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This work discusses the role of interfacial energy for problems involving an epitaxial layer on a
rigid substrate. Using the calculus of variations, resulting microstructures are determined for a large
class of interfacial energies; the qualitative features of these microstructures demonstrate a strong
dependence on the smoothness and convexity of the energy. This work is meant to provide insight
into deciding appropriate energies for a large class of incoherent interfaces.

1. Introduction

At an interface between crystalline solids, two opposing mechanisms compete to determine
the resulting structure (see e.g. the review article by Matthews [19]). The minimum-energy
configuration of the bulk material occurs at the stress-free state for each solid. But when the lattice
parameters of the two materials differ, complete relaxation to bulk equilibrium would result in a
crystalline structure that is discontinuous at the interface. On the other hand, the interface reaches its
minimum-energy configuration when there is an exact matching of the atoms of the two solids across
the interface. This state of perfect coherence is tenable, provided that the stresses due to the deviation
from equilibrium of the bulk material are not too strong. But there is a threshold at which these
stresses are too severe to support a coherent interface, and the structure of the interface undergoes
dramatic changes: dislocations appear that relax the bulk stresses, and an extreme situation may be
reached in which all regularity of the atomic bonding at the interface is lost.

A proper choice of interfacial energy is crucial in describing the competition discussed above,
but a chief difficulty in deciding on such an energy is the extreme range of behaviour it must
embody, since it must characterize: (i) perfect matching of the atoms at the interface; (ii) dislocations
distributed in a somewhat regular manner; and (iii) situations in which the abutting lattices are
completely mismatched.

Specific interfacial energies have been proposed, some based on microscopic calculations (van
der Merwe [21,22,23], du Plessis & van der Merwe [9], Fletcher & Adamson [11], Fletcher [10])
and others on phenomenological considerations (Leo & Hu [18]), and it might be useful to have at
hand a catalogue of possible energy functions together with an analysis of their predictions. From
a qualitative perspective, such a catalogue is well within the scope of modern variational analysis.
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Indeed, while it may be difficult to determine the actual bulk energy for an elastic solid undergoing
small strains, it is not difficult to show that, whatever form the actual energy should take, it should
generally be a strictly convex function of strain. Here our goal is to develop similar crude qualitative
results for interfaces.

To isolate the underlying physics, we keep the geometry as simple as possible by restricting
attention to a flat epitaxial layer on a rigid semi-infinite substrate, with the thickness 4 of the layer
used to modulate the contribution of bulk energy, which we consider to be quadratic.

We further restrict attention to plane strain as described by Cartesian coordinates (x, y), with
interface the line y = 0 and layer defined by 0 < y < A.

The three basic behavioural patterns a simplified model should describe might be summarized
as follows [19]:

(i) for sufficiently thin layers, interfacial energy should prevail over bulk energy, and the interface
should remain coherent;

(ii) above a threshold value for the layer-thickness %, dislocations should migrate to the interface
to relieve the high local stresses, and the relative displacement between phases should develop
discontinuities, although portions of the interface might remain coherent;

(iii) for sufficiently large h and for solids whose stress-free states are sufficiently disparate,
equilibrium should result in an extreme loss of regularity consistent with a complete mismatch
of the abutting lattices.

We measure the displacement from a configuration of the film in which the lattices of the
film and the substrate are perfectly matched; such a configuration would generally correspond
to a stressed state for the film. Since the substrate is rigid, if we assume that the layer does not
separate from the substrate, then the x-component u of the displacement of the film at the interface
measures the relative displacement between film and substrate. We refer to the tangential derivative
y = u, of this displacement as the incoherency strain. When y vanishes on an open set, the relative
displacement is constant, and the lattice structures are viewed as perfectly matched. Conversely,
when y is not constant, the lattices are deformed relative to one another, and y is a measure of
the mismatch. Finally, when the relative displacement is discontinuous, so that y is unbounded,
dislocations concentrate over very small regions, namely the set at which the relative displacement

jumps.
Following common practice (e.g. Matthews [19]), we refer to an interface as coherent when
the displacement is constant (so that y = 0) and smoothly incoherent when y is smooth and

non-vanishing. More interesting are the intermediate cases, which correspond to equilibrium states
that can be realized as limits of sequences whose elements describe a fine mixture of coherent
and incoherent regions; we call such interfaces finely incoherent. This terminology is somewhat
imprecise, since we shall encounter two types of finely incoherent interfaces: one for which y
becomes unbounded, so that dislocations concentrate over small regions, and the other for which y
oscillates between two fixed values and hence describes a mixture of smoothly incoherent patches.

We restrict attention to interfacial energies that depend only on y (e.g. Larché & Cahn [17],
Cahn & Larché [4], Cermelli & Gurtin [5, 6], Leo & Hu[18]). We study four classes of energy
functions: (i) smooth and convex; (ii) nonsmooth but convex; (iii) nonsmooth and nonconvex; (iv)
nonsmooth and concave.

The central effects—namely fine or smooth incoherency and the existence of a threshold for
incoherency —depend on whether or not the energy is convex and whether or not the energy is
smooth. Nonconvex energies yield finely incoherent interfaces; energies whose convex envelope is
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nonsmooth exhibit a threshold effect.

Our specific results may be described as follows. Consider first a smooth and convex energy
f(y) (Fig. 1), for instance quadratic in y. Then our analysis shows that the interface is always
smoothly incoherent, and there is no threshold for incoherency.

fw)

F1G. 1. Smooth convex energy f.

For convex energies that are not smooth at y = 0 (Fig. 2) the interface remains coherent
for small thicknesses, but the equilibrium state is one of smooth incoherency when the threshold
thickness is exceeded. Such energies might be appropriate to systems with large misfit.

f)

F1G. 2. Nonsmooth convex energy f.

A more interesting type of behaviour, for an interfacial energy that is not smooth at y = 0
(Fig. 3), occurs when the energy is concave for small values of y but ultimately convex for large
values. Such an energy was proposed by Leo & Hu [18] and results in an interface that, although
coherent for small thicknesses, becomes finely incoherent above a threshold, with the infimum of
the energy realized by sequences corresponding to fine mixtures of coherent and incoherent patches.
A drawback of this choice of energy is its special form: it is necessary to assign in advance, as a
constitutive parameter, the incoherency strain that determines the mixture.

A possible improvement of this model, motivated by the necessity of modelling interfaces
between materials with large misfits, is based on an interfacial energy function that is concave
almost everywhere, but with non-smooth local minima at definite values of the incoherency strain,
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FIG. 3. Nonsmooth nonconvex energy f and its convex envelope f**.

which, when connected, convexify the energy (Fig. 4). As the thickness 4 of the layer increases,
the interface changes from coherency to fine incoherency, and then to smooth incoherency with an
incoherency strain corresponding to one of these minima. Also, there are intervals of 4 for which
the interface is either coherent or smoothly incoherent: a threshold effect thus shows up also in the
transition to and from smooth incoherency, since the lattices try to stay ‘glued together’ at definite
values of the incoherency strain (cf. the notion of coincidence boundary in [19]).
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FIG. 4. Nonsmooth scalloped energy f and its convex envelope f**.

Finally, we consider concave energies that are not smooth at zero (Fig. 5), but are otherwise
smooth and concave (and may be thus considered as a special case of the preceding ones). Such
energies are motivated by the original treatments of incoherent interfaces based on molecular
theories [21,22,23,9,10, 11]. These energies have the most interesting behaviour: in addition
to displaying a threshold effect for the transition to incoherency, they model finely incoherent
interfaces that contain dislocations, i.e. for which the minimizing sequences are characterized by
unbounded relative strains. These energies might reasonably describe small-misfit epitaxial layers.

As the goal of this study is a qualitative comparison of a variety of interfacial energies, we do
not allow for a redistribution of the material within the film.

The mathematical techniques we use in this paper are based on classical results of the calculus
of variations, and the general approach follows closely ideas developed by Leo & Hu [18] for the
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FIG. 5. Nonsmooth concave energy f and its convex envelope f**.

interfacial energy function displayed in Fig. 3. We essentially compute the minima of the total
energy functional (bulk and interfacial energies), and then analyse the corresponding minimizing
sequences.

We are currently working to extend the results to non-quadratic bulk energies and curved
interfaces.

2. Statement of the problem

Our model describes the equilibrium of an epitaxial layer on a rigid substrate. Assuming that the
layer has height &, but is infinite in the other directions, we study a model problem for a plane
section of the film, within the context of plane elasticity.

We assume that the layer occupies the infinite strip R x [0, A/] € R2. We let (x, y) denote
cartesian coordinates in R? with x € R and y € [0, h], and we write i = (1,0) and j = (0, 1). We
limit our discussion to plane displacements u(x, y) of the layer and to situations in which u(x, y) is
periodic in x. With this in mind, we divide the strip into cells of unit length, write £2 = [0, 1] x [0, 4]
for a typical cell, and restrict attention to behaviour in §2. Periodicity then requires that u(1, y) —
u(0, y) be constant (which, by (2.1), is equivalent to the requirement that the strain E, defined below,
satisfy E(1, y) — E(0, y) = constant). We assume that the layer cannot separate from the substrate;
thus, since y = 0 defines the interface between the layer and the substrate,

u(x,0)-j=0 x € [0, 1], 2.1)
and the periodicity condition takes the stronger form
u(l, y) =u(0, y) + (const.)i y € [0, h]. 2.2)
Let
u(x,y) :=u(x,y)-i
we define the incoherency strain y (x) by
Y (x) = ux(x,0),

and refer to the interface as coherent if

y(x)=0 x €10, 1],
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and incoherent otherwise.
We work within the theory of small deformations, so that

E=L1Vu+vuh)

1
2
represents the strain in the layer. Note that y = i - E(x, 0)i. The displacement is measured from a
configuration of the layer in which the lattices of the film and the layer are perfectly matched; this

configuration, in which E = 0, will not correspond to a minimum-energy state of the film, which
we assume to occur at a strain Eg. We assume that this mismatch strain has the specific form

Eo = i ®1,

with ep > 0. Specifically, we assume that the layer is composed of a homogeneous isotropic elastic
material with positive-definite, quadratic strain energy w. Thus, bearing in mind the mismatch,

w(A) = JAlr(A) + pulw(AM)],  A=E-Eo,

with Lame moduli 1« and A constant and such that u > 0, 2 + 31 > 0.

We assume that the interfacial energy is a function f(y) of the incoherency strain. Precisely, we
assume that

f:R — [0, 00), f is even and continuous, f(y)>0for y #0,
and that f satisfies the growth condition
F)y<Ccd+lyl (2.3)
with C > 0 and ¢ > 1. We also assume, without loss in generality, that
f(@)=0.

The total energy of the system is given by

1
J(u):/ w(E—Eo)dxdy+/ f(y)dx. 2.4)
2 0

In analyzing this system it is convenient to consider the bulk and interfacial energies
independently, and for that reason we write

1
F(u)=/ w(E — Eg) dx dy, I(u)=/ f(y)dx. 2.5)
2 0

Here and when there is no danger of confusion, we will write u for the function with values u(x, 0).

In this paper we shall discuss the minimization of the functional J(u) on the space of all
sufficiently smooth vector fields u on £2 that satisfy the compatibility condition (2.1) and the
periodicity condition (2.2)
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3. General results

Due to the quadratic growth condition of the bulk energy density w, and to (2.3), the natural setting
for our problem is the space of all functions u € W'2(£2, R?) whose trace tu (in the sense of
Sobolev spaces) belongs to W14 (92, R?). Thus, when ¢ > 1, we consider the fractional Sobolev
space

witl/aa (o, R?) ;:{u e Wh(2,R?):

// |Vu(x, y) _ Vu(z’ w)lq dxdydz dw < OO},
oxe 1@y —@wp

and, when ¢ = 1, the classical Sobolev space w21 (£2, Rz). By Sobolev’s embedding, forall g > 1,
witl/aa(2 R?) c w2 (2, R?) (c W]’z(.Q,R2)>.
Moreover, for g > 1,
W1+1/q,q (Q, ]RZ) C CO,]—I/q (57 RZ)’
while for ¢ = 1, and since §2 is a rectangle (see [1], Lemma 5.8),*
w2, R?) c c°(2, R?).

By the trace theorem for polygons (see e.g. [15], Theorems 1.5.2.1 and 1.5.2.8) and Sobolev’s
embeddings, we can define the trace tu of any u € witl/a 4(82, RZ) as a continuous function on
952 such that

ru|rje wha(r;, R?), j=1,....,4,

where I are the sides of £2. In what follows, when the meaning is clear, we will denote Tu simply
by u.
Letting W denote the space

W = {ue W!TV249(Q R?) : usatisfies (2.1) and (2.2)},

we consider the following problem.

MINIMIZATION PROBLEM (M) Find a displacement field u € W such that
J(u) < J(a) for all aew.

If u € W is a solution of (M), then so is u + ci, for any scalar constant c. We may therefore assume,
without loss of generality, that (0, 0) = O for all u € W. Thus, for each fixed o € R, consider the
spaces

We={ueW : u(l,0) =« u,0) =0},

W, = (ue WH([0,1]) : u(l) = a, u(0) = 0}.

* For arbitrary Lipschitz domain we only have the weaker inclusion w1 (£, Rz) ccO (82, Rz) N L($2, ]Rz).
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Then W, and W, are convex, and each u € W, satisfies

u(l, y) =u(, y) + i, y € [0, A],

. 3.1
u(x,0)-j=0, x €10, 1].

Thus, since each cell has unit length, the subscript « represents the average value of the incoherency
strain y = u, corresponding to any u € W,.

Our first step in attacking problem (M) is to determine the infimum of the functional J. We
accomplish this by first computing

inf J(u)
ueW,
and then minimizing over all « € R. To facilitate this, we introduce the convex envelope f** of f
defined by
™ =sup{g < f : g convex}.

THEOEREM ON THE INFIMIUM OF J. Forany o € R,

. E 2
golk (@) := unggfl F(u) = m(“ — ep) (3.2)
and
gint(@) := inf I(u) = f*(a), (3.3)
ueWy
3042 A
with E = u Young’s modulus and v = ———— Poisson’s ratio. Moreover,
At 200 + )
inf J(u) = min g(a), where  g(@) := gbik(®) + Gint(@).
ueW acR

Since the function g is strictly convex, for fixed 4 and ep, there exists a unique solution om;in
such that

8(@min) = gleilgg(a)- -4

We will refer to amin as the average incoherency strain corresponding to the infimum of J. By the
assumptions on f,
omin € [0, eo].

Moreover (see e.g. [20])
0 € dg(amin) = [glf(amin), g;(amin)]

Eh N Eh N
= [m (&min — €0) + (f ™) _ (etmin), -2 (otmin — €0) + (f )+(amin):| . (35)

where dg, g__, and g/, are respectively the subdifferential and the left and right derivatives of the
convex function g. As a direct corollary of the previous theorem, we have the following result.
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EXISTENCE THEOREM. (i) The minimization problem (M) has a solution if and only if

S (amin) = f (@min)- (3.6)

(i) The minimization problem (M) admits a solution with a coherent interface if and only if

_ 1= (L0

0< h<he, where he :
E eo

3.7

When (3.7) holds, then amin = 0 and (3.6) follows from the fact that f(0) = f**(0) = 0. Thus
the non-smoothness of f** at zero implies the existence of a critical value k; for & below h., the
interface is coherent. When (3.7) fails, then opin, > O and the interface is incoherent.

Granted incoherency, if f**(amin) = f(@min), then the problem (M) has a solution u, and
there is a well-defined incoherency strain y defined over the interface; in this case we will refer
to the interface as being smoothly incoherent. On the other hand, for & > h, and f**(amin) <
f (omin) (so that amip is not a point of interfacial stability), (M) has no solution; that is, there is no
function u € W that minimizes J. In this case we will refer to the interface as finely incoherent.
For such situations, even though (M) has no solution, one can derive physically meaningful results
by studying the properties of minimizing sequences—that is, sequences {u, } with the property that
u, € W and

J(u,) — inf J(u),
ueW

or equivalently
J(u,) — g(@min)-

ou,(x,0)
d

For any such sequence, let y,(x) = , SO that

|
an:f Yn(x) dx
0

is the average incoherency strain associated with u,,.
We may prove the following

THEOREM ON MINIMIZING SEQUENCES. Let {u,} be a minimizing sequence for the problem
(M) with «,, the average incoherency strain associated with u,,. Then

Qp —> Omin,

(3.8)
u, = Umin in WHA(2, RY),

as n — 0o, where

Umin (X, ¥) 1= Otmin X1 + M)’j (3.9
1=
Thus the minimizing sequences always converge in bulk to a smooth deformation.
At the interface, although minimizing sequences may not have a classical limit when (M) has
no solution, the ‘generalized limit’, however it be visualized, corresponds to a well defined average
incoherency strain, namely omin, the incoherency strain associated with the infimum of J.
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4. Proofs
Proof. The theorem on the infimum of J. Fix u € W and let o := u(1, 0). Then

Ju) =F@) + I(u(x,0)) > in‘; Fv)+ inf I(v).
veW,

veWy

Consider the auxiliary problem:

(My): minimize F (u) on W,.
The solution of this problem exists, and is given by the displacement

. . vl —a)
u(x,y) :=axi+ L vj “4.1
(1—-v)
corresponding to the homogeneous strain
- v(eg — o
E-aigit "0 Yjgj
(I—=v)
for which
in F(w) = F(i) = — (@ — e0)?
min F(u) = F() = ——— (o — ep)~,
We 2(1 — v2) 0

with v Poisson’s ratio and £ Young’s modulus. ~
To see this, note that, for any pair of displacement fields u, @ € W,, with E and E the
corresponding strains,

wE —Ep) — wE —Ey) =wE—E)+ T (E-E), 4.2)

where T = 2,u,(I:l —Eo) + A tr(E — Eg)1 is the stress corresponding to u. Thus
F(u) — F(d) =/ w(E—E)dxdy—f—/ T (E —E)dxdy. (4.3)
Q 2

If @ is sufficiently smooth to satisfy the Euler—Lagrange equation divT = 0 in £2, and if T
satisfies the natural boundary conditions T(x, #)j = 0 for x € [0, 1] and the periodicity condition
T(O, V)i = T(l, y)ifor y € [0, k], then, since both u and u satisfy the conditions (3.1), we may use
the divergence theorem to conclude that

1
/T~(E—E)dxdy:/ T-(Vu—Vﬁ)dxdyz—/ (i-’i‘(x,O)j)(u(x,O)—lZ(x,O))dx.
2 2 0

Since the above requirements are met by the smooth displacement field (4.1), for which a simple
computation shows that i - T(x, 0)j = 0 for x € [0, 1], then

F(u) > F()

for any u € W,, as a consequence of the positive-definiteness of the quadratic form w(E — E). Thus
u is a minimizer of F in Wy, and the corresponding value of the energy is readily computed. Further,
this minimizer is unique. Suppose in fact that a and u are two minimizers, so that F (1) = F(u):



ENERGIES FOR INCOHERENT FILMS: AN ANALYTICAL APPROACH

91

then, again by the positive definiteness of the quadratic form on the right-hand side of (4.3), we have
E = E, and this implies that 1 = d+a+ b(yi—xj). Buta = 0 and b = 0, since both displacements

satisfy the same boundary conditions.
Moreover

1 1 1
1(v) =[ F' ) dx > / fr () dx > f* (/ v'(x) dX) dx = f*(a),
0 0 0
where we have used Jensen’s inequality. Hence

J(u) > (@ —e0)” + (@) = g(@) = g(emin),

E
2(1 —v?)
and in turn
inf J(u) > g(omin)-
ueW

Next, we prove the reverse inequality. By Corollary 2.2.9 of Dacorogna [7],

™ (omin) = inf{Af (ya) + 1 =2) f(yp) : A €[0, 1], Ya, ¥ €R,
AVa+ (1 =X yp = ctmin};

thus, for any fixed k € N, we can find ¢ € [0, 1] and y, &, ¥».k € R, with
Omin = M Yak + (1 — A Vo ik,

such that

1
f**(amin) < )\kf(ya,k) + - Ak)f(yb,k) < f**(amin) + E

4.4)

4.5)

(4.6)

Let I, C [0, 1] be any measurable set with |/, x| = Ax and define I, := [0, 1]\14 k. Then

[Ipk| = (1 — Ag). Let

Yak X € lak,
X) =
&) { Yok X € Ik,

and let R
up(x) = / gk (t) dt — orin X x €[0,1].
0

Since ux (1) = ur(0) = 0, we can extend uy by periodicity to all of R. Forn € N, let

1
un,k(x) = UminX + ; ug(nx).

Then, for a.e. x € [0, 1],

/ Ya,k nx € lq,
un’k(x) =
Vb k nx € Ipg,

and, as n — 0o, we may use Theorem 2.1.5 of Dacorogna [7] to conclude that

*

Unk = ominX  in WH([0, 1; R)

4.7



92 P. CERMELLI, M. E. GURTIN, & G. LEONI

Fix ¢ > 0 and let ¥, € Cgo([O, h]; R) be a cut-off function, with 0 < ¥.(y) < 1, such that
Ye(y) = 1o0on[2¢, k], ¥.(y) =0on [0, €], and

WM< C/e  forally € [0, Al
Let

V(@min — €0)

1 i (4.8)

Wy ek (x, y) = (%(y) ominX + (1 — %(y))un,k(X)>i -
Then
[y (x, y) —0(x, Y| = (1 = Ye(W)|nk(x) — aminX| < [|unk — eminX||Lo00,13:R)
and thus, for k and ¢ fixed,
ek — Ul poo(o.r2) — O asn — 00.
Moreover, by (4.5), for a.e. (x,y) € £2,

8un,ﬁ,k

e
3 (x,y) — —u(x, y)‘ = (1 = YD up 1 (x) — amin| < (1 = YeOW)|Vak — Yokl
X ax

Thus, since ¥.(y) = 1 on [2¢, h],

|

ou, ¢k ou 2

0x ax

2
< 2e|Vak — Yokl
L2(2;R2)

Consequently, for k fixed,

_ 2
d d
lim lim || 2ok 28 —0.
g—>(0n—00 3)6 ax Lz(.Q;R2)
Finally,
oy, ¢k ou , C
3y (x,y) — E(X’ M| = e unx(X) — @minx| < g [tenx — aminx“LDO([O.l];]R)

and thus, for k£ and ¢ fixed,

In conclusion, we have shown that, for any &,

311,1’5’]( ou

— -0 asn — oo.
dy dy

Lo(82;R2)

lim lim |ju —ully120.r2) =0.

el 00 [ty 6.k ||W 2(2:R?)

Using a standard diagonalization argument, we may extract a subsequence U := Wy, ¢ x Which
converges to U in Wl’z(.Q; Rz). Hence, as k — 400,

lim F(w) = F(@) = (etmin — €0).
k— 00 2

Eh
(1—v%)
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By (4.8), ux(x, 0) - i = u,, 1 (x)i and thus, by (4.6),

1 1
F* (omin) < fo S g, 1 () dx = M f (Var) + (0 =) f (oi) < f (@min) + 2

To obtain the desired result, it suffices to let kK — oo in the previous inequality. O

Proof. The existence theorem. We only prove the first assertion; the second follows directly from
(3.5).

If (M) admits a solution u then, by the theorem on the infimum of J, it must minimize the
bulk energy F'(u). By the uniqueness of the minimum, it must coincide with the smooth solution
u in (4.1). The trace of this function on the lower boundary {y = 0} of §2 is by construction
u(x,0) = aminx, which must, in turn, minimize the interfacial energy functional 7 («). Thus

1
F* min) = 1 () = /0 £ (etmin) dx = f (ctmin).

Conversely, if this relation holds, the minimum exists and is given by u. O
Proof. The theorem on minimizing sequences. Notice first that, by (3.2) and (3.3),

goik(an) < F(uy) and  gine(on) < 1 (up).

Thus, g(o,) < J(u,). But J(u,) — g(omin) < g(oy,) and g is strictly convex. Thus o, — omin
and we have (3.8);.
Let E be the strain associated to Upp; then, by (4.3), we have

F(un>—F<ﬁmm>=f w(En—E)dde/ T (E, - E)dxdy,
2 2

and applying the divergence theorem and the periodicity boundary conditions, the last integral may
be written as

h ~
/0 i T (L. )i @ — cmin) dy.

which vanishes as n — oo by (3.8);. Thus, by the positive-definiteness of the quadratic form w(E),
it follows that E, — E in L?(£2, R®*?), and Korn’s inequality (see the appendix) yields the
desired result. O

5. On the structure of minimizing sequences
5.1 Oscillating sequences

The minimizing sequence (4.8) constructed in the proof of the theorem on the infimum of J becomes
particularly simple if we assume that there exist A € [0, 1] and y,, ¥» € R such that

f**(amin) =Af (Vo) + A =2)f(vp), Qmin =AY + (1 = Vyp. G.1D

Indeed, we may then replace gi, ux, and u, . x respectively by

x € 1, .
g(x):{ )’jz xelz with |I,] = A and |Ip| = (1 — &),
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ux) = /x g(t)dt — amin x, Un(X) = CminX + lu(nX), (5:2)
0 n

V(@min — €0)

1 i- (5.3)

un,s(x’ y) = (Kbs(y) Ominx + (1 — ws(y))un(x))i -

Note that, when
f** (@min) < f(@min),

each function u,(x) is a minimizer of the problem

‘ e —
inf I (u) = L0 pyy 4 Do TV
Wy Yo — Va Yb — Ya

since

nx € g,
u;l(x): Ya a
Vb nx € Ip;

but the weak limit of the sequence, o¢minX, iS not.

This is why the minimization problem (M) has no classical solution, and the infimum of the
interfacial energy is reached only in a generalized sense, a sense well described by Young measures.

This approach has been used successfully for minimization problems in phase transitions (see
e.g. the work of Ball & James [2]).

In our case, we can show that the sequence y, generates the gradient W!°°-Young measure (in
the sense of Kinderlehrer & Pedregal [16])

v = dx ® ()“87/51 + (1 - )")6)/},)’

where §,, and §,, are the Dirac measures on R concentrated respectively on y, and yj.
Indeed the sequence u, is weakly* convergent in W1 ([0, 1]; R). Moreover, for any ¢ €
Co([0, 1] x R; R),

1

1 1
/0 ox, yp(x))dx = /o Xa(x)p(x, Yq) dx -|-/0 Kb (X)) @(x, yp) dx
1 1
g / )\,(/)(x, Va)dx + / (1 — )u)(p(x, ‘}/b) d_x = / (/)dl)
0 0 [0,11xR

as n — 0o, where y, and y; are the characteristic functions of the sets 1, and I, respectively, and
we have used Theorem 2.1.5 of Dacorogna [7] to conclude that

1
Xa(nx) i/ Xa(xX)dx = A in L®([0, 1]; R),
0

1
Xp(nx) — /0 xp(x)dx = (1—=2) in L([0, 1]; R).
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5.2 Uniqueness of the Young measure

In this section we prove that under some general hypotheses on the function f all minimizing
sequences generate the same Young measure at the interface. The approach is classical: see e.g. the
work of Ball & James [3]).

We assume that
f)
m ——- =00

li
)/—)OO y

54

Let {u,} be a minimizing sequence for the problem (M) with «, the average incoherency strain
associated with u,. We have already proved that

1
Oy —> Omin, / ) dx — f**(amin)y
0

u,; — Upjp in Wl’z(-Q, Rz)»

(5.5)

where Uy is defined in (3.9). By the growth condition (5.4) and (5.5);, we have, in particular, that

1
/Immx<M
0

for all n € N. In turn .
hMMé/IMMgM.
0

Hence, again by (5.4), (5.5)2, and the Dunford—Pettis criterion, there exists a subsequence u,, which
converges weakly to some function v in the space wb1([0, 1], R). On the other hand, since by the
continuity of the trace operator u, converges to ®mipX in L2([0, 1], R), then, necessarily, v(x) =
omin* and thus the entire sequence u, converges weakly to ominx in W L1 ([0, 1], R). There are now
two cases.

If f**(&min) = f(omin), then Gp, is a classical solution of the problem (M). Thus we may
focus on the complementary situation

S (amin) < f (Cmin)- (5.6)

Let
Amin 1= {V eR: f™(y) = [ (otmin) + (f**);(amin)(y - amin)}~

The set Apiy is clearly closed, convex, and nonempty, since omin € Amin. Moreover it is also
bounded, since by (5.4)

. ()

im =00

y—=>00 y

Thus Amin = [Ya, ¥»], where 0 <y < omin < ¥ If Yy < yp, then

fad)=f"va) and  f(y) = (). (5.7)

Indeed, suppose, for example, that f(yp) > f**(y»). By continuity we can find p > 0 and 0 <
€0 < ¥p — Ya such that

fw)> f*w)+p  forally €[yp — o, v» + €0l
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Consider the function

" W +e)— (v —e)

W) =" —e¢ 5
£

(V - (yb - 8))7
where we have chosen 0 < & < g so small that

) < AW < f)—4tp  forally € (v — &, v + o).

The function

fw) in[y, — &,y +el,

fay) ==sup{fi(y), [T ()} = () otherwise,

is convex and such that f**(y) < fa(y) < f(y) for all y € R, with the inequalities strict in
(v» — &, v» + €). This is a contradiction. Thus (5.7) holds. In this case, by (5.6), we have y, <
Qmin < Yp S0 that f** is actually differentiable at apip.

When y, < yp, we make the essential hypothesis that

) < f) in (Ya, yb)- (5.8)
We claim that
dist(yu, {va} U {m}) — 0 in measure. 5.9)

Indeed, fix ¢ > 0 (with O < ¢ < y» — ¥4 if ¥4 < y»). Then, by the equintegrability of the sequence
¥, there exists M = M(e) > yp + 1 such that

{x [0, 1]:  |ya(x)| = M}| < e/3.

If yo < yp let
Ce=min{f(y)— f*): yvelvate w—el}.

Then C. > 0 by (5.8). Moreover, since u, converges weakly to omipx in whiqo, 11, R), by
classical lower semicontinuity results and Jensen’s inequality we have

1
f* (min) = nlggo‘/(; S () dx
1 1
= liminff f**(yn)dx P / f**(amin) dx = f**(amin)-
n—oo Jy 0

Consequently

1
0= Jim [ 1 = £ lds > €. lim Iix €011 (o) € a3 <D,

Let
D, = mln{f**(l/) - f**(amin)_(f**)/(amin)(y — Omin)
Y € [yb +89 M] U [_M7 Ya _‘9]}
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Then D, > 0 by the definition of the set Anin. Moreover, since o, — &min,
1
f** (@min) = lim f f**(Vn) dx
n—0o0 0

n—oo

1
> lim inf/O [f**(amin) + (f**)/(amin)(yn — opin)] dx = f**(amin)-
Thus |
0= nlggo A [f** (yn) — f** (@min) — (f**)/(amin)()/n — @min)] dx
> D, lim |x € 10,115 () € [y +& MIUT-M, y, — ]}l

In conclusion we have shown that, for n sufficiently large,

H{x € 10,172 dist(yn, {va} Ui} 2 e}l <e,

that is (5.9).

Since y, converges weakly to oy in L([0, 1], R), we can apply the fundamental theorem on
Young measure (see e.g. [14]) to obtain the existence of a weak™ measurable map v : [0, 1] —
M (R) such that the following hold:

@) vy =0, |[vel|m@) = Jgdvx = 1forae. x € [0, 1];

(i) supp vy C {ya} U {p} fora.e. x € [0, 1].
Thus for a.e. x € [0, 1]

vy = A(x)8y, + (1 — A(x))5,,, where 0 < A(x) < 1.

On the other hand, since

tmin = (v, id) = fR ydue () = A7a + (1 — A7,
it follows that A(x) = A. Hence
Ve = Ady, + (1 — )8y,

and the proof is complete.

5.3  Concentrating sequences

Condition (5.1) may not be satisfied in the important case in which f is strictly concave. We have

*(y)=my,  with m= lim piv2l
y—>+oo y
This may be proved using the inequalities f**(Ly) < Af*(y) < Af(y) < f(Ay): taking A =
yY/v < 1 we obtain that
XK (5 —
AVl (CO N (2]
14 14 14
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and, taking the limit as y — 400, we have the above representation for the convex envelope of f.
In this case, omin can be computed explicitly. Indeed

m(1 — u2)}

Omin = Max {0, ey — Eh

so that (5.1) fails when
m(l —v?)
E e

h >

because amin > 0.
To construct the minimizing sequence (4.8) in the proof of the theorem on the infimum of J,
note that, if ¥, x < ¥p.k, then

lim y,x =0, lim yp = +o00. (5.10)

k— 00 k——+00

To see this, observe that by the strict concavity of f, f(y)/y is strictly decreasing, so that

— S o k)
Vb, k

mamin < A (f Vax) — mypx) +momin < Ak f (Vak) + (10— 20) f (Vo i)-

amin < A f Vax) + A — ) f (Vboh)s

Hence, to attain the infimimum, a minimizing sequence must be such that

B NASZX3)
m —- =m,
k—4o00 Vb, k

and (5.10); follows. Now, y, « is bounded; otherwise, by the growth properties of f, the expression
A f Va k) + (1 = Ag) f (¥p.k) would be unbounded; and this shows that

_ Yk = Omin

Yok — Va,k

g -1,
which implies
lim (f(Vak) —myar) =0,
k— 400

which proves (5.10);.
For instance, we may take, as a minimizing sequence,

Qmink x €[0,1/k]

8ilx) = {0 x e[l/k 1]

so that, for a.e. x € [0, 1],

Qmink nigx €[0,1/k],

0 nex € [1/k, 1], ©-11)

u}c(x) = u;k,k(x) = {

Contrary to the previous subsection, Young measures cannot be used in the present context
to describe the structure of the minimizing sequence, since they cannot describe concentrational
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effects. Instead, we use here the concepts of varifolds or indicator measures (see e.g. the work of
Fonseca [12] and of Fonseca, Miiller & Pedregal [13]). We claim that the sequence y;,, defined in
(5.11) generates the w1 varifold

A = dx ® amindy,
where &1 is the Dirac measure on the unit sphere S = {—1, 1} concentrated on 1. Indeed the sequence
uy is bounded in W!! ([0, 1]; R). Moreover, for any ¢ € Cp([0, 1] x R; R), by the mean-value

theorem,
1 1
Vi (x)
@\ x, lve ()| dx = amink | xx(nex)e(x, 1) dx

0 [V (x)] 0

ng—1 (h=+1/k)/ng ng—1 1
= Omin Z k/ o(x, 1)dx = amin Z —<ﬂ(xh,k7 1)
h=0 Jh/m h=o "k

1
—>Olmin/ w(x,l)dx:/ pdA as k — oo,
0 [0,1]xS

where xj is the characteristic functions of the set [0, 1/k], and
|: h h 1 ] |: h h+ 1:|
Xprk€|—s—+— | C|—, .
ng ng o kng ne Nk
The claim is thus proved.

It is clear that one can also take ¢(x,y) = 6(x)¢p(y), where 6 € Cp([0, 1]; R) and ¢ is
positively homogeneous of degree one. Thus we can use the varifold to express the infimum of
the interfacial energy in a suggestive form. Let 6 € C ([0, 1]; R); then

1

1 1
/0 9(X)f(yk)dx:/0 9(X)(f()/k)—ml/k)dx4r/0 0 (x)myy dx.

The first integral on the right-hand side goes to zero as k — oo, since

< amin (M - m) 1810c.

Qmink

1
‘/0 0(x)(f (vk) — myx) dx

Now, choosing ¢(x, y) = 6(x) my, we obtain

1 1
/ O(x)f(yk)dxemamin/ 9dx=/ Of**dA.
0 0 [0,1]xS

6. Results for specific forms of the interfacial energy

We now turn to the analysis of various forms of the interfacial energy density f. We will focus on
the problem of the dependence of amin on /2, where, we recall, amin is the average incoherency strain
corresponding to the infimum of J, which is defined in (3.4). As we have shown in the existence
theorem, the non-smoothness of f** at zero implies the existence of a critical value for / below
which the interface is coherent. Analogously, non-smoothness at other points implies that there are
intervals of 4 within which the interface remains smoothly incoherent with a fixed incoherency
strain. Finally, when f** is smooth at oy, the interface is either finely or smoothly incoherent
according to the convexity at omip-
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6.1  f convex and smooth (Fig. 1)

Since, in this case, f(y) = f**(y), the solution exists in W and is given by Ui, in (3.9). The trace
of Giyin on the lower boundary of £2 is u(x) = minX, With oy the solution of (3.4).

Thus the interface is always smoothly incoherent, since the film is uniformly strained with
respect to the substrate, and no fine structure appears.

The average strain at the interface amin, which measures incoherency, is related to the variation
of the thickness of the layer by the relation

1—v? S/ (otmin)

h = s
E €0 — Umin

6.1)

which shows that, when 2 — 0, then oin — 0, and when & — 400, then apmin — eo. Note that,
by (3.7), the critical thickness %, vanishes, and the interface can never be coherent.

6.2  f convex but non-smooth at y = 0 (Fig. 2)

Again f(y) = f**(y), so the solution exists in W, and no fine structure develops at the interface,
which can thus only be either coherent or smoothly incoherent.

Since f is not differentiable at y = 0, there exists a critical thickness for the transition to
incoherency, which is given by (cf. (3.7))

1—v? f1(0)
he = —— 2,
E 2

Thus for & < h, the interface is coherent, while for 7 > h, the interface is uniformly strained with
respect to the substrate, and relation (6.1) still holds.

6.3 Leo-Hu energy (Fig. 3)

In this case, there is a value y; of the incoherency strain such that f is concave for |y| < y1, and
convex otherwise. Moreover, f is non-smooth at y = 0, as is the convex envelope of f, which is

mlyl Iyl <,
) =
fw) lyl=>w.
: Sy : iy . .
withm = . Thus there is a critical thickness for coherency given by
"1

1—v2m

hC = )

E ¢

such that for & < h. the interface is coherent.
Two cases are now possible. Assume first that the mismatch strain is small, in particular that

€ < V1,

so that, since omin < €g, then f**(amin) < f(omin), and thus for 2z > h, the interface is finely
incoherent. Moreover, writing omin = A1, then f**(amin) = mAy; = Af(y1), so that (5.1) holds,
and the minimizing sequence is constructed as in (5.2) taking y, = 0 and y, = y;.
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Thus, when £ is above the critical thickness and coherency is lost by not being energetically
favoured, the energy is decreased towards its infimum by interfaces composed of finer and
finer mixtures of coherent and incoherent patches, with total length fractions 1 — amin/y1 and
amin/ Y1 respectively. This sequence determines a Young measure, which characterizes its oscillation
properties and thus ultimately the fine structure of the interface.

On the other hand, when

€ > V1,
we may define a second critical thickness
, 1—v2 m
h,:= ,
¢ E e—n

such that, for & > h/, then y; < amin < eo, and the interface becomes smoothly incoherent,
since f**(min) = f(omin) and (M) has a regular solution in W. Below hé the interface is finely
incoherent as before.

In other words, when the mismatch strain is large, the interface loses coherency at the first critical
thickness by nucleating finer and finer incoherent patches, but when the second critical thickness is
reached, then this fine structure is lost and the layer becomes uniformly strained with respect to the
substrate.

6.4  f nonconvex and nonsmooth (Fig. 4)

Here there are values 0 < y; < y» < ... of the incoherency strain such that f**(y) = f(y) atand
only at y = %y;. f**(y) is therefore piecewise linear with slope changes when y = +y;:

mily| lyl <
() = { ma|y| +const.  y; <

with m; < my. To fix ideas, assume that the mismatch strain is such that eg € (yy, y2): then (3.7)
shows that, when the thickness is below the first critical value given by

1—v2 mq

h < h,:= z ”

)

the interface remains coherent.
To proceed further, define two more critical values for & by

-2 m ” 11— my

h.o= , h = ,
¢ E e —y ¢ E e —y

which have the following properties; for z such that
he <h <h.,

the interface is finely incoherent: (5.1) holds, and the energy is minimized by sequences as in (5.2),
oscillating between y, = 0 and y;, = y; (with total volume fraction omin/y1), and which represent
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mixtures of coherent and incoherent patches. The fine structure of the interface is summarized by a
Young measure, as in the preceding section.
When the thickness reaches the second critical value, i.e. for

hl. <h<h,

the interface structure changes drastically and it becomes smoothly incoherent. Indeed, for all values
of the thickness satisfying the above inequality, the relative incoherency strain remains constant and
fixed at the value y = yy.

The layer remains ‘glued’ to the substrate with fixed incoherency strain until the third critical
threshold is reached. Beyond this, i.e. for a thickness such that

h>h/c/,

oscillations appear again, and the interface becomes finely incoherent. In particular, since (5.1)
holds, the minimizing sequences correspond to fine mixtures of different incoherent patches,
corresponding to incoherency strains y, = y; and ¥, = y», and the fine structure of the interface is
again determined by a Young measure.

This behaviour is reminiscent of ‘coincidence boundaries’, which are special incoherent
interfaces between crystals with a large difference in lattice parameters. In these cases, a stable
configuration is attained when the incoherency strain assumes a given value, corresponding to the
ratio of the lattice parameters (say y; = p/q > 1, with p and g integers). As the thickness
changes, the interface tends to stick to this particular structure, and this is accounted for by the
critical thickness interval [A, h/]. When the threshold 4/ is reached, the interface becomes a fine
mixture of regions at which the relative strain oscillates between y; and a neighbouring minimum
for the energy, say y» = (p — 1)/(g — 1).

6.5  f strictly concave and non-smooth at y = 0 (Fig. 5)

We have seen that, in this case,

) =my, with m = lim M’
y—+oo y
so that
0 m(1l —v?)
 — ma _md =)t
Omin = max U, e Eh
Thus, if
m(1 —v?)
0 < h < hc =
E ¢y

the interface is coherent, and we have again a threshold effect. Above the critical thickness 4.,
omin > 0 and the interface is incoherent, but since f** < f, the minimum of the energy is not
reached by a smooth function in W: the interface is finely incoherent.

Moreover, (5.1) does not hold, and the minimizing sequences are as in (5.11), so that the
incoherency strain y tends to concentrate and become unbounded on sets of measure approaching
zero. This should model the formation and fine dispersion of dislocations along the interface, these
being naively represented by jumps in the tangential displacement.
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Since no regular fine structure is actually present, the fine properties of the interface (and of the
minimizing sequences) are best summarized by the varifold computed in the preceding section. The
varifold is constant along the interface, which shows that the ‘defects’ are uniformly distributed.

Notice finally that, for this family of interfacial energies, the threshold effect for the transition
between coherency and incoherency, and thus the ability of the interface to support shear stresses, is
essentially determined by the growth rate of f at infinity, as described by m. This may be explained
by the fact that, as noticed above, the minimizing sequences are characterized by concentrations of
the incoherency strain on smaller and smaller sets at which it becomes unbounded.

6.6  The convex envelope of f is identically zero

This situation occurs if and only if liminf Fw
y—>o0 V4

= 0, so that (5.1) does not hold.

In this case f** =0, and

Omin = €9 > 0.

The interface is always finely incoherent, since the critical thickness vanishes, and relaxes
completely to the bulk equilibrium strain, so that the average incoherency strain coincides with
the mismatch strain.

If f is concave, the infimum of the energy is not attained, and the structure of the minimizing
sequences is as above, with incoherency strain concentrating on sets of measure zero. The fine
properties of the interface are described again by a varifold as in Section 6.5.

To construct the minimizing sequences (4.8) in the proof of the Theorem on the Infimum of J,

let ty ' oo be such that
lim L)
im —— =

k—oo0 I

0.
Then we may choose, for example,

eoty x €[0,1/t]

gr(x) =
0 x € [1/t, 1]
so that
el ngx €0, 1/4],
W (x) = uly  (x) =
0 ngx € [1/t, 1].
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Appendix: Korn’s inequality

We state and prove here a modified version of Korn’s inequality. The proof follows Dautray & Lions
[8]. Recall that functions in W are such that u(0, 0) = 0.
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THEOREM If £2 is a bounded set with regular boundary, then there exists a positive constant C
such that

2 2
”E”LZ(Q’R(ZXZ)) 2 Cllu]l w22 ,R2)

for any u € W, and with E the strain associated to u.

Proof. The first step is to prove that ||E||i2(_(2 R@xDy = Jo E - Edx dy defines a norm on W, i.e.
IEll2(2 rex2»y = 0 = u = 0. To see this, note first that if IEll 22 Rex»y = O then E = 0 ae.,
and this in turn implies that u(x, y) = a+ b(yi — xj), with a and b constant. But sinceu € W, (2.1)
holds and b = 0, while a = 0 is a consequence of u(0, 0) = 0.

The second step, which shows that the norm ||E|| 2 rex2) is equivalent to the wl2(2,R?)

norm on W, is as in Dautray & Lions [8]. a



