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Existence for an Allen—-Cahn/Cahn-Hilliard system with degenerate mobility
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We prove existence in one space dimension of weak solutions for the Neumann problem for a
degenerate parabolic system consisting of a fourth-order and a second-order equation with singular

lower-order terms. This system arises in the description of phase separation and ordering in binary
alloys.

1. Introduction

Our paper is concerned with the Allen—Cahn/Cahn-Hilliard system

ur = [01Qu, v)(Fyu(u, v) — uxe)xly (x,1) € 27
vy = —2Q(u, v)(Fy(u, v) — EVxy) (x,1) € 2r
P){ ux =vx =010, V)(Fu(u,v) — euxe)y =0 (x,1) € St
u(x,0) =up(x), v(x,0) =rvo(x) X €2
(u,v) € B (x,t) € 27

where £2 C R is a bounded open interval, T > 0, 27 = £ x (0, T) and St = 9§2 x (0, T). The
dimensionless homogeneous free energy JF is assumed here to have the form

f(u,v):F(u—l—v)—l—F(u—v)—l—F(l—(u+v))+F(1—(u—v))+ozu(1—u)—/3v2,

where F(s) = %s Ins and @ denotes the (dimensionless) absolute temperature; the function F is
defined in the square

B:{(u,v)eR2:O<u+v<l,0<u—v<l},

and Q(u, v), the mobility, is non-negative. Here ¢ is a gradient energy coefficient, and ¢, «, S,
w1 and w; are positive constants. The system (P) with constant mobility was introduced by Cahn
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& Novick-Cohen [13] in the description of simultaneous phase separation and order—disorder
transition in a BCC Fe—Al binary alloy: u# and v represent a conserved (typically an average
concentration) and a non-conserved order parameter, respectively. See [13] for further relevant
references. In the context of their derivation w; and w, should assume the values 4¢2 and %
respectively. For the sake of simplicity in our analysis we let w; = wy = 1, though our conclusions
are valid for arbitrary positive values of @ and w;. The derivation in [13] can be extended to allow
a non-constant mobility, and in the present paper we shall make the further assumption that the
mobility Q is given by

1
O, v) =u(l —u)(7 = v?) = Q1) 02(v);

such a form satisfies the physical notion that the mobility should vanish at the pure phases and also
turns out to be analytically convenient to consider.

It is known that Allen—Cahn and Cahn—Hilliard equations can serve as diffuse interface models
for limiting sharp interface motion. The Allen—Cahn equation serves as a diffuse interface model for
antiphase grain boundary coarsening in the sense that a singular limit of the equation ([1],[28],[22])
yields a geometric problem in which a sharp interface separating two phase variants evolves
according to motion by mean curvature (V = M). The Cahn—Hilliard equation was constructed
to describe mass conservative phase separation, and by considering an appropriate singular limit
can describe the motion of interphase boundaries separating two phases of differing composition
during the later stages of coarsening. For the constant mobility case with a non-singular free energy,
this limiting motion ([27], [16]) is given by a free boundary problem known as a Mullins—Sekerka
problem. For the Cahn—-Hilliard equation with a degenerate mobility and with a free energy with
logarithmic terms (as in (P) setting v = 0), it has been shown [12] that when ® = O(el/?),
the limiting geometric boundary motion is predicted to be given by V. = —M Ak; i.e. surface
diffusion. Rigorous justification has yet to be given for the surface diffusion description; however,
the numerical results of Blowey & Elliott [8], Barrett & Blowey [2], and Barrett, Blowey, & Garcke
[3] lend credibility to these results. Similarly, a singular limit for a system of Allen—Cahn equations
can yield geometric motion in which an array of antiphase boundaries move by motion by mean
curvature and couple together at triple junctions according to Young’s law [11], and singular limits
for a system of Cahn—Hilliard equations can lead to an array of interphase boundaries governed by
a generalized Mullins—Sekerka problem [10] or by motion by minus the surface Laplacian [23].

As remarked above, by its construction, the Allen—Cahn/Cahn—Hilliard system was designed
to describe simultaneous order—disorder and phase separation. By examining the free energy
prescribed in Problem (P), it is clear that at low temperatures three phases—a disordered phase
given by (u, v) =~ (0, 0) or (1, 0), and two ordered phase variants given by (u, v) & (%, j:%)—
should roughly dominate the system at late times when it is nearly equilibrated. A description of
the motion of both antiphase boundaries (APBs) separating ordered phase variants and interphase
boundaries (IPBs) separating ordered variants from regions of disordered phase should be provided
by the Allen—Cahn/Cahn—Hilliard system (P) in an appropriate singular limit. In the proximity of
the deep quench limit (O(&'7?)), formal asymptotic analysis for Problem (P) (Cahn & Novick-
Cohen [14], Novick-Cohen [25]) has predicted geometric motion in which APBs are governed by
motion by mean curvature, IPBs move by motion by minus the surface Laplacian of the curvature,
and there is quasi-static diffusion of the chemical potential along APBs. Under the assumption that
the curvature of APBs is O(¢~1/?) and the curvature of IPBs is O(g3/2), the two motions occur
on the same time scale, and as in the analysis for a system of degenerate Cahn—Hilliard equations
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[23], triple junction motion is governed by balance of mass flux, Young’s law, and continuity of
the chemical potential. To leading order, complete wetting is predicted; i.e. two IPBs connecting
up with an APB at a triple junction meet with an angle of zero between them. However, the
previously mentioned analysis allows the possibility of dynamic inhibition of complete wetting;
i.e. the angle between two IPBs meeting at a triple junction may be small but non-vanishing. We
remark that recently, Cahn & Novick-Cohen [15] studied limiting motion for an Allen—Cahn/Cahn—
Hilliard system with non-constant mobility and a polynomial free energy designed to model the
neighborhood of a tricritical point. By varying the values of the free energy polynomial parameters,
they were able to mimic various levels of adsorption, prewetting, and impurity drag. Also, as
discussed in [25], the Allen—Cahn/Cahn—Hilliard system can be viewed as a diffuse interface model
for sintering of small grains and grain boundary grooving of polycrystalline films.

The analytical study of the Cahn—Hilliard equation in the case of constant mobility and
logarithmic free energy is due to Elliott & Luckhaus [21] who demonstrated existence and
uniqueness. By passing to the limit ® — 0, they obtained existence and uniqueness also in the
deep quench limit; i.e. with a free energy of the form

u(l —u) O0<u<l

F(u) =
+00 elsewhere,
as had been proven earlier by Blowey & Elliott [7]. The Cahn—Hilliard equation with non-singular
lower-order terms was considered by Novick-Cohen in [26], where the effect of a concentration
dependent non-degenerate mobility on stability was studied. The degenerate case with possibly
singular free energy was studied by Elliott & Garcke [19] who proved existence under general
assumptions on Q and F which include the case

Ow) =u(l —u),
Fu)=Fw) +F( —u) +au(l —u);

existence for non-degenerate mobilities with a possibly singular free energy is a byproduct of [19].
In the case of concentration dependent non-degenerate mobilities with a logarithmic free energy,
uniqueness was proven by Barrett & Blowey [2] for sufficiently regular initial data. Recently, Elliott
& Garcke [20] and Garcke & Novick-Cohen [23] have obtained existence results for respectively
systems of Cahn—Hilliard equations with degenerate mobilities and the limiting geometric motions
to which such systems give raise in the long time, low temperature limit. We mention that systems of
Allen—Cahn/Cahn-Hilliard type with non-singular lower-order terms and non-degenerate mobilities
have been considered by Brochet, Hilhorst, & Novick-Cohen in [9], where global existence as well
as existence of a global attractor and inertial sets was proven.

The problem of existence of solutions for system (P) is delicate in several respects. In fact, this
kind of operator combines together various non-trivial features. For example, it is known (see [4],
[17], [18], [6]) that the degeneracy of the principal part leads, even when considering each equation
in the system separately, several open problems on well-posedness. Below we shall describe some
of the problematics in detail (see also Remarks 1.2 and 1.3).

In considering Problem (P), one has to deal with the constraint (u, v) € B; in addition, note that
the partial derivatives of F can be extended to be continuous functions with values in R U {£o00}
only in B \ {(0,0), (1, 0), (%, :I:%)}, and not in B. This difficulty can be handled in the case of
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positive mobilities via a-priori estimates in L!(£27) on the terms
F'u+v),...,F'(1—(u—v)) (1.1)

which are logarithmic. This estimate implies that (#, v) € B almost everywhere in £27 in the case of
positive mobilities. Another peculiarity in the structure of the operator, which turns out to be crucial
in our analysis, is the fact that the mobility degenerates only at the vertices of the box B, whereas
the derivatives of F are singular over the whole boundary d B. Therefore there is no obvious way to
bound a-priori the product of mobilities and derivatives of F. For a single degenerate C—H equation
such difficulties do not arise as the locus of the zeroes of the mobility and the singularities of the
logarithmic terms appearing in the free energy is identical. Thus, this represents a main difference
between the system which we consider here and the case of a single degenerate C—H equation [19].
On the other hand, the assumed form of Q allows the derivation of an estimate for v, namely

/WgH/ﬁz)/’l if Be(l,4]. (1.2)

2\~ 2 \z 7Y%

This estimate permits control of the degeneracy of the system with respect to the variable v. It is
worth noting that the estimate (1.2) only holds if one knows a-priori that the range of the solution
is contained in the closure of the square. For this reason we first prove an existence result for the
case of non-degenerate mobilities with a logarithmic free energy, whose solutions can be shown to
satisfy (u, v) € B by virtue of the estimates on terms of the type given in (1.1). Afterwards we
derive an estimate in L' (§27) for the terms

u(l —wvF' W +v),...,u(l —u)oF' (1 — (u — v)) (1.3)

which holds for arbitrarily positive mobilities and implies that the constraint (u,v) € B U
{(0,0), (1,0)} is satisfied almost everywhere. Indeed, we are not able to exclude the possibility
that the sets in £27 where (u, v) = (0, 0) or (u, v) = (1, 0) have positive measure—a possibility
which has also not been excluded in the case of a single degenerate C—H equation with free energy
and mobility of analogous form.

Throughout the paper we make the following assumption on the initial data:

uo € H'(2), vo € H'(£2),

L (1.4)
(MO’U0)€B9 UOG(_I/Zsl/z)» %6(09 1)’

where f denotes the mean value of f in £ of a given f € L'(£2). Let us introduce some notation
which we shall use in the sequel. Given u, v € C(£27), we define the sets

Dn(u):{(x,t)eﬁT:n<u(x,t) <l—-n}, 0<n< %
B,v) ={(x,1) € 27 : (u(x,1),v(x, 1)) € B},

with the convention that D(u) = Do (u). We denote by (-, -) the duality pairing between (H'(£2))
and H'(£2).
Let us define our concept of a weak solution for Problem (P) as follows.

DEFINITION 1 A triplet (u, v, w) is called a weak solution of (P) if:
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1

() ueC%8(27)N L0, T: H(2)),
v e %3 i(R2) N LR, T: H(2)),

w e L?(27);
(i) urx € L (D)), vyx € LE (D(u));

(iii) u; € L2(0, T; (H'(R2))), v, € L*(27):

(iv) (u,v) € B,v e (—1/2,1/2);

(V) Fulu,v) € LE (D)), Fyu,v) € LE (D(u));

(vi) u(x,0) = up(x), v(x,0) = vo(x);

vii) uxls,nDwy = Vxls;npw = 0in L (St N D(u));
(viii) (u, v, w) solves the system (P) in the following sense:

St~

(s, ¢)dt = —//[Q(u, V1 2we, Vo € L0, T; H' (2)), (1.5)
Qr

/fw - —f 0, v)(Fy (. v) — v Vi € L2(27) © supp ¥ C D). (1.6)

Qr Qr

where w = Q"2 (u, v)(F, (u, v) — €y, in the sense that

[[wo =[] Futw) = e (10w, v1'2) 1.7
Q7 Q7

forall ¢ € L2(0, T; H, (£2)) with supp ¢ C D(u).
REMARK 1.1 The terms in the Definition are all well defined. In particular:

1. The traces of uy, v, in ST N D(u) can be seen to be well defined by the following argument:
Let K C St N"D(u) compact; then K € St N Dy (u) for some n > 0. Since u € C(R27), we
can select ¢ € C*®(27) such that 0 < ¢ < 1,¢ = 1in Dy(u) and ¢ = 0 in 27 \ Dy 2(u).
Then ¢u € L?(0, T; H*(£2)) and therefore ({u)«|g, € L?(0, T; L*(352)). It follows that

Uxls;nx € L* (St N K).

The argument for v, is the same.

2. Since (iv) implies that Q;(v) is strictly positive, from (i) it then follows that the function
([Qu, v)]l/zd))x has compact support in D(x) and belongs to L*(£27) for any ¢ €
L2(0, T; H'(£2)) with supp ¢ C D(u). Therefore the integral at the right hand side of (1.7)
makes sense.

REMARK 1.2 Comparison with other definitions of solution.

The choice of test functions which are compactly supported in D(u), as well as the regularity
properties given by (ii) and (v), differ from (and actually weaken) the definition of solution given
in [19] in the case of a single degenerate C—H equation. This reflects the lack of control on the set
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{u = 0, 1}, which is essentially due to the difference between the locus of the zeroes of Q and that
of the singularities of F,, F,.

Note that our choice of the unknowns—which were taken in [19] to be (u, v, J) with J =

Ou, v)(F, — euyy)x—is not weaker: indeed, choosing ¢ = +/Qg in (1.7), one can identify the
flux J in the sense that

T
/(um ¢)di = —//Jqsx Yo e L20,T: H'(2)),
0 Q2r

//](p _ —//(fu ~ ey (09)s
Qr 2r

forall ¢ € L2(0, T; H}(£2)) with supp¢ C D(u).

where

REMARK 1.3  Uniqueness.
According to our definition, problem (P) admits more than one solution. To demonstrate this, let
us take v = 0; then (P) formally reduces to a single C—H equation to be solved in D(u). Hence,
this is a free boundary problem (the free boundary being given by 0D (u)), but our definition does
not specify any free boundary condition. Note that the definition of solution given in [19], and in
particular the regularity property u € L?*(0, T; H?(£2)), does contain in one space dimension the
free boundary condition: u,|3p(,) = 0 almost everywhere. On this basis, it is strongly believed that
solutions with this property should be unique; in fact, this is probably the major open problem in
the present theory of fourth-order degenerate parabolic equations with principal part of the form
—divim(u)V Au), m > 0.

We can actually construct an example of non-uniqueness according to our definition. Let u(x)
be the unique solution of the initial value problem

eu" =2log = +a(l —2u), x>0
w(0) =T7ip > 0
W' (0) = 0.

It is easy to verify that for up = ug(e, ) sufficiently small there exists xo > O such that u(x) — 0
as x /' xp; in addition

u' (xg) = —c < 0.
Define
_ ) oulx) Ixl < xo
uo(x) = { 0 elsewhere.

The pair (ug, 0) is, according to Definition 1, a steady solution of Problem (P) in £2 = (—2x0, 2xp).
Note that u# does not belong to H 2((—2x0, 2x0)). On the other hand, let & denote a solution of the
C-H equation in the sense of [19] with initial data ug. The pair (i, 0) is also a solution of (P) in the
sense of Definition 1, and, since & € LZ(O, T; HZ(Q)), we conclude that (¢) # up.

The non-degeneracy of the system with respect to the unknown v given by (iv) should be
required, as far as v is concerned, to characterize uniquely a solution. This would not be the case if
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degeneracy with respect to v was allowed: indeed, Dal Passo & Luckhaus have proved ([18], see in
particular Remark 1 and Section 3) that the Dirichlet problem for

2t =zAz —zlnz
admits more than one solution for a suitable class of initial data.

The main result of the paper is the following

THEOREM 1 For all ug, vg satisfying (1.4) there exists a weak solution of Problem (P) in the sense
of Definition 1; in addition, the set

D(u) \ B(u,v) = {(x, 1) e 27 : (u(x,1),v(x,1)) € dB\ {(0,0), (1,0)}}
has measure zero.

In Section 2 we obtain (by means of a Galerkin approximation) an existence result for suitably
regularized systems; i.e. for systems with the form of Problem (P) but which have been made to
be uniformly parabolic by assuming sufficient additional regularity properties for Q and F. The
proof of Theorem 1 is contained in Section 3, where by rescaling, without loss of generality we
have assumed @ = 2: in Subsection 3.1 we define a two-parameter family of approximating
regular systems and derive an energy inequality yielding uniform estimates for the corresponding
solutions; in Subsection 3.2 we obtain intermediate results for non-degenerate systems based on a
free energy which is now of the original logarithmic form, F(u, v); in Subsection 3.3 we use these
approximating solutions to construct a weak solution of Problem (P).

We observe that most of the results contained in Subsections 3.1 and 3.2 remain valid in
higher space dimensions. Actually it is the continuity of the solution that enables us to control
the boundary of the box B uniformly with respect to the approximating procedure; however, the
need for continuity forces our results to be restricted, up to now, to space dimension one.

2. Regularized systems

In this section we prove an existence theorem for the Allen—Cahn/Cahn—Hilliard system under
additional regularity and positivity assumptions on the mobility and the homogeneous free energy.
This result will be used later to construct approximating solutions to Problem (P).

Consider the following system:

ur = [qi1(u, v)(f1(u, v) — euxy)xl,  (x,1) € 2r
vy = —q2(u, v)(f2(u, v) — vxx) (x,1) € 2r
Vy = Uy = Uyyy =0 (x,t) € St
u(x,0) =up(x), v(x,0) =wvp(x) x €2

(P

where g;, f; satisfy:
(H1) ¢; € C(R%; RY), with gmin < ¢i < Gmax for some 0 < gmin < gmax;
(H2) fi € CY(R%; R) and f» € C(R?, R), with || fillc1 + || f2llco < Fo for some Fy > 0.



206 R. DAL PASSO, L. GIACOMELLI, & A. NOVICK-COHEN

THEOREM 2.1  Assuming (H1), (H2) and ug, vo € H'(£2), there exists a pair of functions (u, v)
such that:

(i) u e L®0,T; H(2))N L0, T; H3(2))NC([0,T]: H*(£2)), » < 1;
(i) ve L>®0,T; H' (2)) N L3, T; H*(2)) N C([0, T]; H*(2)), » < 1;
(iii) u, € L*(0, T; (H'(£2))), v € L*(27);

(iv) u(0) = ug and v(0) = vy in L2(£2);

(V) uxls, = vils, =0in L*(S7);

(vi) (u, v) solves (P’) in the following sense:

T
/<u,, ¢)dt = —f/cn(u, V) (f1(u, v) — eury)rpy Vo € L2(0, T; H'(2))
0 Qr

//w _ —//qz(u, (o, v) — sve ¥ Yo € L2(27).
Qr Qr

Proof. We apply a Galerkin approximation. Let us denote by ¥;, i € N, the eigenfunctions of
minus the Laplacian with Neumann boundary conditions:

Y =N¥i  xeR
Yi=0 X €08.

Without loss of generality, we assume that the eigenfunctions ; are orthogonal in H'!(£2),
orthonormal in LZ(Q), and that the first eigenvalue is zero (0 = A1 < X>...). The Galerkin ansatz
for (P')
N N
wN = "aN oy, Ve =) bN v
i=1 i=1

yields the following initial value problem:

da
- = /uth,- = —/ql(uN, VWA@Y, ) = eul ) (2.1)
Q Q
deN N N , N N N N .
O Y Yi=—[qu",v")(2(u™,v") —ev)Y; j=1...,N (22
Q Q
al (0) = (uo, ¥j)2(a)» b} (0) = (vo, ¥j) (2.3)
J > VJILA(82) Y 0, Vj)L2(s2)- :
The problem has a local solution because the right hand side is continuous with respect to
(a{v e, all\\;, b{v e b%). We now derive an a-priori estimate which allows us to infer global

existence. Multiplying each equation of (2.1) by —A;a;(¢) and summing (that is, using ul. as a test
function), we get

a1
azf(uiv)z +8/ql(uf§§x)2 = /mfluuivuivm +/q1f1uvivui"m;
2 2 2

2
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using v)lc\; as a test function in (2.2) we obtain

d1
aif(viv)z +8/C12(Uﬁ)2 = /@fzvﬁ-
2

2 ko)

Summing the two identities, using (H1)-(H2), and applying the Cauchy—Schwarz and Young’s
inequalities

d
5 U(uf)2+/(vf)2 +/<uﬁx>2+f(vﬁ)2 <erte Lf(uff)uf(vfff :
Q 2 Q Q
from which we obtain by a Gronwall argument
Jarrs farrs [[ador+ [[ @l <am, 4
2 Q Qr Qr
Since ¥ = 0, it follows from (2.1) that i u{v = 0; hence, by Poincaré inequality
Q

1Ml e 0,7 112y < ca(T). (2.5)

The relation

1/2 1/2
[farr=-[[a-sto<| [[a?| | [[dw-ely
.QT QT QT QT
coupled with (2.4) gives
”v[N”LZ(_QT) < os(T), (2.6)

which in turn implies a bound on b{v (#). Therefore, using the Poincaré inequality and (2.4) we have

||UN||LOO(0,T; H(2)) < c6(T), 2.7

||UN||L2((),T; H2(R2)) < co(T). (2.8)
From (2.5) and (2.7), it follows that (af,...,aN,bY,...,bY) are uniformly bounded, and
therefore there exists a solution of (2.1)—(2.3) in (0, T').

In order to derive an estimate for u!, we introduce the projection ITy of L%(£2) onto

span{yr, ..., ¥y); forany ¢ € L2(0, T; H'(£2)) we obtain

//ufvlﬁ _ //l]](fl —eul ) (M. | < 1MV 20,711 (2))
Q2r 2r

(where (2.4) has been used); it follows that

N 20,7t 2y < €1(T). (2.9)
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Finally, since

/ ul =0, (2.10)
2
the estimate (2.4), Poincaré’s inequality and (2.5) yield

lu™ 20,7 532y < es(T). (2.11)

From the estimates (2.5)—(2.9) and (2.11), by well-known compactness results (see also [29]) it is
possible to select a subsequence (still denoted by (1, v™V)) such that

ulV, oV A 4y in L>®0,T; HY(£2)),
uN — 4 in L%(0, T; H3(£2)),
oV — v in L%(0, T; H*(£2)),
ulV —  u; in L0, T; (H (2))),
ol — v in L*(27),

uV oV — wu,v in C([0,T]; H*(2)), » <1,
uN — u in  L*0,T; H*(R)), » <3,
v —> v in L%, T; H (£)), »<?2.

In particular, the strong convergence in C ([0, T']; L2(£2)) implies (iv), and the last two convergence
statements imply (v) in view of the continuous linear mapping

1
L0, T: H'"*(2)) — L2(0,T: H> (%)), * < 5

applied to u®, v with 1 > 0. O

REMARK 2.2 Note that, using the same arguments as above with some minor modifications,
Theorem 2.1 can be proved in any space dimension.

3. Proof of Theorem 1
3.1 Approximating systems

We shall approximate Problem (P) by regularized systems; i.e. systems with positive mobility and
smooth bulk energy. For 6 > 0 we introduce positive mobilities Qs(u, v) by defining (see Fig. 1)

2
(%Jﬂs) 2 if ve[o,%+g],
— -1
Q2 (v) = %[1+(1+3)(v—%)} it v>143,
025(—v) if  v<0,

Q15(u) = Qos(u — %),
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025(v)

e
/

144

N|

F1G. 1. The function Q5 (v).

Os(u,v) = Q15) Q2s(v).

With this choice we have Q7; € L>(R) and

2 2
%<Qi5<(%+8> ,
10}, <143,
Qis — Q; uniformly in Cl(supp[Qi]+).

For o € (0, 1/e) we choose F (s) such that (see Fig. 2)

[1-22]" +no, if s<o,

F;(s): Ins + 1, if o<s<1-o,
fo(s), if 1l—0<s<?2,
1, if s> 2,

where f, € C I([1 — o, 2]) has the following properties:

fO’ < F/v fo/' 2 07
fo(l=0)=F'(1-0), f2) =1,
fol—0)=F"(1-0), f;(2)=0.

209
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Fg(s)

FIG. 2. The function F/, (s) (the dotted curve is F’(s)).

Defining

s

1
Fo(s) =~ +/F;(s>ds,

1

we have
F, € C3(R), Fy(s) < F(s) if 0 <,
FJ >0, Fo(s)=F(s) if o <s<1-—o.

Note that F, is defined for all real values of s, whereas F' is defined for s > 0 only. We also
introduce U, V such that

||U||CZ(R) < Vo, ||V||CZ(R) < W,

Uw)=oau(l —u) f0<u<l, V@ =-p2if —1<v

)

=

1
2

and we define the approximating homogeneous free energies as follows:
Fo(u,v) =Fo(u+v)+ Fou —v) + Fo(1 =+ ) + Fo (1 — (u —v)) + Uu) + V(v).

We observe that
4 _
—Up—Vo— - < Fs(u,v) in R?, and Fow,v) <U)+ V(@) in B. 3.1
e

Applying Theorem 2.1, for each §, o > 0 there exists a solution (#s4, Vs ) Of
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ur = [Qs(u, v)(Fouu, v) — euxx)xly (x,1) € 27

;) vy = — Qs(u, v)(Fov(u, v) — €vxx) (x,1) € 27

Yty = ve = 050, V) (Foul.v) —x)e =0 (x.1) € Sp
u(x,0) =ugx), vx,0) =uvo(x) x € S£2.

We shall hereafter denote by (Ps), Problem (Ps,) where F, is replaced by F, and we shall denote
by 8¢, o generic positive constants.
First of all we observe that

uss (1) =up € (0, 1). (3.2)

LEMMA 3.1 There exists a constant C| independent of §, ¢ such that the following estimates hold
forall § < 8g, 0 < 09p:

@ ||Maa||Lc>O(o,T; HY(2)) < Cy,
(ii) ||U80||L00(0,T;H1(Q)) < Cy,
(i) 1105 (Fou — etsoxxll 22y < Cl.
(i) 105" (Fov — V5020 122y < C1
(v) ||uéaz||L2(o,T;(Hl(Q))/) <y,

i) 1105 vsorll 2y < C1.

(vii) | Fo (us0, Uaa)”LOO((),T; L1(£2)) < (.

Proof. Choosing ¢ = (Fyy — €Usoxy) and ¢ = (Fgy — EVsoxx) as test functions in the equations
for us, and vs, respectively, we obtain

: / s OF + 5 / V302 (] + / Foy (0 (1), V30 (1))
2 2 2

+/f Os5 [(Fou — Suéoxx)x]z +/ 05(Fov — 8U(Saxx)2

2 2
& 2 £ 2
=3 (tox) +§ (vox)” + | Fo (uo, vo)
2 2 2

for almost every ¢ € (0, T] (see [19] for a detailed proof). Using (1.4) and (3.1) we obtain

% f [s0x (O] + % / [Wsox ()12 + f Fo (s (1), V0 (1))

2 2 (3.3)
+// Os5 [(Fou — SMBJxx)x]Z + f/ 0s5(Fov — 8U5O'XX)2 < cg
2 2

which implies (iii), (iv) and (vii) since —Uy — Vp — % < Fs. Using the Poincaré inequality and
(3.2), (i) is also verified. To prove (vi), we choose ¥ = vss+/Qs(Use, Vso) as a test function in the
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second equation of (Ps, ), which yields

1/2 1/2

(v&”) - _ 2 / (U&rt)z
/an(uag, U(Sg) /Q/(fav EVSoxx)Vsot < /(; Qs(}—gv EV§oxx) 0;

27

Since Qs < 1 for § small enough, in particular it holds that

/ W2.(1) <2 / 02 4 21 / (Wsor)? < 10
22 2 2;

which together with (3.3) implies (ii). Finally, (v) follows since

12
//u50t¢ < / Os5 [(Fou — 8u5tfxx)x]2 / (¢x)2
Q7 r Qr

forall ¢ € L2(0, T; H'(£2)). O

Arguing in a standard fashion (see [5] for a proof) we have
COROLLARY 3.2 There exists a constant C, independent of 0 < o < 09,0 < § < & such that

Cy,

”u‘s"”c"' <
< Ch.

Bl

T)

(3.4)

Nh— =
K— ool

v —
vsoll oy g

—~

3.2 Systems with positive mobility

Throughout this subsection we fix § > 0, and assume the mobility to be given by the form Qs(u, v)
introduced in Subsection 3.1. However, we remark that tl}e results in this subsection are indepen(}ent
of the particular form of the mobility, and hold for any Q(u, v) € C(Rz; R) with0 < Qmin < 0 <

Qmax .

By Corollary 3.2 we can extract a subsequence (still denoted by (us4, Vss)) such that
(Usg, Vsg) — (us, vs) uniformly in 27 as o — 0
0l l — ol 1l — (35)
us € CO28(27), vs € CT24(27).
We now demonstrate that the limit (s, vs) lies within the square B.
LEMMA 3.3 Forall0 < < do,

|27 \ B(us, vs)| = 0.

Proof. Let N denote minus the inverse of the Laplacian with zero Neumann boundary conditions:
given f € (H'(2)), := {f € (H'(£2)) : (f.1) = 0}, we define Nf € H'(£2) as the unique
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solution of

/ (NFYY = (f9) V9 € H'(2)

2
[[Nfzo.

By (3.2) and Lemma 3.1 (i), N (uss (t) — uso ) is well defined. Choosing ¢ = Q(;_lN(u(s(7 — Uso) aS
a test function in the equation for us,, we have

T

/(MSO'lv Q(;IN(M(SO' _m» dr =

0

= _// (Fou — eUsoxy)x (N (Uss — Uss))x
27

+// Q(s_l(fau — EUsoxx)x Qsx N (Use — Usy)
Q2r

= _/ (Wso — Uso) Fou — 8// (”60}()2
Qr

Qr

+// Q,;l(fau — &Uusoxx)x Qsx N (Use — Uss)-
Qr
Choosing ¢ = Qa_l Vs as a test function in the equation for vs,,
//Q;lvéav&rt = _//véafav _8// (U&Ix)z-
Qr Qr Qr

Summing the two above identities, we obtain

//(”80 —uso) Fou +//U60fav
27

27
T
=- / (Wsor, Q5 N (uss — ) dr — ¢ / f |50 + (v30:0?
0 Qr
+// Q(S_l(]:Uu — &Usoxx)x Qox N (Use — Uss) — / Q,g_lvéovéot-
Q2r Qr

The estimates in Lemma 3.1, the lower bound for Qs, the fact that || Qs||-1 < 2 for § sufficiently
small, and the definition of N imply

f / (s — T5) Fou + s Fou] < 11 (3.6)
fr
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(where c1; = ¢11(8)). We now exploit the sign property of the integrand at the left hand side. To
this purpose, we observe that the following identity holds for any ¢ € R:
(U — ) Fou(u, v) + vFoy(u,v) = {(u +v) [Fy(u+v) — 1]+ (u — v) [F,(u —v) — 1]
(= (u+v) [F (1 = (u+v) — 1]
+(1 = @ —v) [F)( = (= v)) — 1]} 37
—cF,(u+v) —cF,(u—v)— (1 —c)F,(1 — (u+v))
—(1—oF.(1—@w—v)+ w—o)U ) +vV'(v)+2.

The terms inside the braces are bounded from below since

0 < s[F.s)—1], s <0,
—%—% < o[lna—l]és[F[,(s)—l]éO, 0<s <o,
—% < slns:s[Fé(s)—l]éO, oc<s<1—o,
-2 < s[Fl.s)—1]<0, l—0 <s<2,
0 = s[F.()—1], s>2

for o € (0, 1/2). Since U’, V' are uniformly bounded, setting ¢ = us, = ug € (0, 1) in (3.7) and
noting that F/ < 1, it follows from (3.6) that

_// [Fy (uso + vso) + Fy (uso — vso)
J (3.8)

+F} (1 = (uss + 56)) + F} (1 — (uss — v55))] < clo.

To complete the proof, suppose by contradiction |§27 \ B(us, vs)| > 0. Since the argument can be
repeated for each side of the box B, we can assume without loss of generality that the set

A={(x,1) € 27 1 us +vs <0}

has positive measure. Since F,, < 1, the estimate (3.8) gives

—// F, (uso + vs0) < C13.
A

Note, however, that the uniform convergence of us, and vs, implies that
VA>030) i use +vs6 KA Yx e A, o <oy;

therefore, due to the convexity of Fy, F,, (uss + vso) < F,(1). Hence

c13 > — lim // F.(») = —|A[(InAx + 1),
o—=0JJA

which leads to a contradiction for A sufficiently small. a

In the next Lemma we derive additional estimates which will allow us to pass to the limit as 0 — 0
in Problem (Ps, ). To simplify the notation we define the function

@o(s) = F)(s)+ F)(1—25),

which is positive in view of the definition of F,.
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LEMMA 3.4 Leté$ > O be fixed. Then there exists a constant C3 which is independent of o such
that

@) 1050 v50) 2002,y < C3s
(11) ”u(Saxx”LZ(_QT) < C3a
(iii) ”USJxx”LZ(_QT) < Cs,

(iv) / / 0o (Uso + V50) [(Uso + V50 )x]* + f / @0 (Uso — V50) [(Uso — V55)x]* < Cs.
Q2r 27

Proof. From Lemma 3.1 (iv) we have

// (]:ov)z + 28// (Fov)xVsox +82/ (véaxx)z < cl4. (3.9

2r 2r 2r

Defining Hsy = Fou — EUsoxx, SINCE Usgx|s, =0

/ Hio () = / Foa 130 (8), V30 (1)),
2 2

// (H(Sax)z < 5.

2r

and from Lemma 3.1 (iii),

Hence we can write

/f (fau)z +2S//(frm)xu8:rx +52/f (u&rxx)z = //Hgg
Qr Qr Qr Q7
=//(H30—H_&,)2+//H_&;2<cp// (Haax>2+// (Fou)?
Q7 Q7 r Q7

where cp denotes the Poincaré coefficient. Summing this inequality with (3.9) we obtain

// ((]:ov)2 + 28// [(Fou)xutsox + (Fov)xVsox] + 82// I:(uéaxx)z + (U(Saxx)z] < Cl6-
Qr 7

2r
From this estimate, the Lemma follows recalling that ¢, > 0 and observing that
(Fouwxusox + (Fov)xVsox = @o(Uss + Vso) [(Use + véo)x]z
+¢5 (s — Vso) [(Use — U(So)x]z (3.10)
+U" (uso) (Usox)* + V" (v50) (V60x)”

and using the definition of U, V and Lemma 3.1 (i), (ii) to bound the last two terms. O

We can now state the following result.
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PROPOSITION 3.5 Foreach 0 < § < & there exists a triplet (us, vs, ws) such that:

(i) us,vs € L, T; Hl(.Q)) uniformly in &;
(i) us € CO’%’%(ET) and vs € CO*%’%(ET) uniformly in §;
(i) us; € L2(0, T; (H'(2))) and Q}/*vs; € L2(2r) uniformly in §;
(W) Usxx, Usxx € L2(~QT);
(V) 127\ B(us, vs)| = 0;
(vi) Fy(us, vs) € L*(2r) and F, (us, vs) € LE (D(us)):
(vii) ws € L%(£27) uniformly in §;
(viii) us(x,0) = up(x), vs(x,0) = vo(x);
(ix) usxls, = vsxls, = 0in L*(Sr);
(x) (us, vs, ws) solves (Ps) in the following sense:

T
/(uat, ¢)di = —/f 02 (us, vywsdy Vb € L2(0. T; H'(2),
0

fr

/ f v = — / 05 (s, v5) (Folts, v5) — vsx)y Vo € LA(27),
fr

fr
where ws = Q;ﬂ(]—'u — €Ugyy )y 1N the sense that
12
f / wsh = — / f (Futs, v5) — euser) (QY (s, v))
Qr Qr

forall ¢ € 12 O, T; HO1 (£2)) with compact support in D(us).

3.11)

(3.12)

(3.13)

Proof. Let {(uss, vso)} be the sequence given in (3.5). By Lemmas 3.1 and 3.4, it can be seen that

Uso, Vss  —  ug, vs in  L®0,T; H'(R2)),
Uses Vso — Us, Us in L0, T; HX(2)),
User —> Ug in L0, T; (H'(2))),

—1,2 Y .
Os P (s, vo) 0501 — 0Os P(us, vsyvs in  LA(2r),

1/2 .
Q(;/ (U0 s Vo) (Fou — EUsoxx)x —> Ws m LZ(QT)-

Recalling also Corollary 3.2 and Lemma 3.3, (i)—(v) and (vii) now follow. Lemma 3.4 (i) implies

that
Fov(Uso, vso) — g in L*(827);

since Fgy(Usy, Vss) converges pointwise in B(us, vs) and |27 \ B(us, vs)| = 0, it follows that
g = Fy(us, vs), which proves the first part of (vi). In order to prove the second part, we recall that

Foultt, v) = Fy(u+v) + Fy(u —v) = Fy(1 — (@ + ) — Fo(1 — (= v)) + U’ (w)
Fov(,v) = F,(u+v) — F(/,(u —v) — Fé(l — (u +v)) +F[/,(1 —(u—v))+ V' (v).
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Lemma 3.4 (i) and the structure of F,, yield a uniform bound in L?(D(us)) for each of its terms.
Then this implies in turn a uniform bound in L%(D(us)) for each of the terms in Fy,: we prove this
in detail for the first term. Let K C D(us) be compact; then

Kc{n<us <1—n}, g<u3(,<1—g in K

for a suitable n > 0 and for o sufficiently small. Let us consider the sets
K(/; =K N{uss +v50 < 77/2}7 K(/y/ ZK\K(/T;

in K we have
0> Fy(uso +vso) — 1 = Fy(n/2) — 1 = c17. (3.14)

In order to estimate F (/, (usy + v5o) in K [/,, observe that the following relation holds:
0>F (u+v)—1>2F,u+v)+F,.(1—(@u—v)—2
= Fou+ Fy(u— ) + FL(1 — (u +v) = V'(v) - 2.

From its definition, in K/, we have uss — vss > 1/2 and 1 — (use + vso) > 1 — 1/2; hence

02> Fl(uso +vs6) — 1 = Fou(tso, v50) + Fo(1/2) + F,(1 —n/2) — V'(vss) — 2
> Fou(Use, Vso) + C13

which, together with (3.14), implies

// [F(/f(“&r + vso) — 1]2 < C19 +2f/ (Fov(Uso, U(Sa))z.
K 2r

Repeating the same argument for the other terms, we conclude that

/ / F2 (450, v30) < €20 + 8 f / (Foo 150 V50))>
2r

K

and therefore
Foultse, vso) — Fulus, vs) in Li (D(us)), (3.15)

which completes the proof of (vi).
The property (viii) is straightforward; by compactness we have that

usy —> ug in L20, T; H**(2)), » >0, (3.16)
Vse —> vs in L2(0, T; HX2(2)), >0, (3.17)

which imply (ix).
To prove (x), we pass to the limit as ¢ — 0 in the first equation of (Ps, ), obtaining

T
/<u5,, ¢)di = —/f 0 (us, vywsdy Vo € L*0, T: H'(2));
0

2r
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passing to the limit in the second equation of (Ps,) we have
[[ v == [ [ @stws v Futws.v0) — s vwr e 22
2r 2r

To identify wg, we observe that for all 0 > 0 and all ¢ € L0, T; HO1 (£2)) the following identity
holds:

f / 04/ (30, V50 ) (Fou — Ellsoxa)xd = — f / (Fou(tse vs0) — Eltsocx)(Qy > (tso V5o )b)sx-

2r fr

(3.18)
By (3.15), (3.16) and (3.17) we can pass to the limit on the right hand side of (3.18), provided ¢ is
compactly supported in D(us). a

3.3  The degenerate system
Proposition 3.5 allows us to select a subsequence, which we still denote by (us, vs, ws), such that
us, vs — u, v uniformly in 27,
ueC"r3(2r), ve i @2y), (3.19)
ws — w in L*(27).

We already know by Lemma 3.3 that (u, v) € B; in the following Lemma we prove an estimate
which shall enable us to improve these bounds. Let x4 denote the characteristic function of the set
A, and let

Gu,v) =v[ln(m —v) +1In(1 — (u +v)] xp>0 — v n(m +v) + In(1 — ( — v))] xv<o-

LEMMA 3.6 Forall0 < § < 8y, G(us, vs) € LZ(.QT), and for B € (1, 4] there exist two positive
constants By, C4 independent of § such that for any # € (0, T']

ﬁ/Qégﬂ(vm» - 2fom(ua)Q;gﬂ<va>G(ua, vg)+
2 2

b [ [ 015 03f 09 302 < gy [ 4P+ Ca - [ [ 03w,
2 2 £

(3.20)

Proof. We choose ¥ = —Q25(v5)~# Q5 (vs) x{0.1] as a test function in (3.12). Observe that, since
(us, vs) € B, we have
Q/lg(u(S) =1 —2us, lea(l)a) = —2uvs.

Since vs; € LZ(QT), for all + € (0, T'] we obtain

1 _ 1 _ _
- f 03P (1)) — 1 / 03P (vo) = — f f 0,F 0hsvs:
2

s 2 Qf_ﬁ (3.21)
= _2//Q18Q25 vs Fy +25//Q18Q25 U§VUsxx-
2 2
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From the definition of G and JF, we can write the identity

G(us, vs) = —vsFy(us, vs) + vs In(us + vs) xvs>0 — Vs In(us — vs) Xvs<0
—vs In(1 — (us + v5)) Xvs<0 + vs In(1 — (us — vs)) xvs>0 + vs V' (vs).

Since us = 0, we get
0 2> vsIn(us + vs) xvs>0 = vs In(vs) xv550 = —1/e,

and similar inequalities hold for the other logarithmic terms on the right hand side. Hence
4
0> G(us, vs) = —— — vsFy(us, vs) + vsV'(v5), (3.22)
e

which implies that G (us, vs) € L2(827). Substituting (3.22) into (3.21), we obtain

1 1-8 1 f 1-8
—— [ Oy (s(®)) — 7—— | Ops " (v0) <
_ 1/ 28 -1 28
IB 2 IB 2

s s » (3.23)
< 2//Q18Q25 G +C21//Q25 +28//Q18Q25 UsUsxx-
2 2 24

It remains to estimate the last integral at the right hand side of (3.23). Integrating by parts, we write

1- 1—
//Q15Q25 ﬂvévéxx = _//Q/l(; Q25 ﬂvéquxvéx
ot

2

—//Qlanf [ 02 +2(8 = v | s =t 11 + 1
2

A straightforward calculation shows that

-1 1 1 1
Qz(v)+2(,8—1)v2>,30 ::min{ﬂT,Z} > 0, ) <v < 7

Since, by its definition, Q25 (v) = Q2(v) for v € [—1/2, 1/2], it follows therefore that
—B 2
I < _ﬁO//QI(SQ% (vsx)” .
o
Applying Cauchy—Schwarz and Young’s inequalities to /1, we have

1 _ _
11 < 560 / / 01503 (v5:)* + e f / 010> 0% P2 (use)*
2 2,

Since (us, vs5) € B, we can make use of the following simple properties of B:
vl < 2u(l —u)

(u,v) € B=
{ 11— 2u| < 4% —v?),
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which imply that
lvs] < 2us(1 —us) <2015,
(0% = (1 = 2u5)? < 16(} — v3)? < 1603;.

Therefore

1 _ _ 1 _
11 560 / / 015057 (vse)* + 23 / / 01057 s < 2o / / 015057 (v3:)* + e
2, 24 2

since B < 4. Collecting the estimates of /1 and I, we finally obtain from (3.23)

/Q25 (vs(1)) — —/Q25 (vo)
(3.24)
<5+ 2[/Q16Q25 G +C21/[Q25 - 8,30/ Q16Q25 (USX)
which completes the proof of the Lemma. g

COROLLARY 3.7 There exists a constant d > O such that
1 1 _
v(x,t) € —3 +d’§_d Y(x,t) € 27; (3.25)

in addition,
[D(u) \ B(u, v)| = 0.

Proof. Applying a Gronwall argument to (3.20) with § = 3 and noting that G (us, vs) < 0, we
obtain

/ 052 (0s(1)) — / / 015(5) 032 (us) G us. ) + / f 015(us) 037 (vs) (us2)? < 2. (3.26)
2 2, 2

Suppose by contradiction that v(xg, fp) = —%. The uniform convergence of vs implies that for any
y > 0 there exists 8, > 0 such that

1
s (x, 10) + 51 < Jus(x, 10) = wCx, 10)| + u(x, t0)+—| y + Cilx — xo|'/?

forall 6 <§,,x € 2. Therefore, by (3.26) and (3.22)

1 2 -2
cz6>/((5+a) —v5> /<1+a> 2(y+c1|x x0|1/2+5) V8 <8y,
2

which implies

c26 = /(V + Cilx — x0|'/*) 72
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a contradiction for y sufficiently small. Thus v > —% in 27. Similarly we may show that v < % in
7, and the first assertion follows.

To prove the second statement, suppose by contradiction that the set D(u) \ B(u, v) has positive
measure. Without loss of generality we can assume that the set

A={x,t) e 2r :u+v=0, u> 0}

has positive measure. Then, defining A’ = AND, (u), we have |A’| > |A|/2 for n sufficiently small.
By (3.19) and Lemma 3.3 it follows that

Vy>034, >0 st. O<us+vs <y and |us —u| <y ae. in A, Vé<é,;, (3.27)

it is now easy to check that almost everywhere in A’

CL/ L N R | Vye(o,ﬁ>,5<5. (3.28)
3 2 3 3 3 v
From (3.26) and the definition of G, we obtain
//QIB 055 1vs In(us + v8) | Xus <0 < —// 015057 G (us, vs) < 2. (3.29)
Qr fr
Since |
[vs In(us + v5) Xvs>0| < |vs In(vs) xvs>0l < 2

using (3.29) and (3.25) we conclude that

/[leva In(us + vs)| < c27,
2r

and a contradiction now follows for y sufficiently small, taking (3.28) into account and arguing as
in the proof of Lemma 3.3. a

In order to pass to the limit as § — 0 we need an estimate independent of § on the second
derivatives of ug, vs and for the singular terms JF;, (us, vs), Fy(us, vs). The next Lemma provides
such an estimate on any compact subset of D(u).

LEMMA 3.8 For any K C D(u) compact there exist positive constants g and Ck such that the
following estimates hold for all § < ék:

||u6xx||L2(K) < Ck, (| F (s, US)”LZ(K) < Ck,
||U6xx||L2(K) < Ck, | Fo (us, U8)||L2(K) < Ck.

Proof. Let K C D(u) compact; then K € Dy(u) for some n > 0. Since there exists a positive
distance between D, (u) and 27\ D, /2(u), it is possible to select { € C®(27) such that0 < ¢ < 1,
¢ =1inD,u), ¢ =0in 27 \ Dy/2(u) and ¢, = 0 over Sr.

Choosing ¥ = [Qs(uss, V6 )]} g“zv(ggxx as a test function in the second equation in (Pj, ), we have

//ngglvéﬂxxvéat = _//Cz(]:ov — €Vsoxx)Vsoxx- (3.30)
Qr 2r
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By the choice of ¢, Corollary 3.7 and the equicontinuity of {uss} and {vss }, the following properties
hold for0 < 8 < g and 0 < 0 < 0 (§):

uso €[4, 1 " %]d hll sugpg“,
vo €[ - 3+% 35— 9]
Hence
_ 1 i/ (1 d _ e
//ngg lvéaxxvéot < EQ]SI (Z) Q251 <E - Z) //§2Q5 ! (U50t)2 + 5//{2 (U&fxx)zs
2r 2r 2r

where we have used the Cauchy—Schwarz and Young’s inequalities. Therefore, it follows from
(3.30) and Lemma 3.1 (vi) that

&
5//(2 (USUxx)z - //;2]:01)7)50)(,\7 <cy VYV 8<dg, 0 <o(f). (3.31)
Q2r r

We now choose ¢ = (2 Q 16 (Us6 ) [ Q25 (Vs )]~ as a test function in the first equation of (Ps, ), where

Q15(u) is defined by
~ 1
= ds,
Qo) /le) '

1/2

obtaining

T
/<u5617 §2Q15Q2_51>dt = _/‘/Q‘ZMSUX(]:UM — EUsoxx)x
0 7
+//§2Q18Q18 Q{; Q/zgvéax(]:au — EUsgxx)x (3.32)
fr

_/ (é‘z)leéélé(}-au — &Usoxx)x = 11 + b + I3.
27

It easily follows from the energy estimates in Lemma 3.1 and the definition of ¢ that

T
f(uam,EZQlaQZ_;)dt +ILl+ |l <cy V 3<dk, 0 <0(d).
0

Let y > 0 be a constant to be chosen later: integrating /; by parts and using the Cauchy—Schwarz
and Young’s inequalities we find that

1
L < /‘/gz}—(ruu&mx - %//52 (M(Saxx)2+ %//4.2 (]:ou)2 +2<8 + ;) //(gx)z (u&rx)2~
Qr Qr 2T Qr
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Note that the last integral on the right hand side is uniformly bounded. Because of the definition of
¢ and arguing as in the proof of Proposition 3.5, we find that

% / f £2 (Fou)* < 3o +4y / ¢ (Fou)?. (3.33)

2r 2r

We now proceed to bound the right hand side of (3.33):

4y / f £ (Fou)? < 8y / / £ (Fov — €Vs0xx)* + 8y€? / / % (V50xx)?
Q7 r r
< SVCSI/fczQB (Fov — Svéaxx)z + 8V82//§2 (Uéaxx)z s
Qr 2r

and therefore, choosing y < 1/(32¢) and recalling Lemma 3.1 (iv) it turns out that

4y / / 02 (Fou)? <cn+ 2 / / % (V5oxx)” - (3.34)
Qr Qr

Summing (3.31) and (3.32) and using the estimates above we have

& &
E//§.2 (u&rxx)z + Z//gz (USUXX)Z - //;2 [Foultsoxx + FovVsoxx] < €33 (3.35)
Q2r 7 £2r

Integrating by parts the last integral at the left hand side and recalling the identity (3.10), we obtain

_/ §2 [Fouttsoxx + FovVsoxx] =

Qr
=— / / (€D axFo + / / ¢? [U”(uaa) (Usox)* + V" (vs0) (vaax)z]
r Q7

+//§2 I:(po (uso + vso) [(use + véo)x]z + @5 (Use — V55) [(Us5 — U50)x]2] .

Qr

Since F, is uniformly bounded in L'(£27) by Lemma 3.1 (vii), the second integral is uniformly
bounded and the third is positive, we obtain

//g.Z [Foultsoxx + Fovvsoxx] < C34.
Qr

Therefore, from (3.35), we can conclude that

& &
E//§2 (u&rxx)z‘l‘ Z//§2 (U6<rxx)2 <ce3s V8 <k, 0 <o(d).
Q2r r
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Combining this estimate with (3.34) and (3.33) we obtain, moreover, that
//§2 (-7:014)2 < ¢36, and / §2 (-7:0'11)2 < 037
27 r

The assertion now follows by means of the definition of ¢, the lower semicontinuity of L2-norms
and the arbitrariness of K. a

Proof of Theorem 1.  Let (us, vs) be the sequence given in (3.19). Using Proposition 3.5 and
Lemma 3.8 we have

us, v~ u,v in  L®0,T; H(2)),
Usxxs Usxx ~ — Uyy,Uxy i leoc (D)),
us;  — Uy in L%0,T; (H'(2))),
v — U in  L%(27),

and (i)—(iii) follow. Property (iv) is a consequence of Corollary 3.7. From Lemma 3.8 we obtain
Fulus,vs) — g1 in L (D)),
Folus, vs) — g2 in Ly (D(w)).

Since |D(u) \ B(u, v)| = 0 and us, vs — u, v uniformly in 27, we have
Fulus, vs) —> F,(u,v) ae. in D(u),

and therefore g1 = F, (u, v). By the same argument g, = F;,(u, v) and (v) is proved.

Property (vi) is straightforward. To prove (vii), let K C D(u) compact; then K € D, (u) for some
n > 0. Since u € C(27), we can select { € C*®(27) such that 0 < ¢ < 1,¢ = 1 in D,(u) and
¢ =0in 27 \ Dy2(u). Hence we have

||§’48||L2(0,T;H2(_Q)) < 38,
ICus)illL20,7:H1(2)y) < €395
which implies that
(Cus)y —> (Cuw)y in L2(0,T; H'™*(£2)), »>0. (3.36)
The following continuous embedding and linear mapping

1
L2, T; H'™(2)) — L2(0, T: H>*(082)) C L*(0, T: L2(3R2)), * < 5

yield
Cus)els, — Quils, in L*(Sr)
and therefore uy|s,ng = 0. Now (vii) follows applying the same argument to v,.

Finally we pass to the limit as § — 0 in equations (3.11)—(3.13) to prove (viii). The limit is
straightforward in equations (3.11) and (3.12). With respect to (3.13) we observe that

1/2 —1/2 1/2 —1/2 1/2 1/2

1 1
(Q5 Py = EQ],; Q/1§Q25 usx P + EQZS Q/25Q15 Vsx + Q,s O«
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and, for all ¢ € L*(0, T HO1 (£2)) with compact support in D(u), each term converges strongly in

L2(827) because of (3.36) (with the analogous convergence for v) and the fact that v € (—%, %).
This completes the proof of the Theorem. g

4. Conclusions

Further questions regarding existence might focus around extending our results to higher space
dimensions, as well as, attaining control on the measure and perhaps boundary of the set on which
u=0or l

We remark that our analysis does not depend heavily on the choice of the polynomial terms
in the free energy; in particular, an appropriate third or fourth order polynomial could be taken to
model the behaviour of the free energy in the vicinity of the triple point as in [15].

With regard to limiting motion for the Allen—Cahn/Cahn—Hilliard system (P), it would be nice
to be able to justify the predictions of the formal asymptotic analysis. But, as the asymptotic analysis
has yet to be justified even for the case of a single Cahn—Hilliard equation with degenerate mobility
and logarithmic free energy, such a task is at present somewhat remote. However, our anaylsis
provides a step in this direction, and later on, hopefully, numerical schemes can be developed.

Finally, it would be nice to be able to treat other systems which couple degenerate fourth and
second order equations which have a less distinct structure.
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