at infinity
1 2

sufficiently rapidly. Making the Fourier transform with respect to x” and the Laplace transform
with respect to ¢ defined by the formula

where A’ =

~ S .y
FLh =, x3,1) :/ / e E oS p(x/, x3, 1) dx’ dt 2.3)
0 R2

we reduce (2.1)—(2.2) to the boundary value problem for the system of ordinary differential
equations
v o, ,
—@—i—re v+i&p=0, j=1,2,

d*v . d
——3+r82v3+

dp _
dvs 2.4)
o~ ..~ dD3
&t +ibv+—=0 x3>0,

dxs

(&, x3,5) > 0, p(&,x3,5) > 0 (x3 > +00),

dvj+'$~‘ biEs), j=1,2
— 4 =bi(&,s =1,2,
d.X3 j 3x3=0 j\ss5), J
- 2.5)
28 B e
dx; s s 3(5,5),

where r, = /s + |£]2,Rer, > 0 forRes > 0.
We also consider the initial-boundary value problem for the Stokes equations (2.1) with

boundary conditions (2.2) and (2.5) replaced by

dv; 0
i ﬁ =aj(x/’[)’ J: 1,2,
a)C3 ij x3=0
2.6)
d
—p22 =a3(x', 1),
8)63 X3=0
dv, . ~ .
E—Flgjv:; x3:0:aj(sss)a ]=1727
» .7
~ dvs ~
—P+2a =asz(§,s)
3 lx3=0
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As shown in [10], problem (2.4)—(2.7) can be solved explicitly in the form

3
’17[(5,)63,5‘) ( 631) ai —rgX3+Z le(revé) o3

OGre. 1) “°
(2.8)
Z Si (re, ) ~ e TeX3s _ p—lElx3
e lENY  re— gl
3
P&, x3,8) = —a3 e 55 + 3 " Pi(re, )@ e, 2.9)
j=1
where (e + €D
re(re .
P;(rg, =21 ———, =1,2,
N T
e — &]
Py(re,s) = 2|67 ——2>—|
29 =28 56D 2.10)
OQ(re, |ED) = 1] + 16112 +37: |E1F — |EF = (s + IE) M (es, E]),
M(ss,|s|>=es+4|s|2r€_’:|é|

and R;;, S;; are elements of the matrices

E2(3re — €] §1523re — 15D i§1re(re —1&1)
§16Cr: — 15D £7(3re — |E) i&re(re — &)
—i&1re(re — &) —ibre(re — &) —1&|re(re + &)

—2r.&2 —2r:E1E —iEI0E+HEP)
S=| —2ré&& —2r:& = i&HEE+IEP)
—2i&|Elre —2i&|Elre  IEIGE+IEP)
Hence
=, 00 P . EP S Ry 1§D
- T . v =as — YT
dxs s x3=0 s 1 7e O(re, 1&1)

s |s|3 R
_“3<1+ D) s ED e b 2,157

It follows that the solution of problem (2.4)—~(2.5) may be considered as a solution of problem
(2.4)-(2.7) with @} = by, a» = by and

o SMGs gD o IEP re—IEl L 7
= b —_— . .
CTTRGED T PG IED T+ €] J; K

=, 5P €7 e8] N~
=5 (1- - b,
3( P, |s|)) P, [ED 7 + [E] ;léf !

2.11)




ON THE JUSTIFICATION OF THE QUASISTATIONARY APPROXIMATION 135

Po(s, &) = s M(es, [€]) + €] (2.12)
Making the inverse Fourier—Laplace transformation
~ 1 . ~
F'L ' h=h(d x3, 1) = ———— f e dg e h(E, x3,5)ds (2.13)
Qr)*2mi Jr2 Res=a2>0

we find that (2.11) is equivalent to

2 2
az(x/.t)zz V*% + B, +Z V-*a—b/3 (2.14)
) 8xj 3 77 ox

i=1 j=1 /
where

&P re — 18] v _ &l
P re + €| ' ! P
and the convolution is taken with respect to x” and 7.
The initial-boundary value problem for the non-homogeneous Stokes equations

<

v, —ViV+Vp=1fx,1), V-v=gx,1) (xeR, 1e(,1)),

V|, = Vo).
dv; d
W W i, =12 (2.15)
3)63 8)«1/' x3=0
dv3 ’ ! 1ot ’ 2
Spr2gad [utnd]  —BE) =@ e R 1e0.7),
8)63 0 X3=0

can be reduced to problem (2.1)—(2.2) by construction of auxiliary functions
t
vD(x, 1) = / dt/2 Ix—yt—1t)f(y, )dy +s/3 Fe(x —y, ) vy (y)dy,
0 R3 R
v, =V /R (Ee =0 -Ex =) (s0.0 = Vv i) ay, (2.16)
T

R

Here f* and Vé are extensions of the functions f and vy, respectively, into the domain {x3 < 0},
Lo(x,t) = '@rnte )32 exp(—e|x|2/4t) and E(x) = _#\XI are fundamental solutions of the
heat and Laplace equations, respectively, and y* = (y, y2, —y3). It can be easily seen that

evi) — v = (x, 1), v (x,0) = Vi),

V.v? =g —v.v

2 2 2
ev? = VVD £ VpPa. 1) =0, v |m0 = 157 |0 =0,
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and, if the compatibility condition g(x, 0) = V-vg(x) = V-v(D(x, 0) is satisfied, then v®|,_o = 0.
Hence, for v® = v —v(D —y@ — p® = p _ p@ we obtain the problem of the type (2.1)—(2.2):

ev? v 4 vp® =0, v.vd¥=0 xeR} re( 1)),

v =o, (2.17)
=0
3) 3) (1) (1) (1) o)
v v ov; v v, v
J 3 ’ J 3 J 3
=bi(x',t) — — , =1,2,
0x3 + 0x; ’x3:0 i (D) ( 0x3 + 0x; ) x3=0 ( 0x3 + 0x; ) x3=0 J

8U<3) ! 3
—p® 423 4 A// v§ )(x, 7)dt
0x3 0

(1) @)
5 vy s vy
8x3 3)63

x3=0

t
=bi(x', 1) + (p(z) — — A’/ vél)(x, 7)dt
x3=0 0

If f g have compact supports, then v(!) decays at infinity exponentially and v?, p® decay like
power functions, at least, like |x/|~!.

x3=0

2.2 Auxiliary propositions

We start with the proof of some auxiliary inequalities which are necessary for the estimate of
convolution integrals in (2.14). We consider at first the function (2.12). We observe that the functions

_ LG NN LG I
r 8 = IR T M ) = el

satisfy the inequalities

1/2 172
ci(lsl+16P) T <Rer(s, &) <Ir(s, ©) < ealsl + 1g7) 2.18)
r(s, &)
SR —————— 5 ¢y, 2.19
SSRGS e
es(Is1 + 167) < IMGs, )] < es1s] + I¢P) (2.20)

for arbitrary & € R? and s € C such that
Res +« |Ims| > —§ |€]?

where § and « are small positive numbers. Moreover, these inequalities (maybe, with other
constants) hold true if §; is replaced with §; = &; +in;, &;,n; € R, j=1,2,and

Inl < é11&] (2.21)
where §; > 0 is a small positive number. With the help of (2.18)—(2.20) we can evaluate the function
PO (s, (0) = sM(s, () +7(¢)°

where T > 0, (¢) = ({7 +¢DHV2 ¢ =& +in;.
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PROPOSITION 2.1 Assume that
Res +«|Ims| > a > 72

(see inequality (2.24)) and that condition (2.21) is satisfied. Then

c7(|s|(|s| +1g17) + 7 |§|3) <P s, ()

(2.22)
< Cs(lsl(lsl +1g17) + 7 |s|3>.
Moreover, if 8/t and 8,/+/a are small enough, then
c9(|s|(|s| +1g1) + 7 |s|3) <IPO(s = 820, (€D
(2.23)

< clo(|s|(|s| +1§12) + |€|3>-

The constants ¢; — cjg are independent of 7.

Proof. We start with the estimate of PP (s, |£]), & € R?, from below (the estimate from above is
evident). We consider the sum

j2182) , y2182) , _ _
Re LS ED ‘Im PSS _ Res + T40) + k| Im(s + TAD)|

M(s, |&]) M(s, 151)

where T = 1|£]3/|M|?, k1 > K, and k; is small. We have

o _wBlEP _a+ )V o SEIEP _ a+eH e
SminIMPE T 2da (sl+EP? T 2 Va2
if
2
T CS
SR Q- E— 2.24
Ja " 21+« @29
and, under this condition,
PO (s, E]) PO (s, |E))
ec— Kijim-—— =
M(s, [£]) M(s, |E])
r r
> (1+T)Res +ki(1 —T)|Ims| +4§°T (Re — k1| Im |>
r+ I r+|g|

1
> S Res + 1| Ims|) + 41&1°T (c3 — K1ca)

2 2 2
= C(ISI + 48] T) > §C<IS| + T (|s| +4[§] )>,
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provided that k; < c¢3/2c4. Hence,

P@ s, |£]) PO (s, &) t|g?
e—— + x| Im—=| > c||s| + s
M(s, |€]) M(s, |E]) M|
which implies
PO s, |€]) c T|E?
> +
M e | e ST

and gives a necessary estimate
1PT (s, ED] > c(sl(s] + &) + TIEP). (2.25)
Inequality (2.22) follows from (2.25) and from
1P (s, (£) — PO (s, D] < clnl(slE] + TIE1P) < edi(IslIE + TIEP),

if 81 is small.
Finally, to prove (2.23), we evaluate the difference

19
PO (s —82(0), (&) — PTD(s, (¢) = _52@/0 ap(% — 821(¢), (£) da

1 DM(s — 82(0),
:_82(§>f0 |:M(S—32)\,(§),({))4_(5_52)\(@-)) (s 24 (8) (C))] e

as
Since
2

52
Re(s — 824(¢)) + k| Im(s — 8200 = a — c&lE| = —8IE1* +a — 64—52 > —38lg?,

if 82//a < 28 /c, the functions r (s — 821(¢), (£)) and M (s — 820(Z), (£)) satisfy the inequalities
(2.18) and (2.20). Hence,

IPT (s —82(¢), (£)) — PD(s, (E)] < cbal€](Is] + €%

14+ k214 8 8 &
< s I 1P 4 e RejeP < o1+ k) max (—2, —2> (sl (s| + 161%) + €.
Ja T Ja' T
(2.26)
This implies (2.23), if 83/+/a and 8, /7 are small. The proposition is proved. a
PROPOSITION 2.2 The functions
Vi) = Flp-1 )Z3¢t)) k>0
’ Pe(s, €]’ ’
Vy = ol Pr+1(€, &) =0, (2.27)

Pe(s, |E]) (re + €D
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—1 M(es, &) pr—2(, €D
Pe(s, 1&])

where py is a homogeneous polynomial of order k with respect to &;, |&], satisfy the inequalities

9 k>29

Vax',t)=F 'L

ct.j)
CED

in which c¢(t, j) are increasing functions of ¢ independent of €.

IDLVi(x', )] < (2.28)

Proof. Since the number k can be arbitrarily large, it suffices to prove (2.28) for j = 0. We consider
the function V;(x', 1), t > 0. Using the Cauchy theorem, we change the contour of integration with
respect to s in the formula (2.13) for V| replacing the line Re s = a > 0 with

L(a) ={Res =a — k|Ims|}
and we introduce new variables £’ = \/EE, s’ = ts. This gives
k /
Vit = o (?) e e [ e e

where y' = x’ (%)1/ 2 ¢ = J/et. The number a > 0 is arbitrary because the parallel shift of the
contour £(a) does not change the value of the integral. We set

a=14+ Ket =al(t), K >1,

and, taking account of Proposition 2.2, shift the contour £(a(t)) to the left by é37|&|, §3 < 1, to
obtain

eSds
tay PO (s —83TIE'], 1E])

k
1 £ 2 s osl ’
’oy & iy’ £ =83l
Vi, t)_—(Zn)3i(t> /Rze Pr(E, £ e 1 dg

Finally, assuming that y; = y, = |y|/+/2 (which can be achieved by rotation of coordinate axes),
we deform the contours of integration with respect to &; and & (i.e. R) into the contours ¢; =
& +i811&l, j = 1,2, with a small §;. This is possible due to the Jordan lemma, because the
integrand decays at infinity and

. |yl
Re(i yj¢j) = _ﬁnj <0 for n; >0,
and this leads to
k
14682 /e\2 BRI &5 ds
Vit )= L <_) / O DT e g _
2r)’i\t/) Jr2 ta@ry) P —3831(C), (L)

(2.29)
(we observe that this device was used in [1]). Since, in virtue of (2.23),

PO =837 (6), DI = c(Isllis] + 16 + 7l& ) > clg P,
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we have

k.

Vi (x 1| < e—C(ly/|+«/87)|§| |g|k—2 dg fooea(f)—KV dr
2 JR2 0

[SE

C
< X k < k-
‘5 (Iy/l e t) (Ix’l -I—t)

Inequality (2.28) with j = 0 for Vj is proved. For V; it is obtained in exactly the same way. For
V3, instead of (2.29), we have

, 14687 (¢ : iy &~ ‘“‘”Z l&j1—83 7 (¢
Va(x', 1) = (271)31.(;) /Rze g Pr—2(¢, (£)) d§ -

/ M(s —83T(L), (¢))e* ds
tay P@(s—3831(¢), (L))

’

50, using the inequality |M|/|P™| < ¢|s|~! < ¢, we arrive at the same estimate (2.28).
If t < 0, then, by the Jordan lemma,

/ esfdis =0 f esfw =0
Res=a P (s, |&]) Res=a P (s, |&])

hence, Vi(x', 1) = Va(x', t) = V3(x’, t) = 0. The proposition is proved. |
COROLLARY 2.1 If kK = 2, then the kernels V; satisfy the inequalities
t
/ dt/ AT WV Dl < c@h,  m > 1L, (2.30)
0 R2

where

m
ATV (x' 7)) =Y (=) KCE Vi + ejkh. T)
k=0

is a finite difference of V; with respect to x; of order m, e; = (1.0), e; = (0, 1).

Indeed, we have

t m t
/ dt/ ATV, 1) da’ < Zcfn/ dt/ Vi (x' + ejkh, 7)| dx’
0 R2 k=0 0 |x’|<2mh

t h h am
a"V; it + ..t
+/ dt/ ‘/ / el g g,
0 wi>2mh o Jo 9

h™ dx’
dt 5 ¢ dr T S < ch.
k 0 |x"|<2mh (lx +ejkh| +71) |x"|>2mh (|x I + )t




ON THE JUSTIFICATION OF THE QUASISTATIONARY APPROXIMATION 141

2.3 Estimates of solutions of Problems (2.1), (2.2), and (2.15)

THEOREM 2.1 Assume that b1, b, are smooth functions decaying like power functions as |x'| —
oo together with their derivatives and satisfying the conditions

bi(x",0) = by(x",0) = 0.
Further, let

t
By(x' 1) = b3(x', 1) + /0 B(x', t)dr
with b3, B possessing the same properties. Then the solution of problem (2.1)—(2.2) constructed in

Subsection 2.1 satisfies the inequality

SSUP[VT( 'C)](a) + Sup[v( T)](2+a) + Sllp[p( .L.)](l+a) <

<t
(Zsup b, DI + 62 Zsupb(x )](0,) + supl B r)]“")) 2.31)
k=17~ j=1

Proof. We consider the solution of problem (2.1)—(2.2) as the solutions of (2.1)—-(2.6) with a; =
b1, ay = b and with a3 given by formulas (2.11) and (2.14). Under our hypotheses, these formulas
take the form

|s| IElig o~ Mes. gD ( &2 21€P° )2. ~
b B — _ .b.’
+Z sIED T R G e Pe(s.ED)  Pe(s. [ED) (e + 1) ;’5’ !

or

a3(x/,t)=2/ dr/ W -yt 20N

dyj

+Z/ df/ Wit =yt = )abiﬁy D a4y + by, 1) (2.32)

Vi

+/ dr/ Vx'—y . t—1) B, 1)dy
0 R2
with the kernels W, W;, V defined by

S 2P ’
Pe(s.[E])  Pe(s. [ED (e + IE])

l§]|‘§| ’ V:F_IL_I M(85»|§|).
Ps(sv |é|) PS(S3 |§|)
All these kernels satisfy inequalities (2.28) and (2.30), so the integrals in (2.32) are convergent, if

Vby, B decay at infinity like power functions. Moreover, from (2.30) and from a general result due
to K. K. Golovkin (see [2, 3]) it follows that

wi=rF'L"!

suplas - 1)1 < (Zsup b, DI+ suplBC. DI, (2.33)

=1 <t
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Solutions of the initial-boundary value problem for the Stokes equations with boundary conditions
(2.6) were estimated in the paper [18]; in particular, Theorem 4.1 of this paper yields the following
inequality for the solution of Problem (2.1) and (2.6):

& sup[ve (-, t)](“)Jrsup[V( 2l +"‘)+sup[p< r)]“*"”

<t <t <t
(49
(Zsup[ak( r)]“*“‘)+e B Zsup[a,(x Mo ) (2.34)
1 T<t i=1 R2
Estimate (2.31) follows from (2.33) and (2.34). The theorem is proved. O

THEOREM 2.2 Letf, g, vo, b1, by be smooth functions with compact supports defined for ¢ €
(0, T') and satisfying the compatibility conditions

dvg;  0vo3

V-vo(x) = g(x,0), =bj(x',0), i=12,

a)C3 3)(/' x3=0

moreover, let
t
bé(x’,t)=b3(x’,z)+/ BG, mydt  g(x,1) =V -h(x, 1) + ho(x, 1)
0

where b3, B, h, hg are also smooth and have compact supports. Then Problem (2.15) has a unique
solution in a class of bounded continuous functions with a finite norm

Yr(v. p) = e suplvi(- 1% +sup[vt( z>]<2+“)+sup[p< r)]“*“’, (2.35)

and for arbitrary t < T

Y (v, p) < (sup[f( z)](“)+sup[g( z)]“+">+[v ]<2+"‘)+esup[h( r)]“’) (2.36)

+£ D'~ sup sup |ho (x, r)|+Zsup b DI

<t R% k=1 <t

e ¥ Zsup[b o) + supl B, r)]“") Fi
j=1 &

where D = sup, _7 (diam suppho(x, 7)).

Proof. We obtain the estimate (2.36) for the solution of Problem (2.15) constructed above. If the
extension of f and vy into the domain x3 < 0 in (2.16) is made in such a way that

(¢, DI < el 0150, IVGIe™ < elvols™,

then, as it follows from the estimates (4.9) and (4.11) in [18],

2
Z(SSHD[V(”( r)]<")+sup[v(”( r)](2+°‘)>+sup[p(2)( f)](”“)

j=1 T<t T<t
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(sup[f( )1 + suplg (-, r)](‘+°')+[ ](”“) (2.37)

<t + <t

~+e¢ suplh; (-, r)](a) +eD! % sup sup |hoe (x, r)|)

<t <t R3

Finally, applying Theorem 2.1 to Problem (2.17), we obtain

Y, (v®, <3)><C(Zsup[bk< DI + 675 Zsupb<x Mo + suplBC, D))
k=17<! j=1 R?

i
+E sup[v¥) (., f)](2+a)+sup[p(2)( .L.)](1+01)_+_8 : ZSUp (Vv (! 2;)))~
] 1 <t ] . RZ

But the last term, in virtue of interpolation inequality

8% sup[Vu(x', )](;t‘;) c(ssup[u(f)( r)](a)—i-sup[u( r)](2+a)) (2.38)

R2 T<t T<t

(see [6, 18]) can be estimated by the left-hand side of (2.37). Hence, putting all the estimates
together, we arrive at (2.36).

The uniqueness of the solution of Problem (2.15) can be proved in the same way as in [18]. Let
(w, s) be a bounded continuous solution of a homogeneous problem with a finite norm (2.35) and
let ¢ € Cg° (R3) be a function equal to one for |x| < 1 and to zero for |x| > 2. The functions
Wr = ¢rw, Sk = {rs where {r(x) = {(x/R) satisfy the equations (2.15) with

f=—2VWVig —WVg +5Vir,  g=Vig-w=ho.

ad a /
bf:“”%“}fﬁ L =20 lR B = (Vs Vi + wsV )

x3=0 X3 x3=0 x3=0

Clearly, wg, sg are expressed in terms of these functions as indicated above. Since w, s and their
derivatives are bounded, estimate (2.36) gives

Y;(Wg, Sg) <cR™* =0, as R — oo.

Hence, w =0, s = 0, g.e.d. The theorem is proved. O

3. Proof of Theorem 5

We start with the proof of the estimate (1.23) by a standard method of Schauder; the proof is very
close to that of inequality (1.3) in [18]. We estimate the solution in a small neighbourhood of an
arbitrary point xo € £ assuming (without loss of generality) that xo = 0 and that Ox3-axis is
directed along the interior normal —ng(xo).

Let

=¢(x), x' eBy={x'| <d}, ¢ € C* By,
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be the equation of the surface I in the neighbourhood of the point xo = 0. Then the normal and the
Laplace—Beltrami operator on I are defined by

no(x)=< o, oo 1 )
VIHIVOUOR VIHIVOEHR I+ Vo)

and
~0)

2
8ap Of
AOf_ <\/g(0 3xﬁ>

0
where g© = det(g;ﬂ))%ﬂﬂ,z,
©_or 9

r
gaﬂ = axa @ = 801,3 +¢xa ¢x,g’ r= (xla X2, d)(x/)),

and §g,)3) are elements of associated matrix to (gé%))a p=1,2, 1.€.

~0) 0) ~0) ) ~0) _ ~0) ©0)
811 =8xn: 8x»n =& 812 =81 = 812

We ‘rectify’ I" near the origin by the transformation y = Z(x):
yi=Xxi, y2=x, y=x3—¢x"), x' €K},
and we set
u=¢gv, q=4¢4p

where ¢ (y) = ¢(y/r) and ¢(y) is the same function as in Theorem 2.2. By virtue of (1.21) and
(1.22),

eu —Vu+Vg = +f +muq),

Vou=gg +g +m@), u 1=0 =0
. (3.1)
Siz(u) o = —(& bi + b)) +m3i(w), i=1,2,
yY3=
t t
Moo+ [ Aneod| | =bo+ 5 s+ [ (Bg + 8 +msw)de
0 »3=0 0
where f| =f — £(v),
f = _2/V\V$§r _V/V\ZCr + P/V\Cr,
g/ =V e;"v
, g, gy .
by =| — — ¢y, (v -19) + (V& -1g) v; — 2n:(VE, - o) (v - 1g) i=1,2,
dyi ay3 ¥3=0’
b =2(Ve - L

3=

B =mo- (A& V) =& AV)

y3=0



ON THE JUSTIFICATION OF THE QUASISTATIONARY APPROXIMATION 145
m;(u,q) = —v(V? = V)u+(V-V)q,

ma(u) = (V — V) -u,

m3i@) = (Sia) + Sy mo): ) = noi (mo - Swymo)

)

3=0 (3.2)

ma(u) = 2(533 (W)~ no - S@no)

y3=0

ms(u) =

_0

We observe that all the functions in (3.1) vanish for |y| > 2r, and the leading coefficients in the
expressions (3.2) vanish at the origin. Hence, inequality (2.36) implies

e sup[uy (-, 7)11% +sup[ll( 2l +"‘)+sup[q( r)]“*‘”

<t <t <t

< er (e suplue (. )1 -+ supluC. TS+ suplg (. DI

<t <t

+c<sup[;rf1( r>]<°‘>+sup[;rg( )18 +"‘>+ssup[§rh,< r)]("‘>+esupsup|r;rh0t(y 7|

<t <t <t R%
+Zsup[;rb,( Ol + suplgy b, DI + Zsup[grbl](o,) + suplé; B r)]("‘))
i=1 <! i=1 R?

+c(r)( Z supsup|D]V|+supsup|Vp(x r)|+supsup|p(x t)|
0<]jI<2 T 2

1+o
+ & sup sup |v¢ (x, T)|+8% sup[v(x, )](Ot))>
<t 2 r

Choosing r so small that cr < %, we eliminate the first three terms in the right-hand side. A
similar estimate can be obtained in the case dist(xg, I") > r. Combination of these two cases gives
the inequality

Y(t) =esup|ve(, T)lce() + sup V(- Dlc2te(oy + sup PGy Dletve )
T<t (3.3)
S c(N(@) + Yo (1)),

where N (¢) is the sum of norms in the right-hand side of (1.23) and

Yo(t) = Z supsup|D){V(x,t)|+supsup|Vp(x,r)|+supsup|p(x,t)|.
0<|j|<2r<t 22 <t 2 <t 2

By virtue of interpolation inequalities,

Yo(r) < 1Y (1) + c(er) (SUP IVIlz,(2) + supsup |p(x, t)l) (3.4
T<t <t 2
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where ¢ is an arbitrarily small positive number. The function p(x, ¢) can be considered as a solution
of the Dirichlet problem

V2p=V £+ Vg —e(V-h +hy), xe€R,

8V 1 t
p‘ =<2n0~——n0'/ ondr)‘ —b—/ Bdrt,
r anop 0 r 0

and it satisfies the inequality

sup |p(x, )| < C<Sup IfCx, )| +sup [Vg (x, )| + e(sup [hy (x, £)| + sup |ho; (x, 1)])
2 2 2 2 2

(3.5)
t t
+ sup |b(x, 1)| +[ sup |B(x, t)|dt + sup |Vv(x, )| +/ sup |Aov(x, T)| dr)
r 0o r 2 0 r
(see, for instance, [10], Lemma 5.1). Finally, we have the energy relation
e d ’ 1 2 6 2
> V) + 5 ISMIE, ) + ;\ v d|
t
= / f—Vg) ~vdx+/ (b~170v+(b+/ Bdr)(v-no))dS
Q r 0 (3.6)

t
+/ (V(x,t)-no(x)) dS/ 1o (x) on(x,r)dr—i—/ pgdx.
r 0 2

By virtue of the Korn inequality (in the form presented in [13]),

1 2 & z_¢ 2
5||s<v>||L2<Q)+;\/gv-¢kdx\ > S VI )
so (3.6) implies
d 2 2 ! 2
e IVIP + vl <c1(N<t>+ Yo(f)df)
0

and
t ¢ T 2
2 < & / e HO (N + / Yoe)dr')” de
€ Jo 0

C1

t 2
< (supN(r)+/ Yo(t)dt) .
C \r<t 0

From this inequality and from (3.4)—(3.6) it follows that
t
o <c(No+ [ Howar).
0

Yo(t) < ¢N(t), and finally, taking (3.3) into account we arrive at (1.23).
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As for the solvability of problem (1.21)—(1.22), we prove it making use of Theorem 6. This gives
us the possibility to restrict ourselves to the case f = 0, g = 0, b = 0, b = 0 and to consider the
problem

eV, —VV+Le(W)+Vp=0, V-v=0, xe, te(,T),

3.7
HOS(V)no’F:O, (3.7)

t t
ng - T (v, p)ng — ng - AO/ vdr :/ B dr,
0 0

with B € C(0, T; C¥(I")).

For a fixed ¢ > 0, the solvability of this problem in anisotropic Sobolev spaces was already
established in [16], Theorem 5.1. Using similar scheme of the proof, we construct for arbitrary
B € C(0,T; C*(I")) a couple of functions (u, ¢) (u € C(0, T; C*H¥(2)),u, € C(0, T; C*(2)))
q € C(0, T; CH(£2)), satisfying (3.7) with B replaced by

B, =B+ LB,

where L is a linear operator in the space C(0, T; C*(I")) such that I + £ has a bounded inverse.
This immediately implies the solvability of the problem (3.7).

For the construction of u, g, we introduce on I" and in 25, = {x € £2: dist(x, I') < §/2} a
smooth partition of unity {£;(x)};=1,...,n subordinated to the covering of £25/, with the balls K; =
{lx—&/| < 8},&/ € I', and we assume that there exist smooth functions 5;, also with supp; C K,

such that nj §; = ¢j. Let T; be a tangent plane to I” at the point &; and let (y{, y5, y3) be a Cartesian

coordinate system with the origin in £/ and with y‘3i - axis directed along the interior normal —ng(£7).
In the d-neighbourhood of the origin the surface I" can be given by the equation

=¢/01, v, ¢l e By,

where By = {y/ y]j2 + yéa < d}. Coordinates (xp, x2, x3) and (ylj, yg, y3j) are related to each other
by the transformation

Y =Ujx =) =07 ),
where Uj; is an orthogonal matrix. The mapping
x=Y(@)=WUH" 0z, (3.8)

where Zj(yj) = (y{, y{, y3j+¢j (y{, y{)) transforms the semi-ball |z—$j| <d, (z—§</)~n(§j) <0,
into a subdomain wy C £2 containing K; N £2. Since V/ = 0 at the point y] = 0, y; = 0, the
Jacobi matrix J; of the transformation (3.8) satisfies the condition

I =1
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In the half-space R; = {(z — £7) . n(¢/) < 0} we consider the problem

evl =V 4+ Vp/ =0, V.v/ =0, zeR;, 1€(.T),

v/ =0,
t=0
. . . 3.9
msiymoeh| =0, G2
j
no(SJ)~T(V],Pj)no(fj)—no(SJ)~AJ/ v/ dr , =/ B/(z, 7)dr,
0 i 0
where I1/ is a projector onto T;, AJ is the Laplacean on T, and
Bi(z.7) = B(x.7) ¢ ‘ . xeKk;nTr.
(z, 1) (x, 7) g (x) i1 X f
Further we set
W n=vieoH)™ glx.n=plowH"
u'(x, 1) = Zr/j(x) wix, ), ¢, 1= an(x) g’ (x, 1),
J J
and we define (u”, g”’) as the solution of the problem
eu/ — V' 40" + Vg = —eu, + VU — L) + Vg =T,
Vu=-V.u=g, xef2, te(T7),
u// :O
=0 ’
Mo Su” ‘ = Iy S/ ‘ — b,
0 (u)nop 0 (ll)nor
T, q" ‘ = —ng-T(.q' . ( h.T /’ J J)‘ =b.
no - T(",q"mo| =-—no-T(u q)no+]Zn,(X) mo@) T phmoEh)| o,

Thenu =uw’ +u”, g = ¢’ + ¢” is a solution of (3.7) with

Bi=8 - (nox) - Ao(n;u)) = mo(& ;- (A7) o (¥)) 7)) +mo(x) - Aou”
J

instead of B. Hence,

£B == (no() - Aol w)) = mo(€/)n; - (AT 0 (Y1) ™)) +mox) - Agu”".
J
Our main objective now is to prove that there holds the estimate

t
sup | £ Blcery < &) sup |B(-, ©)|ce(ry + c(&], 8)[ |B(-, T)lce () dt (3.10)
<t 0

<t
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with arbitrarily small ¢/ > 0. Then the existence of the bounded inverse operator (I + L)~ 1is

evident.
At first we estimate u”, ¢”. By virtue of (3.9), we have

£, 1) = —L) + Y q; Vi + Y _nj(V =V g/ +2) Vul Vy;

J J J

+Zu1v m+Zm(V2 vhHu,
Zu/ Vij =Y 0j(V—=Vj)-ul,

J

=Y (T V) (@ -m) = 0 (11w

7 / 7 on
+ 30, (117 ;) moe!) — Mo Swmo()) |
J

on; : . . .
b=-23 L/ o)l + ;Uj(no(éj) ;@) mo(e)) = mo() - S@H o) )|

where V; = J jTV and

Siu) = (Vju) + (Vi)' = i((l) g 8”")

J J J P ke Pma o ko123,
We observe also that, since det J jT =1, g(x, t) can be written in the form

g=V - -h+h,
h=>"n(Jj—Du, hy==> Vni(Ji—DHw =) uw/ - Vn;==>"Vn; - Jju.
j j j j

Making use of the fact that V;

o =V, of Theorem 6 and of interpolation inequalities (applied to
7=

7, pJ), we obtain the estimate for (u’, ¢")

e sup [u; (-, T)lce(e) + sup [u” (., r)lcz+a<g)+sup|q Gy Dlette(g) <

<t <t

< (8 + 1) max (e suplv] (-, DIE + suplv/ ¢, DIE T + suplp/ ¢, DI )

J T<t <t T<t

J T<t R T<t

+c(8, sl)max(supsup v/ (z, r)|+supsup|pf(z r)|)

and, since the principle part of Ag at the point £/ coincides with A/, a similar inequality holds for
LB:

sup | £Blceqr) < (6 + 1) max(e suplv] (. D) + suply/ €, DIFT +suplp/ (. Dl ")

J T<t
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+c(8, sl)max(supsup|vf(z 7)| +supsup|p’(z 1:)|>
J T<t R Rj

The first term in the right-hand side can be estimated by the inequality (2.31) for the problem
(3.9). The function p’(z, t) is harmonic in R; and satisfies the boundary conditions

j jy, o/ ioni i
p‘r,:<2“(5)'W‘“(‘§"A fovdr)

t . .
. _/0 B/ dt Epé(z,t)
hence,
sup | p/(z,1)| < suplpo(z 1]
R; T;
t t
< v/, t)](2+°’)+c(8z)[vf( t)](“) /([V( r)](2+“)+[V( r)](“)) dr+/ sup | B (z, 7)| dr.
0 7

Making use of the elementary estimate
v/ (.0l < / Vi Dl de=¢7! / eviC. g dr
0 0
and of (2.31), we obtain

suplpj(z, 0| < e[v/ (., Dlg (2+°’) —i—c(ez,e)/ ( [B/(., t)](“) + supIBj(z, r)l) dr

/ SuPIP’(Z )| dt < c(ea, &) f ([Bf( r)]‘“>+sup|Bf'(z,r|) dr
0 Tj

and, finally,

t t
sup v/ (z,1)| < e ' | esup|vi(z, t]dr <e! sup |V2v/ (z, T)| + sup [V p/ (z, 7)| | dr
T

R; 0 R 0 \R, R,

N

t
ce” f ([v/( r)](2+a)+[v/( r)](“)) dr —i—cs*l/ ([fo( r)](“)—i—suplpj(z, ‘L')|> dr
0 0 Rj

< cle) / <[Bf( Ol +sup | B/ (z, a') d
T;

If we introduce in C%(I") the norm
IBllcery = mjax |B Ejlce Ty
and put all the above estimates together, we arrive at the inequality (3.10) for the norm || LB||ce(r).

More careful arguments give for ||£|| a bound independent of ¢.
The proof of Theorem 5 is now complete.
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4. Proof of Theorem 2
4.1  Estimates of coefficients of operators V, and A, (t)

As mentioned in Section 1 the mapping x = X, (§, t) where X « 1s defined in (1.4) transforms the
operator V = (axl 0 w = AV = (Zk 1 Akj 95 )j=1,2,3, if u satisfies the equation

> 3xy 8x3
V, - u = 0. The cofactor Ax;j of axj = &;j + fo a”" dt has the form

Agj = dkj + Bijs

where By; is the sum of homogeneous linear and quadratic functions of b, = fot LIRS

Sometimes, in order to avoid confusion, we denote Ay; and By; by A(”) and B,E';), respectlvely.
There holds the following evident proposition.
PROPOSITION 4.1 Ifu,w e C(0, T, Ckt142(2)), k =0, 1, ..., then

SU.p|A(u)( 'L') A]((j))(’ T)lck+a(9)

T<t

t t t
C/ |ll — W|Ck+1+a(9) dr (1 + / |ll(', T)|Ck+1+o((g) dr + / |W(, 'L')|Ck+1+a(g) df)
0 0 0

In particular,

t t
sup |A (-, ‘L') - 8kj|Ck+a(_Q) < Cf |ll(-, ‘L’)|Ck+1+a(9) dr (1 + f |ll(-’ ‘L')|Ck+1+o((g) dt)
0 0

<t

Moreover,

A(”)( [)

t
<c |ll(', t)lck+l+a(9) (1 +/ |ll(', T)|Ck+1+ot(9) dl')
Ck+0t(_Q) 0

Let I,(t) = X,(I') and let (51, n2) be local coordinates on the submanifold I C I'. The
normal n, to I, (#) = X, (I"") and the Laplace-Beltrami operator A, (¢) on I',(¢) are defined by

Iy, X Ty,

n, =+ """ “.1)
[Ty X Ty |
and
L& 98w O _ % o,
At f = — — o h ,
! g%z:l 910 /3 g Q;I " g, 0p ﬂ; P o
where
t
K. 2. ) = X6, ) =&tm)+ [ @O 42)
§=E(1.m2) 0

oM, 12, 1) = w0, n2), 1),
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gglg) = 337" . 337;, Sup are elements of the associated matrix to
o

g = det(gapla.p=1.2> 8ap
(8ap)a,p=1,2,1.€.

811 = 822, 822 = 811, 812 = 821 = —&12;

gaﬂ 1 2 el g,aﬂ
hag = 58, hp=—5 28
8 V8 Lo 95 8
We set gop = a‘;‘ﬁ  hag Bg‘;ﬂ Jhg = a;lf and
2

9
A(t)—Zhaﬁagaag Zhﬁ@.

It follows from (4.2) that

or " dw or, " dw 1)
gop =8+ | dr 4 2 / g [ 2ar, @3
e Jo 877/3 877/3 377a 0 0Ny o 91 ng
arg(n) dw(n.t) dry dw ow " Yo ow )
8up = . . + — —dr 4+ — - —dr,
e dng ang e e Jo Ong g Jo 9N
4.4)
arg  Or
(©) 0 0
8p = 77— To=&Wm,m).
7 Ong Ing
The following proposition is an easy consequence of formulas (4.1)—(4.4).
PROPOSITION 4.2 Assume that
t t
/ |ll(', T)|Ck+l+a(_(2) dT +/ |W(, 'L')lck+l+oz(_(2) dT < 9, (45)
0 0
where 6 > 0 is so small that |r;, x r;,|and g(», t) are strictly positive. Then
(u) (w)
Do) =MD e (80 D = 88 6| T L ACH -

t
< C/ |u — W|Ck+l+a([‘/) dT
0

and if £ > 1, then also

t
(u) (w)
‘hﬂ o hﬂ Ck71+a(1"/) < ¢ 0 u<$()’ f) - W(S(), f) Ck+1+u(1v) T
Moreover,
S (1) — o (1) h — g <cluE,n - we.n
af af Ck+"‘(1"’) af af Ck+"‘(1"’) = ’ ’ Ck+1+oz(r/)’
W _ jpw _ ,
i =] ey S EOD = WEOLD| kL
a |
—n clw(E&Q),t .
at w Ck+"(F’) (é() ) Ck+l+ot(1—~/)
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COROLLARY 4.1 If u, w satisfy the condition (4.5) with £k = 1, then

sup| (V2 = Va) v 0| o sup| I Su(v) my = 1T, S my

iy <t clre(r)
+ sup|ny - Su(V) ny — my - Sy (V) My crrary T sup AuV — Ay cer’
S esupV(, Dleziag) /0’ uC, 7) = We, Dlcrrae) dr, (4.6)
t
?BW — V) p(, Dlee(e) < csup|p( T)|civeg) [0 lu(-, 7) = W(, T)lci+a(g) dr. @.7)

PROPOSITION 4.3 There holds the estimate

Lt (1)
&5 suplf Vully ) < (ssup|f,|+2sup|f|) sup |Vl
r Gr Gr Gr (48)

+csup| f| (5 sup [u; (-, t)|ce(2) + sup u(-, t)|c2+a(g)>
Gr

Gr t<T
where Gt =T x (0, T).
Proof. Indeed, the left-hand side of (4.8) does not exceed
it lta i Lo

Lo ) Lia (
72 sup[f](o o) sup|Vu|+sup|f|e 2 sup[Vu](0 T -
Gr

Evaluating the Holder constant of Vu with respect to ¢ by (2.38) and taking into account that

14a

rerem=seol< ([ e ) @uin)

and, as a consequence,

I4a l—a
2

li ( 1+m) 5
“supl oy < (esuplf) © (2su151) 7
GT GT
we easily obtain (4.8). The proposition is proved. O

Inequality (4.8) may be used for the estimate of the Holder constant of I7,S,(v)n, —
11, Sy, (v) n,, with respect to . We have:

(e

©,1)

14a

ez sup[H,, S, (V)yn, — IT,, Sy (V) nw]
r

t
< c(/ sup‘V(u(é, ) —w(é, r))‘ dr + esupsup|V(u, v) — w(§, r))D
0o r <t G,

4.9)
x (e sup Ve - Dlcee) +sup IV Do )

<t
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4.2 Quasistationary approximation

Assume that I" € C*t. Then, according to Theorem 1, there exists a unique solution of the problem
(1.8) defined on a certain finite time interval (0, 7Tp) and satisfying conditions (1.9) and inequality
(1.10) for £ = 1 + «. It follows that

T
/ |W(a t)lc3+a(_(2) de <T sup |W(, Z)|C3+"‘(.Q)
0 te(0,7)

6
< T (IHolezsoqry + Y Iukl), T < To.
k=1
Lett € (0, Tp), t € (1, Tp) and

wO(x, 1) = w(X;l(x, o), t), X e,

Clearly,

3
a )
=D ApE 0 Waf 2
J

£=Xy' (x,7)

Differentiating this formula we can easily show that w®) € C37%(£27) and that

sup (WO, D)esrage < (4.10)
te(t,Ty)

where ¢ depends on Ty and on |Ho|c2+e () + Z,le [1ek].
We need also the estimate of the time derivative w, (&, 7).

PROPOSITION 4.4 If I' € C*t® thenw, € C'T¥(£2) and

[w: (-, )|ce ) < ci, (4.11)
where ¢; depends on the sum of norms sup, _, [W(-, T)|c3+a(g) + 7 (-, Dl c1+a(o)-
Proof. Differentiation of (1.8) and (1.9) with respect to ¢ gives

— V2W; + Vyre = (Vi - Viy + Vi - Vo) W — Vyr = £, 1),

Vu) - W :—Vw~WEg($,t),

Tu Wi | = =Su(w, 1y = Tuw, i + (Au@w+ 40X, ) =an, &1

0
/wt@,z)«pk(xw(s,r))ds:—/ WD) -y (X, 1) dE =
2 Q t
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where 5
. JdAg; 0
= (S %),
k=1 ]/ j=1,2,3

9
n, = Enw(é,t),

3
. 0Ag; dv; 0A;j dug
S’”(V)Z(Z( ot 3&; o AE; . '
J J k,i=1,2,3

k=1

Clearly, f € C!1T%(2), g € C***(£2), a € C'F¥(I"). In the Eulerian coordinates, (4.12) takes
the form
— VAWV =f, V-w =g, in 2,0) = Xu(2),

TwW.,r'hn=a on I, = 092,0), @.13)

/ wogx)dx =v,  k=1,..,6,

2y
where

) = f(X;‘(x,z),t), X € 2,).

Inequality (4.11) follows from (4.10) and from the Schauder estimate for the problem (4.13). The
proposition is proved. O

4.3 Solvability of the problem (1.11)

We proceed to the proof of Theorem 2 and consider at first a more general problem

eV, — V2V +£,(V)+ V, P =Hf,
Vw - V= 8,

4.14
v =V, cca @19

Tu(V. Pymy| =a,
I

on a certain small time interval (0, #1).

PROPOSITION 4.5 Assume that I' € ~C3+°‘, a € (0,1, f € @(O,T;C“(Q)), g €
C(,T:C'*(2)), Vo € C*(22),a € C(0, T; C'T(I")), Mya € CH+0/2(I" x (0, T)),
and that there are satisfied the conditions

V-Vo()=g(.,0), Vo) o= Iy a(§,0)
and

where h, h¢ have the time derivatives h; € C‘(O, T,C%(82)), hgy € C(0, T, C(8£2)). There exists
such #; > 0 depending on w (see condition (4.17)) that problem (4.14) has a unique solution
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V e C(0,1,C%82)), P € CO, t;, C't%(£2)) such that V, € C(0, 1, C*(£2)), and it satisfies
the inequality
Y;(V,P)<cN@), te€(0,n), (4.15)

where

Yi(V, P) = esup |V (, T)|ca() + sup [V, )l c2ta(g) + 5up [P (-, T)lca (),
<t <t

<t T

N (@) = sup [f(, T)|ce(2) +sup |g(, T)lcite(g) + sup [h: (-, T)|ce(g)
<t <t

<t T
lia (42)
+ supsup |hor (&, 1)| + sup [a(, T)|ci+ery + &2 sup[ﬂw a] )
<t Q <t r ©,1)
Proof. If ny, - ng > 0 (which is the case for small 7), then we can write (4.14) in the form

eV, — VXV 4+ L(V)+ VP = M (V, P) +f,
V.-V=MW)+g,

A4 =V,
=0

Iy S(V)ng|r = M3(V) + Iy ITy, a,
ng - T(V, P)nglr = M4(V) +a-ny,

where

6
Mi(V.P)= (V3= VOV +(V-V,) P+ /Q [V(S/, 1) o€ 9 (8)
k=1

—VE 1) 0 (Xuw(E', 1) o (X (&, t))} dg’,
(4.16)
MyV)=(V—=Vy,)-V=VH, H=-A")TYy,

M3(V) = Moo S(V)mo = My Su(V)my ),
Ma(V) =mp - S(V)ng —my, - Sy (V) my,.
and AT means a transposed matrix. In virtue of (4.6), (4.7), and (4.9),

sup [M1(V, P)|ce(2) + sup [M2(V)|ci+e(g) + sup [M3(V)|ci+e(g) + sup [Ma(V)|ci+e(ry
<t <t <t <t
14

14+a
telF sup[HoM3(V)](Ozt) + e sup | Hy (V)| coc)
r ,

t
< c([ IW(, T)[c2te (o) dT + € sup [W(., t)lcz+a(9)) Y:(V, P).
0 T<t
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Therefore, if #; is so small that

1 1
CC/(/ |w(-, T)|C2+m(9) dr +¢ sup [w(-, T)ch-Hx(Q)) < 4.17)
0

P
T<I] 2

where ¢’ is the constant in the inequality (1.25), then the solvability of the problem (4.14) and the
estimate (4.15) follow from Theorem 6 and from the contraction mapping principle. The proposition
is proved. O

We have constructed the solution for ¢+ € (0, ;). To extend it to a larger time interval, we
consider the same problem for r > 1, taking V(&, #1) as an initial function and introducing a new
independent variable

E/ = Xw(S’ tl) € Q/ = Xw(-Qa tl)
Then this problem takes the form
2
eV, =VioV +0,(V)+V, P =f,
V;} 'V/ =g/ (gl c 9/7 t > t]),

V| Vi) =V E ), (@.18)

=1

/

T, (V,P)n, o=

where F'(&',t) = F(X,;'(§',11),1) (t > t1), " = 3£2’, n, is the exterior normal to the surface
I, (t) which is now considered as X/, (I"/, ), and

t

X;(S’,t)=$’+/ w(E Ddr, wWE ) =wX, ¢ n), o).

n

w rw
Vuw, Ty, £y are expressed in terms of X,,. Finally, it is easy to see that

The operators V), Ty, £, are expressed in terms of the transformation X/, in the same way as

g/:V-h”—i—hO

where
3

n Q' (&, 7)
h' = S +/ "—dt) (&),
/ Z(’ o & L:X;l(s’,rl) (&0

j=1

Due to uniform boundedness of the norm of w(¥ (x, 1) (see (4.10)), problem (4.18) can be solved
by the same method on the time interval ¢ € (¢, 2¢1), and the solution can be estimated by the norms
of the data f, g’, h”, k), V1, a" exactly as above (see (4.15)). This proves the solvability of Problem
(4.14) and the estimate (4.15) for ¢ € (0, 2¢1). Repeating this argument we can extend the solution
into the whole interval (0, Ty) and prove inequality (4.15) for ¢ € (0, Tp).

(1.13) is just a particular case of (4.15).
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4.4 Proof of estimates (1.14)—(1.16)

Problem (1.11) can be written in the Eulerian coordinates x = Xy, (£, t) in the form

5<V,+(W-V)v)—Vzv+€(v)+Vp:0, V.v=0, x €2y,

V‘ 0 = Vo(x), X € Q(),

T(v,p)n

Iy (1) -

In order to prove (1.14), we multiply the first equation by v and integrate over §2,,(t) which
gives

e d ) 1 5 6 2
S Ve Dl +5 IS + (/ v-ogedy) =0, (4.19)
2 La(2u@) T 5 L(82,(1) ; 20
By the Korn inequality,
1 2 - 2 2
SISO 20,0 + D ( / vogedy) = eV g, 0)
k=1 Y $2u(t)
with a certain positive constant ¢ independent of ¢. Hence, (4.19) yields
) 2 < —2 Vo2
Iv(., t)”Lz(Qw(l)) <e = | 0||L2(_Q)

which is equivalent to (1.14).
The proof of (1.15) and (1.16) is based on (1.14) and on the following two propositions.

PROPOSITION 4.6 If I' € C3*¢ then the solution of Problem (1.11) satisfies the inequality

e sup |[Ve(,Dlce)+ sup [V, Dleriay +  sup PG, D)lcie()

t—d<t<t t—é<t<t T-d<T<t
_ 1. 20+3
<eed ' +ed™H™ 7 sup IVE Dy, (4.20)
t—28<t<t

where t € (e, Tp), § = min(¢/4, t;/4), t; is the same as in Proposition 4.5.

Proof. We fix to € (0, Tp), 6o = min(%’, [Zl) and introduce the function w, (), ¢ > 0, which is
smooth, monotone, equals zero for r < 1o — 28p + %, equals one for ¢ > 9 — 280 + A (A € (0, &p))
and satisfies the estimate

), (0] < e 27

The functions U = Vw,, QO = Pw, satisfy the equations
eUr +£,(U) — VEU 4V, 0 = e Vol (1),
Vy -U=0,

Tu(U, Q)m,| =0,
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hence, by virtue of (4.15),

Y,(U,0) <coer”™t  sup |V, Dlcwg). (4.21)
t—280+A/2<T <t

We estimate the right-hand side by the interpolation inequality

_ 2043
IV(, Dlce@) < wIVE Dlertay +ep™ 4 IVE DLy

which is true for arbitrary pu < 1, set

X

ZW, x € (0,1),

I

and multiply (4.21) by A(1 4 eA~1)=G/4+2/2) This gives

er ! 142627 IN\ITE /o o3
f) <2c0x flz)+ecex 27%  sup [V, DLy

1 +8)"_] 1 +‘9)\'_1 2 1‘0—280<t<t0
where
3,
SO =211+ srl)*ﬂf)(s sup [V, Dlewe)
to—280+Ar<e<ty
+ sup IV(, T)|c2+a(_(2) + sup [P, 7—')|c1+a((z))-
to—280+Ar<e<ty to—280+Ar<e<ty
If

11, a
27 2¢ox < 1,

then the last inequality implies

f) < f(-) +ecox 274  sup VG, DLy,

2 th—280<T <ty

N

and, since f(0) =0,

« 3
fQ) <2c0ex 274  sup VG, Dllzye)s

th—280<T <ty

or

3 sup IVi(e, Dlex2) + sup IV, Dlervagy +
to—280+A<T <ty to—280+A<T <ty

+ sup [P, T)|cl+vt(_(2)
to—280+A<T <My

-1 1, 2043
< 2c0ed” (1 4+eX™7)7 4 sup  IVC, Dlly)-

tp—280 <t <ty

Setting here A = 8, we arrive at (4.20) for arbitrary 7y < Tp. The proposition is proved. O
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PROPOSITION 4.7 If I' € C*t® V € C31*(£2) and conditions
V-V()ZO, H()S(V())no 1":0

hold, then the solution of the problem (1.11) satisfies the inequalities

sup |V (., T)|c3+a(1“) <c |VO|C3+(1(Q), (4.22)
<t

sup  |V(:, T)|g3+a(ry < €887 " 468 1) + sup  [IVCG, DLy ) (4.23)
t—d<t<t t—28<t<t

where 6(¢) is the same as in the Proposition 4.6: § = min(%, %).

Proof. We obtain stronger inequalities than (4.22) and (4.23), namely, we estimate in the whole
domain 2 the second derivatives of the functions

Vi=9V, P =P,
where

,-—a—él—Nl(s)Z k(s)—

and N; € C3+*(R) is an extension of ng, € C3*%(I') from I' into 2. For & € I, 9; are the
tangential components of the gradient, therefore 9; f ‘F depend only on f - and the operators 0;

can be applied to functions defined on I". o
Applying 9; to the equations (1.11) we see that V', P* are solutions to the problems

eVi— VIV 4 ¢,(V) +V, P = Q\(V, P),

Vi - V= 05(V),

Vil =V, 4.24
o=V (4.24)

My, Sy(VHm, = Q5(V),

n, - T, (V)n, = Q4 (V),

where )
Q{ (V. P) = (£y (V) — 3£ (V) + [3;, V31V — [3;, Vi1 P,

05(V) = —[d;, Vul -V,
O5(V) = My (M Su (@ V) My = (T Su(V)ma)),
QZ(V) =Ny - Syp(0;V)ny — 9;(my, - Sy (V) ny,).

and by [9;, V,,] we mean the commutator

3V — =AMV + Z Vu(N; N 5 (Z ik m) :
m=1,2,3

k=1
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Moreover, we have ] ) .
05(V) =V -R'+ Ry,

i : bi i : 8b£nk
Rk:Z mk Vins ROZ_Z &, Vin.
m=1 m=1

It is easy to see that the coefficients of Q; have the same differentiability properties as the
coefficients of M; and that

sup | Q' (V, P)lcw(a) + sup 105V ciraqe) + & sup IR (-, T)lce (@) (4.25)
< <

<t T
. . . I+o . (ﬂ)
+ e supsup | Ry, (&, )| + sup |Q’3(V)|C1+a(1~) + sup |QZ(V)|C1+(¥([') +e72 sup[Qg(V)](Oyzt)
<t 2 T<t <t r
< cYi(V, P).
Compatibility conditions Q;(V{))’ L= VeV Qg(vg)( | = MoS(Vymo| are casily
1= =l
verified. Hence, in virtue of inequality (4.15),
Y,.(Vi. Py < c(y,(v, P) + |V6|C2+a(g)> < c|Voleseag)-
This implies (4.22):
3 .
sup |V(, T)|C3+a(1—~) < CZSUP |Vl(', 'C)|C2+ot(_Q) <c |V0|C3+°‘(_Q)-
<t i=1 <t

In order to obtain (4.23), we proceed as in the proof of Proposition 5.6. We introduce the
functions U' = V' ws, Q' = P' ws which satisfy the equations

eU 4 £,(U) —V2U' +V,,0" = ¢ V! 0y + Q) (V ws, P wy),
Vu - U = 05(Vws),

U =0

My, Sy (U my, = Q5(V wy),

n, - T(U)n, = 0} (Vws).

By virtue of (4.15) and (4.25),

Yo (U, 0) < (Y (Vo Pos) +e67' sup V(& Dlce))

to—8<t<ty
< C<8 sup Ve (-, Dlce) + sup IVC, Dlezvag) + sup [P(-, T)|c1+a(9)>
to—38/2<t <ty to—38/2<t <ty to—38/2<t <ty

+eed™h  sup [VE Do)
t0—38/2<t<1ty
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The right-hand side may be estimated by inequality (4.20) which gives

c _ 1\ 2et7
Y (U, Q) <ced ' (14+e87)77  sup  IVC, Dllzy2)

tp—28<t<t

The proposition is proved. O

COROLLARY 4.2 If I' € C31*, Vo € C?T%(£2), then
To To
/ |V|C2+a(9) dr +/ |P|C1+a(9) dr <ce. (426)
0 0
If I' € C*, Vo € C31%(2), then

To
0

Indeed, making use of (1.13) and (4.20) for # < ¢ and ¢ > ¢, respectively, we obtain

£
/0 (|V|C2+a(m + |P|C1+a(m) dr + /
£

To 2043 bt
< C<8|V0|C2+a(9) + ||V0||L2(9)/ e8I +e87 @)™ e dt>
&

To
(IViczse(@) + 1 Pleroe) ) dr

Lce |V()|C2+oz(9)-

The proof of (4.27) is similar.

5. Proof of Theorems 3 and 4
5.1  Proof of Theorem 3

At first we consider the problem (1.12) with a modified boundary condition, namely,

en, — Van+ Ly(m) + Vyr =f,
Vw: -n= g,
n =0,
1=0 (5.1

I, Sw(n) nw’r =b,

t t
n - Tumm, = [ naE 0 du@nde| =b+ [ Bar
0 0
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and prove its solvability on a certain small but fixed time interval (0, #,). We write (5.1) in the form

en, —V2n+L(n) + Vo =f+ M (n, 1),
V-n=g+ M@,

=0 (5:2)
Mo SGymo| = Mob -+ Ms(n),

t t t
nO'T(ﬂJT)nO—HO‘AO/ ﬂdn‘F =b+/ BdT+M4(TI)+/ Ms(n) dr,
0 0 0

where M| — M, are defined above in (4.16), and
Ms(m) = (ng - Ap —my, - Ay (1)) 7.

Problems (5.1) and (5.2) are equivalent if n,, - ng > 0 which holds for small 7.
By virtue of (4.6)—(4.8), there holds the estimate

sup [M1(n, 70)|ce(2) + sup [Ma(n)|c1+e (o) + € sup | Hi () |ce () + sup [M3(m)|ci+er)
<t <t <t <t
lia

I4+o ( )
+¢& 2 sup[M3(m)] 7 +sup |[Ma(n)|ci+a(ry + sup [Ms(m)lce(r)
r T<t T<t

t
<c (/ IW(, D)l c2+a (o) dT + & sup [W(, T)|c2+a(:z)> <8 sup |1, (-, T)|co (@)
0 T<t <t

=+ sup |ﬂ(, T)|C2+ot(9) =+ sup |7T(, T)|Cl+oc(_9)).

T<t <t

Therefore, if #, is so small that

5]
el cz(/ IW(-, T)lc2tago) dT + & sup [w(-, t)|C2+a(Q)) < % (5.3)
0 <ty
where ¢, is a constant in the inequality (1.23), then the solvability ot the problem (5.1) can be
established by the method of successive approximations or deduced from the contraction mapping

principle. Inequality (1.23) and condition (5.3) imply (1.17) for ¢ < 1,.

To extend the solution outside the interval (0, ;) we introduce a smooth monotone function
x1(t) such that x; () = 1fort < /3, x1(t) =0 fort; > 21/3, and we set xo(t) = 1 — x1 (). It
can be easily verified that n x; = n,, 7 x; = n; satisfy the equations

ey — Vi 4+ Lw;) + Vo =X +enx/, (5.4)

Vuw - n; =8 Xi» (5.5)
. =0,

n; =0

My Su@)ma| = b, (5.6)
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t
o Tyt = [ Au(m | 57
0

t
=/ (nw'Tw(naT[)nw
0 r

The functions n,, > vanish for ¢ € (0, 1, /3), so 1, satisfies the condition

t
—b))(l-/d‘l:—{—/ B xidr +b ;.
0

=0 (5.8)

2 1=2/3

hence, integration in (5.7) in the case i = 2 is carried out in the limits t € (f2/3, t) (in the first
integral of the right-hand side, in the limits T € (#/3, min(¢, 2¢2/3))). In order to show that the

solution (15, ) of problem (5.4)—(5.8), i = 2, is defined for ¢ € (t2/3, 4t2/3), we make the change
of variables

£ = Xu(§ n/3) = Xu()
and write this problem in the form
enb, — Vi2nh + €, () + V., 1) =2,

Vo nh=g, §eRp3=8, t>1/3

Plens (5.9)

m, S, () m,

= by,
1—‘/

t t

n, - A:U(T)ﬂ/zdf‘r/ =b2+/ B dr,

- Ty (n5. wynl, = [ .
14

/3
(cf. (4.18)) where

=@, py=moX,' m=moX,' h=®Ex+enx)oX,

gzzgxzoX;I, b2=bxzoX;l, BzszzoX;l,

by = [[l3<nw . Tw(n,n)nw‘r —b) x5 dt +bx2] o X L.
1

Problem (5.9) has exactly the same form as (5.1), so by virtue of uniform estimate (4.10) it is
solvable in the interval t € (#,/3, 4t/3) of the length 7, and the solution satisfies the estimate of the
type (1.17):

e sup |y, Dlcaeny +  sup 050, Dlezragy + sup 750, Tlcite(gry <
T€(tr/3,1) Te(tr/3,1) T€(tr/3.1)

C( sup  |B2(, Dlceeny +  sup 820, Dleiteeny +  sup  [hor (-, T)ce ()
e(ta/3.0) re(t/3.1) e(ty/3.0)

Ita )
2 suplba], 3 )
F/

+ sup suplhoor (€. )+ sup  [ba( Dleisary + £
te(ty/3,t) 2/ te(tr/3,1)
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+ sup |ba2(, T)|Cl+oz(1"/) + sup |B(, t)|ca(1~/)), t € (r/3,412/3), (5.10)
TE(ty/3).1 TE(1y/3.1)

where hp =h x; o X;l, hop = ho x2 0 X;l. Clearly, n = n x1 +n,, m = m x1 + 73 is a solution
of (5.1) in the interval (0, 41,/3).
Estimate (1.17) for ¢ € (0, 42 /3) follows from (5.10) and from (1.17), already proved for t < 1,.
This argument can be repeated till the solution of (5.1) is extended into the interval ¢ € (0, Tp).
Now, we consider the problem (1.12). The last boundary condition can be written in the form

t t t
- Totmm, — [0 Aune el <o+ [ Bart [ omar
0 0 0

where

t
0n) = [n(€.1)- Aut) +mu.0)- 4u®)] [ e, vy

Since

t
sup |Q(m)|ca(ry < ¢ / 1C2 Dlcsar d.
0

<t

we can use the theorem on the solvability of problem (5.1) which has been just proved to obtain the
solution of (1.12) by the method of successive approximations.
This completes the proof of Theorem 5.

5.2 Proof of Theorem 4

We find the solution of problem (1.19) by the method of successive approximations. At zero
approximation, we take ny = 0, mp = 0 and we define n,, |, mu41 m = 0,1, ... as solutions
to the problems

g(nm+l)t - Vzinerl + Zw(r’er]) + Vel = —ewW; + ﬁl(nma Tm),

Vw . r’m+l = £2(nm)v

=0,
t=0

N1
Mo S i) M| = L3(0,),

ny, - Tw(nm-q-]y 1) Dy — My - Ay (Xpg1 — Xy) r =L, T,
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where £;, £ are defined in Section 1, X,, = X,,,,. For m = 0 we have

eny — Vo +w) + Vori = —ew; + (Vo — Vo) uo — (Vg — Vu) qo

6
£ (0) = Lug(80) + Y 1t (04 Xy (6, 1) = o1(Xu (€. 1)) = Fo(§. 1),

k=1
Vw1 = (Vy — Vuo) “ug = go§,1),

Nli=0 =0,

I, S('ll)nw‘r = I (Hw Sw(ug) my, — ITy, Sug(“O)“ug) r

=bo(§, 1),

t
ny - Tw(’?pﬂl)nw — Iy - Aw(t)/ n df‘r
0

=Ny - (Tw(an qo) Ny — Ty, (o, qo) nuo) r +ny - (Auo @) — Aw(t)) X

t
n, 2,0 [ Vend| =nen
0 r

whereuo =w+V,qo =r+ P.
‘We observe that
go=V-hy, hg= (A(w) _ A(uo))T .

By virtue of (4.6)—(4.8), we have

sup [fo (-, 1)|ce(2) + sup 180(+, 1)l ci+e () + sup |ho (-, Dlce (@)

t<Ty t<Ty t<Ty

I4a (l+oc)

+ sup |[bo(, D)|cite(y + sup [bo(-, H)lcitery + 72 sup [bo](0 Ty S CE

t<Tp t<Tp r

hence, making use of the inequality (1.17), we obtain

& sup |0y, (, 1)|ce) + sup [n;(, Dlezia(g) + sup |T1(, Dlciveg) <
t<Ty t<To t<Tp

The functions ¥, 1 = N1 — N> Pm+1 = Tmy1 — Ty satisfy the equations

8(¢m+1)t - Vi}‘//m—}-l + Zw(‘/fm-H) + Vomy1 = L1 (nma Tm) — L1 (nm—h Tm—1),
Vu Y1 = Lo2my,) — Lo@y—1),

Vit =0,

t=0

I, Sw(wm-;-l) ny

(5.11)

r = £3(nm) - £3(nm—l)’

t
ny - Tw(¢m+17 pm)nw — Ny - Aw(t)/ 1pm—}-l d‘[‘r
0

= E(’Im, T[m) - ‘C(nm—lv 7Tm—1)-
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Setting V,,,, = Vi, Xu,, = X, Iy, = Iy, Su,, = Sm, Ny, = N, we easily show that

L1y Tm) = L1Wpyys Tm—1) = (VA = V2) ¥ — (Vi — Vi) Om
+ LW ) = Luy (W) + Ly 1) — €y, (W—1))

6
(V= Vi) Ut = Vi = Vi) g+ 3 i (06 X0) = 91 X)),
k=1
£2(nm) - ‘CZ(nm—l) =(Vy —Vn)- l/fm + V-1 —Vp) -up_1 =V- ﬁm,
Fow = (A® — AT g (A=) _ g)T

£301) = L300 1) = (Mo Sw W) Moy = Moy S (W) 1)

+ I, (Hm—l Sm—1p—1) Dy — ITy, Sm(um—l)nm)a

t 1
‘C(nma 7Tm) - [’("m—lv 7Tm71) = Pm + / Q;n dT +/ Qm dT’
0 0

where
Pm =ny - (TUJ(Wma Pm) My — Tm(‘//mv Pm) nm)

+1ny - (Tmfl(umfla Gm—1) 01 — Ty (W1, gm—1) nm) (5.12)
+1ng - (Am - Am—l)g’
. . t
Q) = [ (A — A) + 1y - (A - Aw>]/ Y dT 1y (A — Au) ¥,
0
t
+|:ﬁw(Am — Ap—1)(E + / 1 dr) +ny (A, — Am—l)um—l]
0
" . . . . t
Qm =My —n) (Ap —Ap—1)E+ny, - (Ay — Am—l)/ u,_1dr.
0
Assume that for t < T
g sup [y (-, T)|co(2) + sup [u, (-, 7—')|C2+a(9) + +sup |gm (-, T)|Cl+a(9) < o,
<t <t <t
t
/ |llm(, T)lc2+a(9) dr g 9, m = 1, o n, (513)
0

where 6 is the same number as in Proposition 4.2. Then all the problems (5.11), m = 1, ..., n, are
solvable in the interval (0, 77). The norms

Yiu(t) = esup [¥,,. (-, T)|ca(2) + sup [¥,, (-, T)|c2+a(9) + sup | om (-, T)|Cl+a(_(z)
<t

<t <t
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can be estimated by inequality (1.17) as follows:

Yis1 (1) < ‘E,—E,,_‘ La(0y) — Loty
m+1(1) C(ililﬁt) 1My TTm) = L1 (M1 Tm—1) Ca(9)+§l£ 2(N) — L2(nyy 1)c1+a(9)

+ esup |7:Zmr|C°‘(.Q) + Sup‘£3(ﬂm) — L3(n,,-1)
<t

T<t T clran)

Ita

14a

Lia (
+e72 Sup[ﬁs(ﬂm) - 53('Im—1)] " sup Puleirery + sup [ Q) e
r ( T<t T<t

0,1)

+ SUP|Qm|Ca(r)>-

<t

(5.14)
€ _

Consider the last term in (5.12), using local coordinates (see Subsection 4.1). Since ng - W =0,
the terms with hg(n, t) drop out, and we have, by virtue of Proposition 4.2:

t t
o - (A — Am—l)§|cl+a(1") < C/ ¥ (- T)|c2+a(9) dr < C/ Yy () dr.
0 0

Making use of (4.6), (4.7), (4.9), and (4.26), we obtain further

t t
sup |Q,,lce(ry < ¢ (/0 1Mm—1C5 Dlrra(e) dr +/0 IW(, D)lc2+ag)dT + 8) [V (-, Dlere ()
<t

Other terms in (5.11) can be easily estimated with the help of the same inequalities by

t t
c (/0 1,—1C, t)ICz+a(Q) dr + 8) Y (1) + c/o Y, (7)dr.

Putting all the estimates together we obtain

t
Ym+1(l) < (/ ('nm(v T)|C2+"‘(.Q) + |T[m7] G, ‘L')|C2+a(_Q) + |w(-, ‘[)|C2+a(g)) dr + 8) Y (1)
0

t
+ 1 / Y, (v)dr.
0

Let )
Za(t) =) Yu0).
m=1

Since |n,, (-, T)lc2+a(9) < Xy, (1), the last inequality implies
t t
1 (1) < ¢ <2f Zp(r)dr + / [w(, T)|Ca+2(g) dr + 8) 2 (1)
0 0

t
+ ¢ / Z,(v)dr + Y1 ().
0

Assume that 7 and ¢ are so small that

T, 1
¢l (/0 W(, )l c2ea oy de +s) <3 (5.15)
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Then . .
Bani(t) < 41 zna)/ 2n<r>dr+2c1/ Sosi(mdr +ce, 1 <Th,
0 0

and, by the Gronwall lemma,

t
Zpt(® < 7N (40 5,0) / Ty dr +ce)
0

; (5.16)
=20 En(t)/ Yy(r)dt +c3e.
0
Integrating this estimate and setting
t
R,(t) = / X, (t)dr
0
we obtain
Rui1(t) <caRE(t) +c3eTy. (5.17)
Now, let
deryesTie < 1 (5.18)
and let

1 1 cze T 2c¢3¢eTy
X0 == — — —_—— =
0 2¢ 4c§ (o) 14+/1—4cre3Tye

be a minimal root of the quadratic equation
C2X2—X+C38T1 =0.

It follows from (5.17) that if R,(T;) < xp, then also R,41(7T1) < xo. Hence, Ry (T1) < xo for
k =1, ...,n+ 1, further, in virtue of (5.16),

deyeze T

14+/1—4crc3T) ¢

Zpr1() €20 x0X,(t) +c36 = Yyt +c3e,

and
c3 €&

Y1) € —————.
OS iGans
This shows that under the hypotheses (5.13) and (5.18), we have

(5.19)

€ sup |[uy11(, T)lce(2) + sup [Unp1(, T)le2te(y + SUP |gn+1(, Dlci+e(g)
t<Ty t<Ty t<Ty

c3e
< € sup [Wr + Vifce(e) + sup [W+ V]catag) + sup |[r + Pleieg) +

<Ty <Ty <Tq V1 —4crc3 T18’
and, by virtue of (4.20) and (4.26),

T

T
/ |un+] (.’ ‘[)|C2+a(9) dr < Hce + / (lW(, T)lc2+a(g) + |r|Cl+a(Q))dTa
0 0
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i.e. inequalities (5.13), n = 1, 2, ..., hold for small & and small 7} independent of ¢. Then (5.19)
also holds for arbitrary n, and the successive approximations (7,,, 77, ) are convergent to the solution
(n, m) of the problem (1.19). It follows from (5.16) and from the above estimate for R, (77) that

e
& sup 1, (-, Dlca(e) + Sup 110, Dleasaqgy + Sup 17(, Dlersaig) < (5.20)

T<T) t<T) t<T) V1—=4crcze

which implies (1.20).
The solution which we have found is unique. The difference of two solutions ¢ = n — 7/,
o = — 7’ satisfies the equations

ey, — VoY +Vp=Li(g, ) — L1y, 7)),
Vu ¥ = La(n) — L2(n),

v

=0,
t=0

Mo @ = L3 - L3,
1
- o o) = o A0 [ wie| = Lonm) - L0
0
Repeating the above arguments, we obtain for the norm
Y(t) =esup|¥(, )lce2) +sup ¥ (-, D)lcriaig) +8uplo(, T)leite o)
<t <t <t

the estimate similar to (5.14), i.e.

t t
Y) < |:/0 <|n(~, T)|C2+oz(9)+|']/(', T)|C2+ot(9)+|W(', t)|Cz+a(_Q)) dl’+8:| Y(t)+c /0 Y(tr)dr.

Let us assume that (n’, ¢’) is the solution constructed above. Then (5.20) implies

t t
Y1) <26 YD) (/0 Y (7)dr ~|—cs) +2c1f0 Y (1) dr,

from which it follows that Y () = 0, if ¢ is sufficiently small. The theorem is proved.

5.3 Extension of the solution of the problem (1.6) to the interval t € (0, Tp)

We extend (u, g) outside the interval (0, 77) by introducing new Lagrangean coordinates, as it has
been already done above. Let &’ = X, (&, T1). In these coordinates, equations (1.8) can be written
as follows:

6

—VaW Vo + 0,wW) =) up(X, 1),
k=1

VW =0, §eQ=X,2"T),1t>T,

T, (W, g, — A, OX, (¢, 1)l =0.
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Here I'' = 92/, W&, 1) = w(X,' (€. T), 1), '€ 1) = r(X;" (&, T, 0, X, 1) =
&+ f}l w(E, tydr (¢t > T), V), = A(w)’ng, A®™" s the matrix of cofactors of alfj = & +

L T
T % de, T, = —pI + S, S,,(W) = V,w+ (V,w)",n), and A are the normal vector and

the Laplace-Beltrami operator on I, (1) = X, (I""), finally,

6
HOEDY fg WE LD (X, E L 0) dE (X, € 1)),
k=1

Equations (1.6) can be written in a similar way, namely,
) 6
ew, + £,) = V' + Vg =Y wpe(X, 1),
k=1

vV, .u =0, E e, t>1),
(E Dl=r, = u(X,)' ¢, T, Th),
Tu’(u’, q’)n’ — A;(t)X;lp =0
where W' (&', 1) = w(X, (€', Th), 1), ¢' (¢, 1) = q(X;' (&', T1), 1),

6
=3 [ WE 0 a0 E 0 v e n)
k=1

and X/, V,, are computed according to the formulas

t

X, (&, 1) = Xu(E, Dl _y-1or.g) =& + /T W', 1) dr +RE, (5.21)

T
R(é/) = (u(év T) - W(ss T)) dT|§:Xl;1(S/ Ty’
A ,
Vi = Vale_x; 1.1y = A E 08T E TOl_yo o7y Ve (5.22)

T\ 5o
2 (&';‘ +/ Pow;(§, 1) dr) '
' 0 d&; i.j=1,2,3

It follows from (5.21) and (5.22) that

where

t
X,¢. 0 -X,¢E 0= . '@, 1) —w(E 0ldr +RED,
1

Vi = Vi = (A6 ) = A& 0)a"T (€ Tl _yo1 0 7, ) Ve (5.23)
By virtue of (1.15) and (5.20),

T
|R|C2+a(g’) < C/ |l.l - W|C2+a(9/) dr < ce,
0
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hence,
t

|)(';(7 t) — X;U(7 t)|C2+D‘(.Q/) < c (8 + |u/ _ W/|C2+a(9/) df)

T
and similar estimate holds for the coefficients of the operator (5.23). Estimates (4.6), (4.7), and
(4.9) in new coordinates are conserved but fot |u — W|ckta () dT should be replaced everywhere

with f;l o’ — w’lck+a(9,) dr +e.
Let V’, P’ be a solution of a linear problem
5)
eV, — V.V + 2, (V)+ V,P =0,
vV, V=0, £e, te(l, T,
Vi=r, =u'¢, T)) —w(E', T,

T, (V, Phn,|r =0.

For the differences
n/:u/_w/_v/ JT/ZC]/—V/—P/
we obtain the problem similar to (1.19), namely,
en, — V.20 + €, () + Vir' = —ew, + L1 (0. ),
Vo n'=Lh®m),  §e, e, T,
n'li=r, =0, (5.24)
T, 8, (", |- = L'3(),
n, T, 7', —n, - A,(OX], —X,)|. = L' 7

where / )

L' 7)) = (V] = VU = (V, = V)¢’

6
0, = £,) + ) (XL (E, 1) — 9 (X, (, 1)),
k=1
Lorn) =(V,, = V,) u,
L5 =, T,,S,, (), — 11, (u)n;),
L', 7" =, - (T, W, ¢"m, — T, ¢"m,) +n, - (A, (1) — A, ()X, 1)

andu’' =w +V' +1n', ¢ =r"+ P+ x’. The presence of the extra term ce in (4.6)—(4.9) cannot
be an obstacle for the construction of the solution of problem (5.24) in the interval ¢t € (71, 2T1), as

above, by a successive approximation procedure, since, by virtue of (1.14), (4.20), and (5.20), we
have now a uniform estimate for (V’, P’):

e sup [Vi(, Dlceny + sup [V, Dlezra(gy + sup [P'(,D)leiig)

Ty <t<t Ty <t<t T <t<t

< c|u/(-, Tl) — W/(', T1)|C2+01(_Q/) < ce.

Repeating this procedure several times, we can extend (u, ¢) onto the whole interval (0, Tp).
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