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Error estimates for semi-discrete dendritic growth
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Semi-discrete approximations to a mathematical model for two-dimensional dendritic growth are
analysed. The model is a Stefan problem with interfacial structure. The semi-discrete problem uses
a parametrization for the free boundary and finite elements in space. The main results are a priori
error estimates for the temperature field and the parametrization of the free boundary. The optimality
of their order is discussed. Further error estimates concern approximations to relevant geometric
(e.g. curvature) and measuring quantities.

1. Introduction

Various methods for the numerical simulation of dendritic growth have been proposed and tested
(see for example [8,19,22,31] and the references therein). But their numerical analysis is not
investigated well. This article concerns the numerical analysis of a finite element method that has
the same structure as the approach that was used in [1,22]. Its goal is to prove that spatially semi-
discrete solutions converge to a solution of the underlying mathematical model when the mesh size
decreases to 0.

The underlying model is a well-known generalization of the classical Stefan problem [6, 15, 18,
20,30]. Let £2 C R? denote a region occupied by a pure material that may be in solid or liquid
phase. The region £2 divides into the solid region w*, the liquid region o' and the one-dimensional
interface y that separates @* and !. The partition p = (@*, y, ®') of the region £2 depends on
time ¢. We associate the normal n, the normal velocity v and the curvature k of the interface y
with the partition p. The normal n points into the liquid region ! and the curvature k is positive,
if the solid region @*® is convex. Finally, [[-]]ls denotes the jump across the interface y with the sign
convention ‘liquid’—‘solid’. Using this notation the model consists of the following evolution laws
for the (scaled) temperature field 8 = 6(x, r) and phase distribution p = p(¢):

O, — A0 =0  inw’)Uo (1),

I
v=—|[36}] on y(t), (L.

on |,

Bn)yv+am)k+6=0 on y(t),

where 8 and a denote material quantities. The function f, defined on the sphere S := {x € R? |
|x] = 1}, is called the kinetic coefficient and is involved in the term S (n) v, which models molecular
attachment. The function a is the interface potential. It can be calculated from a smooth surface
tension ¢ = ¢ (n) by the formula a(n) = D?*¢(n) n - nt where D?*¢(n) is the Hessian of the
positively homogeneous extension of ¢ on R? and * denotes the counterclockwise rotation by
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90°. The last equation in model (1.1), a generalized Gibbs—Thomson law, makes the difference
to the classical Stefan problem; it allows for a shift of the interfacial temperature due to kinetic and
curvature effects.

We recall some features of (1.1) about its usefulness as a model for dendritic growth. Model
(1.1) incorporates heat transport, latent heat, anisotropic surface tension and molecular attachment
effects. It is widely believed that a coupling of these four effects should explain dendritic growth (see
[15] and the morphological stability analyses [7,27] as well as the references therein). Moreover,
model (1.1) is an ‘approximation’ of a model that is consistent with thermodynamics [17].

In the sequel we restrict ourselves to the case that the material quantities satisfy

By :=inf B(n) >0 and ay = inf a(n) > 0. (1.2)
nes nes

If we assume additionally that the material is isotropic, i.e. B and a are constant functions, then
two results concerning the well-posedness of model (1.1) are known. Model (1.1), together with
appropriate initial and boundary conditions, admits a unique classical solution on a short time
interval [9]. There are global weak solutions [26].

In Section 2 we develop a semi-discrete method for model (1.1). The method cannot handle
‘geometric singularities’ such as merging or separation of phase regions. Nevertheless it can be
applied to simulate important experiments in dendritic growth. The part of the method that concerns
the discretization of the generalized Gibbs—Thomson law, a driven motion by anisotropic curvature,
uses the same approach as in [11] and [12]. The ‘derivation’ of the method is presented in two steps.
The first step is a reformulation of (1.1) introducing a parametrization g(-, #) of the free boundary
y(t). A system for the parametrizations g = g(u, t), which is parabolic thanks to (1.2), replaces
the generalized Gibbs—Thomson law. The second step is an application of the standard procedure
to get a finite element method from a classical formulation. The unknowns of the resulting semi-
discrete problem are the approximations ® and G to the temperature field 6 and the parametrization
g respectively.

In Section 3 error estimates for the described method are presented. They cover the case that the
free boundary y is parametrized over the sphere S and does not touch the boundary 2. The most
important ones are

T
sup 110 — 012, 0, h/ IV© - 02,0,
D 0 < Ch? (1.3)

T
2 2
sup [|G — gl s R2) / 1Gr — &l 2
oD H'SRY) Ly(S.R?)

where h € (0, h*] is the mesh size. Here the constants #* > 0 and C > 0 depend on reasonable
regularity (see Remark 2.1) and geometric properties of the continuous solution (6, g). The H'-
estimate for the parametrization of the free boundary implies error estimates for the phase regions
o' and *. Further estimates concern approximations to the normal 7, the normal velocity v and the
curvature k. From these follow more estimates for approximations to the velocity and radius of a
primary dendrite tip under some additional assumptions. The velocity and the radius are measured
in order to investigate the steady-state propagation of a primary tip. We summarize these results by
concluding that the described method is reliable and, moreover, that it can be applied in principle to
compare ‘dendrites of model (1.1)” with real ones.
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Section 4 contains the proof of these results. The main difficulties in the establishment of the
estimates (1.3) are an appropriate control of the traces occurring in coupling terms and the limited
regularity of the temperature field 6. An interaction of these aspects suggests that the estimates (1.3)
are of optimal order.

2. Reformulation and semi-discrete problem

We employ parametrizations (here: continuous mappings into R?) of the free boundary to rewrite
model (1.1). For simplicity, the domain of definition of these parametrizations is the sphere S. We
identify derivatives of mappings with their representations with respect to ‘canonical’ bases in the
involved tangential spaces. In the context of R” ‘canonical’ has the usual meaning, whereas, for
example, in the case of the tangential space TS, at u € S it indicates the choice u~. In order
to recover the phase regions from the parametrizations we use the following ‘oriented distance
function’. Let f : S — R? be an injective parametrization and define sdist(f, -) : R> — R by

sdist( f, x) 1= Or(f) sdist (9 Int(f), x),

where Or(f) € {£1} denotes the orientation of f, Int( f) is the interior of the Jordan curve f(S) (see
for example Section IV.5 in [5]), and sdist(d A, x) := dist(A, x) —dist(R? \ A, x) with dist(A, x) :=
infyea |y — x| for A C R2.

Let 2 ¢ R? be a bounded domain, let T > 0 be fixed and set Q = 2 x(0,T) as well as
St :=S x (0, T). Let 6y be an extension on Q of the initial and boundary temperature, and let gg
be an injective parametrization of a Jordan curve (the initial interface) in £2.

PROBLEM 2.1 Find 0 = 60(x,t) and g = g(u, t) such that

(i) g € C>1(Sy,R?),and g(r) := g(-, t) is a regular, injective parametrization with g(S, ) C £2
foreverytr € (0,T),

(i) 0 is of class C*! in Q° := {(x,1) € Q | sdist(g(t),x) < O} and in Q' := {(x,1) € Q |
sdist (g(1), x) > 0}, and V@ exists on g(Sr) ‘from both sides’,

(iii) the equations

0, = AO inQ*U Q'
g -n=—[VoI () -n on S,
a(n)
B(n) g = |g—|28uu —0(g)n on St

with n = —g/|g,| hold,
(iv) the initial and boundary conditions

g(u,0) = go(u) forallu € S,
0(x,t) = 6y(x, 1) forall (x,1) € [2 x {0}] U [052 x (0, T)]

are fulfilled.
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Hereafter, 6(g) stands for the function (u,t) +— 6(g(u,t),t). The expression I[VG]]é (g) is
interpreted in a similar way. Condition (i) implies that Q° and Q' are open (see Section 20 in [29]).
Moreover, it excludes that the interface touches the boundary 952. The third equation in condition
(iii) implies the generalized Gibbs—Thomson law (multiply by the normal n) and is a ‘singular’,
parabolic system in the sense of Petrovsky [13] thanks to (1.2).

REMARK 2.1 Let us assume that the material is isotropic and that the data is sufficiently smooth
and compatible. In [9] Chen and Reitich prove that there exists a 7 > 0 such that model (1.1) admits
a unique solution (0, p) on [0, T'], thereby representing the interface y as ‘a graph over the initial
interface’. We find a solution (6, g) of Problem 2.1 by reparametrizing the interface y of (6, p) in
an appropriate way. This solution (6, g) has the regularity

g € CHeCHIREr RY), g € Lo(0.T: HY(S, RY),
0 e CO(E), 9|QA c C‘Z‘H}t,(Z‘H)t)/Z(@)7 9|Ql c C2+O{,(2+0¢)/2(a)

with « € (0, 1). Moreover, condition (i) is also satisfied for # = 0 (by assumption) and r = T'. (See
Section 19 in [29].)

In order to state the semi-discrete problem (and for later purposes) we define

[ fur) — fu2)l

R S

[ur,up €S, u; 75142},

where f : S — R? is a parametrization and dg denotes the standard distance on the sphere S. The
condition DQ( f) > 0 implies that f is injective and that the length element | f,,| is bounded away
from zero where it exists.

Let X and Y be finite-dimensional subspaces, e.g. (linear) finite element spaces, of W;O(.Q) and
W;O (S, R?) respectively, and set X:=XnH! (£2). Let ®g € X and G¢ € Y be approximations to
the initial and boundary values 6y and go respectively. Furthermore, let Gg satisty DQ(Gp) > 0 and
Go(S) C £2.

PROBLEM 2.2 Find® :[0,T] — X and G : [0, T] — Y such that
(i) Ge H'(0,T;Y),and G(S, ) C £2 as well as DQ (G(t)) > O foreveryr € (0,7),
(i) @ € H'(0,T; X),

(iii) the equations

/@,@+/V@-V¢=—/G,-G;¢(G) Vo eX,
2 2 S

B(N) 2 / /'@(G) i

SN Ale: Gy W= | —2G--w|G VW ey
ga(N) t | u| + S u u ga(N) u | u|

with N = —Gf; /1G] hold almost everywhere in (0, T),
(iv) the initial and boundary conditions
G0) =Gy, ©O@0)=06y, O()—06O(t)ecXforallre (0,T)
are fulfilled.
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The equation for G can be obtained in the following way: let v = (Y1, ¥2) be a test function,
take the scalar product of the system for g and ¥ |g,|>/a(n), integrate over the sphere S, integrate
by parts the principal term and then replace the solution space as well as the test space by Y. The
equation for @ can be obtained in a similar way; after integration by parts use the second equation
in condition (iii) of the parametric formulation Problem 2.1.

We can rewrite the semi-discrete Problem 2.2 as an initial value problem for a system of ordinary
differential equations by choosing bases in X and Y. The right-hand side of that system satisfies a
locally uniform Lipschitz condition. Consequently, the Theorem of Picard-Lindelof implies the
following local existence and uniqueness result.

LEMMA 2.1  Assume that DQ(Go) > 0, Go(S) C £2, and O € H'(0, T; X). Then there exists a
t* € (0, T] such that Problem 2.2 admits a unique solution on [0, *]. Moreover, G € c! ([O, t*], Y).

3. Results

The numerical analysis of Problem 2.2 relies on the following assumptions. Let us start with the
assumptions on data £2, §,a, 6y and go. Let £2 be a bounded, simply-connected domain with
Lipschitz boundary and a constant c.; > 0 such that

0 eH'(2), —Ap e Ly(2) = ¢l g < ceanlldel@) 3.1)

is satisfied. Regarding the material quantities 8 and a assume §,a € W;o (S) in addition to (1.2).
Let the initial and boundary temperature 6y = 0& + 03 be split into a time-dependent part 901 and a
time-independent part 9(% such that

0y € WH(0) N Ly(0, T; HX(£2)),
. (3.2)
6, e WL 2)nH(2), 9§|w.5 € H* (o)), 95'6»6 e H* (),

where wy = {x € £ | sdist(go, x) < 0} and w(’) = {x € 2 | sdist(go, x) > 0}. This splitting takes
into account that the compatibility condition on the free boundary used in Remark 2.1 may imply a
jump of V6 across the initial interface.

Let us continue with the assumptions on the discrete spaces X and Y. Let & > 0 indicate the
discretization parameter, and let ciny and caprx be two positive constants, which do not depend on 4.
Let X C WL (2)and Y = Z%, Z C WL (S) fulfill the inverse assumptions

IV®IlLy2) < cinv b 1|1y (2) Vo e X, (3.3)
<

18l < cimv h Y2 1Bl @) VEeZ. (3.4)

Furthermore, assume that there exist linear interpolation operators I : H'(2) — X and J :
H'(S) — Z such that

1o — @l +h VU@ = 9)Ly2) < caprx K™ @l am(2), (3.5)
peH (Q) = IpeX (3.6)
176 =&l +h U&= Eullr,©) < caprx B [Ellwns) (3.7)
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for p =2,00,m = 1,2 and every ¢ € H"(£2) as well as every & € W;," (S). In addition, assume
that there exists a partition of 2 into Lipschitz domains such that all ¢ € X are piecewise smooth on
this partition. The assumptions on X are satisfied, if we choose X from a family of linear (or higher
order) finite element spaces that is given by a quasi-uniform and regular family of triangulations
over a polygonal £2 (see [10] and [25] for the choice of I). A similar statement holds for the choice
of Y.

We choose the approximations G and ®q of the initial and boundary values go and 6 in the
following way: let

Go=Jgo and Oy = PO} + R6;,

where J acts on each component, P denotes the orthogonal projection L,(§2) — X, and R is the
Riesz projection onto X.
Finally, assume that the continuous solution (6, g) of Problem 2.1 satisfies

g€ CH S RY, 4 e COCr. R, gu g € L2(0. T HAS,RY),
0 e WJO(Q), sup (||9|Qs(l)||H2(wS(z)) + ||9|Ql(f)||H2(wl(;))) < 00
te(0,T)

€

(3.8)

with 0*(t) = Q* N [2 x {t}] and &' (1) = Q' N [2 x {t}]. These regularity assumptions are
reasonable; compare with Remark 2.1.
Now we state the results. Their proofs are contained in Section 4.

THEOREM 3.1 Suppose that assumptions (3.1)—(3.8) are satisfied and that the solution (0, g) of
Problem 2.1 fulfills

inf DQ (g(t)) >0 and inf dist (g(S, 1), 8.{2) > 0. 3.9
1e(0,T) — 1€(0,T)

Then there exist #* > 0 and C > 0, depending on given data 2, T, B, a, oL 93, 8o, ‘discretization
constants’ Ciny, Caprx, and the continuous solution (8, g), such that for all 2 € (0, h*]

(i) there exists a unique solution (®, G) on [0, T] of Problem 2.2,

(ii) the following error estimates for the temperature field and the parametrization of the free
boundary hold:

T
sup 16 — 0112 o, h/ IV(© = )3 o)
0.1 Ly(£2) 0 Ly(£2)

T
/OII@(G)—H(g)IIiZ(g), < Ch2.

T
2 2
sup |G — gl g r2y» / G — &l 2
on H\SRY J Ly(S,R?)

REMARK 3.1 If there is a geometric singularity (i.e. a topological change of the interface) at time
Tsing, we have % (g(T)) 4 0 when T 1 Ting. This implies

h* )0 and C 1 oo as T 1 Ting.
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The error estimates for the free boundary in Theorem 3.1 are rather strong. An illustration of this
fact are the following consequences. The first one concerns the phase distribution p = (*, y, @!).
Let 6 denote the Hausdorff distance between (arbitrary) sets in (Rz, | - |), and define the discrete
phase distribution by I'(¢) := G (S, t), 25(¢) := {x € £2 | sdist (G(t), x) < 0}, and QL) = {x €
2 | sdist (G (1), x) > 0} fort € [0, T].

COROLLARY 3.1 Suppose that the assumptions of Theorem 3.1 hold and choose 2* > 0 and

C like therein. Then the error of the phase distribution is controlled in the following way: for all
h € (0, h*]

sup 8(w’, 2%), sup 8(y, I'), sup 8(w', 2" < Ch.
0,T) 0,T) 0,T)

A second consequence of the error estimates in Theorem 3.1 concerns the approximation of the
geometric quantities n, v, k that appear in model (1.1). In the sequel we assume that v and k (like n)
are defined on the sphere S. Recall N = —Gj- /1G] and choose the approximations of the normal
velocity v and curvature £ in the following way:

V=G, -N, K:= ﬁ(N)V+@(G)).

w
a(N)
COROLLARY 3.2 Suppose that the assumptions of Theorem 3.1 hold. Then the quantities N, V, K

approximate n, v, k respectively, more precisely: there exists a constant C > 0 such that for all
h € (0, h*], we have

T T
2 2 2 2
sup [[N —n| 2 / IV =vllz,s) / K — Kl < Che.
o LER) | L) f L(S)

Corollary 3.2 allows to approximate measuring quantities in dendritic growth experiments,
namely the velocity and curvature (= inverse of the radius) of a primary tip. Let g¢p : (0, T) — R2
with giip() € y(¢) be the position vector of a primary tip, and let Ggp : (0,T) — R? with
Giip(t) € I'(¢) some approximation of gp. Let Q indicate the orthogonal projection L(S) — Z.
Define

vip(t) = v( g™ (gap(0), 1).1) and Vip(t) := OV (G (Gup(0), 1), 1)

for ¢t € [0, T, where g~ (-, ) and G~ (-, ) denote the inverse of g(-, ) and G(-, t) respectively.
Define kip and Kip in an analogous way. The approximation of vy, and kep by Vip and Kiip
respectively is established in two steps. The first step is a reduction to the task that Gyp approximates
&iip in an appropriate way. The second step establishes such an approximation in a special situation.

COROLLARY 3.3  Suppose that the assumptions of Theorem 3.1 hold. Then there exists a constant
C > 0 such that for all & € (0, h*]

[ Viip — viipll,(0,7)5 13
D < (141G = gupllaorz ) (3.10)
IKip — kipllLo0.7) | P SIPRLOD.ED
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A variant of the practical construction of Gy, in the sequel was used in [22]. The construction
relies on the following assumption on the continuous tip: suppose there is a known unit vector e
(given by the anisotropy) such that

gip(t) - e" =0 and gip(1)-e =suplx-e|x €y () (3.11)
forallt € (0, 7).

LEMMA 3.1 Suppose the assumptions of Theorem 3.1 and (3.11). Choose 2* > 0 like in Theorem
3.1 and let i € (0, 1*]. Then there exists a unique measurable mapping Gyp : [0, T] — R2 with
Gip(r) € I'(2),

Gip(t) e =0, and Gyp(t)-e =supfx-e|x € I'(r)and x - e* = 0}
for all # € [0, T']. Moreover, we have the error estimate
sup |Gtip - gtip| < Ch,
0,7)

where C > 0 does not depend on #.

Using Lemma 3.1 in the Inequalities (3.10) we obtain the following error estimates for the
velocity and curvature of the tip:

IVip — vipll 0,7 1 Kiip — kiipll o0y < Ch'Y2,

where h € (0, h*] and C does not depend on #.

4. Proof

Let us divide the proof of the results in the previous section into several steps. At first we establish
error estimates for one unknown (or its crucial part) in terms of the other one under some additional
assumptions, which are marked with (4). Then we couple these estimates and get rid of the
additional assumptions. In doing so, we establish Theorem 3.1 and are able to discuss the optimality
of the estimates therein. Finally, we prove Corollaries 3.1-3.3 and Lemma 3.1.

For the sake of simplicity, we assume 6y = 0 throughout the proof; the case 6y # 0 does not
involve new ideas. Suppose that the assumptions of Theorem 3.1 are satisfied. In addition, at the first
stage of the proof, let t* € (0, T'] and assume that (@, G) is a solution on [0, ¢*] of the semi-discrete
Problem 2.2 with G € C'([0, 1*], Y).

Control of the free boundary (Part 1)

We start with a lemma that implies that the error of the free boundary is controlled by the error of
the interfacial temperature. The error of the interfacial temperature will be estimated later on. Set
Ly :=infg, |gu| > 0 and I* := supg, |gu| < oco.

LEMMA 4.1 Suppose that

L. <|G,| <L* inSx][0,1"], (1+)
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where L., L* are constants with 0 < L, < L*. Then there exists a constant ¢, which depends on

_ _ T ) .
LN L5 LN gl ey rey 180 c2s ) Jo 186126 maye 19]lcogg)s Capre. T increasingly
and on B, a, such that for any ¢ € [0, t*]

t
1G®) = g1 5 + /0 1G: — il s o,

t t
<c <h2+/ IG — gl R2)+/ 16(G) —Q(g)”iz@)'
0 ’ 0

Proof. Let us test the variational equation for G in Problem 2.2 and the corresponding one for g
with ¥ = = G; — Jg;. Taking their difference, we get

ﬁ’;L* 1G = J&il? g go) + % % 1Gu = 8ull} s r2) < /{X:Ik,
where i
I = fs (f((g)) 1Gul G — % 12l gj> (Gr = Jgn),
hi= /Sgt Gy — T8 (fEZ; 2ul? — % |Gul2) ,
n= | % (& — Jen - (Gr— Jen |Gy In = /S Gu = ) - (T80 — g0),

and a* := sup, .5 a(n). In a straight-forward manner one gets
Is < 311Gy — gull} s p2) + € I8l 5 12y B
and
c
I <ellGi = gl gm0y + 2 1

for any ¢ > 0 by Assumptions (3.7), (3.8), and (1+). Here ¢ depends on the quantities L*,

”gt”CI,O(gT’RZ) = SUP;c(0,7) Ilg: (-, t)”C](S’RZ), Caprx> a*_l, and B* := sup,.g B(n) increasingly.
With the help of

V) B .
a(N) o a(n) < C(a* 9,3*, ||/3, a”WoIo(S)) |N _n|’
2
N =nl <0G =gl Jlsul” = 16U < e 191Gy~ gl

|8ul

we obtain

2 ¢ 2
12 g & ”Gl - ngan(S’RZ) + g ||Gu - g“”Lz(S,RZ)’
where ¢ depends on the same quantities as in the estimate for /3 and on [ Lo B, a||W;o )
increasingly. The inequality

|Gyl L |8l L
u 8u
a(N) a(n)

<c(L* 1 a " llallyy ) 1Gu — gul
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yields
h<elG—Jail} g + = (160 = 8ull} 2, + 106 = 08I
where ¢ depends on ||6 || CO(0) additionally. Besides,
G, — &}, s p2y < 21G: = J&ill} g ey + € h
We collect the above estimates, choose ¢ > 0 sufficiently small and get

By Ly
a*

t
/0 1G: = 8115 52y + 1Gu) = 8O 6 52,

! t
<c[ /0 1Gu = 8ull2, 5 a2, + /0 10(6) —8)IE + hz]

for any ¢ € [0, #*] by integrating in time and the approximation of go. Here ¢ depends on L', 8!,
a*, foT llg: ||§12(§ R?) and || go [l c2(s r2) additionally. The last inequality and

t
IG@) = g7, ey <€ (ch2 + / 1G: = &il7, s R2)>
’ 0 ’

for all # € [0, T'], a consequence of the Gronwall Lemma and the approximation of gg, conclude the
proof. O

Control of the temperature field (Part 1)

A main issue in estimating the error of the temperature field is an appropriate control of ¢(g) —
@ (G), where @ € X is the test function in the equation for @ in the semi-discrete Problem 2.2 and
@ E H'(£2) is the test function in the corresponding equation for 6. In contrary to the usual choice
@ = @, we propose to proceed as follows: construct a mapping H : 2 x [0, t*] — £ such that

H (-, 1) is bijective and H(g(u, 1), t) =G(u,t)

forall u € Sand ¢ e [0, *]. Let us denote the inverse of H(-,t) by H~!(-, ). Choosing ¢ =
@ o H (-, t) as the continuous test function, we calculate formally that 6 := 6o H =1 more precisely
O(x,1) =0(H " (x, ), t), fulfills for almost every ¢ € [0, 1*]

/é,cb+/ vé-V@z—/g,.gjas(G)Jrg(@), 4.1)
2 2 S

where
E(®) :=/Q(ve)oH*‘ (H*‘),¢+/99,¢OH(JH—1)
+/Q(V9)OH_1(D(H_1)—E)-V<1>+/QV9-(V<D)0H(JH—1)
+/Qve.(v¢>)oH(E—DH).

Hereafter JH := |det DH| and E denotes the matrix of the identity in ]RAZ. In doing so we need not
to control ¢(g) — @ (G), but we have to estimate £ and then ® — 6 and 6 — 6.
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Construction and control of the mapping H

In order to carry out the above proposal we have to give a concrete construction of H. A useful tool
for this is the following lemma, the qualitative version of which is well known. Define

lx1 — x2]
I(x1, x2)

K(f) :=suplk(u)| and Q(f):= inf{ | x1,x2 € f(S), x1 # xz},

uesS

where f : S — R? is a regular C 2-parametrizati0n, k(u) is the curvature of f(S) in f(u), and
[(x1, x2) denotes the length of the shortest path in f(S) that connects x; and x;. Note, that we have

DQ(f) DQ(f)
sups 1l S 29 S s A

and equality, if the length element | f, | is constant. Besides, we define Ug(A) := {x € R? |
dist(A, x) < R} forany R > 0 and A C R?.

LEMMA 4.2 Let f be a regular C2-parametrization and set R := O(f)/k(f) > 0. Then F :
(—R,R) x S —> UR(f(S)), defined by

fu(”)L

is a C!-diffeomorphism with sdist (f, 7 (d, u)) = d for all (d,u) € (—R, R) x S.

Fd.u) = fw) —d

Proof. See [29, Satz 10.13]. O

Consider the mapping
Ggd,u,t) :=gu,t)+dn(u,t), deR,ueS,tel0,T],
and set

. _ S . 2
R, = tel(ng)Q(g(t))/K(g(t)), dist, 1= tel(l(}fT) dist (g(S, 1), R*\ ),

d* := min{l1, R,, dist,}.

Assumption (3.9) guarantees that d* > 0. For any ¢ € (0, T) we have that Uy« (g(S, t)) C £2 and
that the restriction of G(-, 1) on Mg+ := (—d*, d*) x S is a C'-diffeomorphism onto Ugys (g(S, t))
by Lemma 4.2. Moreover,

3L <JIGWd,u, ) = (1+dk(u,0) g, )] < 31, (4.2a)
|DG(d, u, )| < max{l, 3 I*} (4.2b)

for any (d, u) € My«y2,t € [0, T] and

DG (x, N] < (min{l, $2,})”" (4.2¢)
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for any x € Ugx2 (g(S, t)), t € [0, T]. A further investigation shows that

GeC' (Mg x(0,T),R?), ¢7'eC'Up,RxS), 4.2d)
DG € Ly (0, T; H' (Mg+,RY)), G, € L2(0, T; H' (Mg, R?)) (4.2¢)

with Uge := U, 0.1y Ua*(¢(S. 1)) x {t} open and

1G:(d. u. 0] < gl o, gy + 'ld—*' lutllcos, gy (4.2)
forevery (d,u) e R xS, t €[0, T],
|04 DG(d, u,t)| < k* 1%, (4.2¢)
10uDG(d, u, D < (17" gil oy ) (1+d (14 I8t 1) ). (4.2h)
DG, u, 0] < (17 guller gy pzy) (1+ @2 (1+ g, r>|2))1/2 (4.2i)

for every d € R, almost every (u, 1) € S with * := sup, 9.7, <(g(1)).
Let n € C'(R) be a cut-off function with n(d) = 1 for all |d| < %d*, n(d) = 0 for all
ld| > $d*,0 <n < land || <8/d* onR.

DEFINITION 4.1 Suppose that
IG — gllcos ey < $d*  in [0, £*]. (2+)

Define the auxiliary mappings p : S x [0,#*] - Rando : S x [0,1*] = Sby G = G(p, 0,1) or,
more precisely, by the equation

G(u,t) = g(p(u, t),o(u,t), t).

In addition, define a further auxiliary mapping H : R x S x [0, t*] — R x S by

H(d, u, 1) = (d +n(d) p(u, 1), ue'®)  with ¢:n(d)arg(a(b;,t)>,

where we use R? ~ C and arg : C \ {0} — (—, ] denotes the argument function. Finally, define
H: 2 x[0,t*] - £2 by

Q(H(g—l(x, 1,1), t), if x € Ug=(g(S,1));

H(x,t) = {
X, otherwise.

Assumption (2+) guarantees that p, o and thus H are well defined. The construction in
Definition 4.1 satisfies H(g) = G. The rest of this subsection is devoted to the following issues: the
construction of H can be controlled by the error of the free boundary, and (therefore) H is bijective
and the formal calculations that have led to (4.1) can be done rigorously provided that the error of
the free boundary is sufficiently small.
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The next lemma concerns the first aforementioned issue. More precisely, it establishes that the
‘distance’ between the auxiliary mapping H(-, 7), ¢ € [0, t*], and the identity on R x S is controlled
by the error of the free boundary in a ‘pointwise’ sense. To this end, define a metric on R x S by

12
s (@1, ), (da,w2)) = (ldy = dal? + dsur, w2)?)
and set

DQ, = tei(gfﬂ@ (g(t)) > 0.

LEMMA 4.3 Suppose that (2+) in Definition 4.1 and

DQ .
1G — gllcogmey < -7 in0.17] (3+)
hold. Then:

(i) We have H € CO(R x S x [0, 7*], R x S) with

*

1/2
4
dRXS(H(d,u,t),(d, u)) < (1+D—Q2) |G(u,t) — g(u, ).

(i) Letr € [0, t*]. We have H(-, t) € W;o(Md, R x S) for any d > 0 and
2 2\ /2
IDH@,u.0) = E| < ¢ (1Gul, 1) = gul. 0P +1G,1) — g, 0

forevery d € R and almost every u € S. Here ¢ depends on DQ;1 s dist;1 ,and || g, ||C110 Sr.RY)
increasingly.

(iii) Let u € S. The mapping R x [0,t*] > (d,t) — H(d,u,t) € R x S is continuously
differentiable and we have

2 2\ /2
|Hl(d’ u, t)' g c (|Gl(u7t) - gl‘(uat)l + |G(l/l, t) —g(lzl, t)| )

forevery d € R and ¢ € [0, t*]. Here ¢ depends on DQ*_1 and [|gsull o Sr.R2) increasingly.

Proof. Let us prove statement (i). We first derive corresponding statements on the auxiliary
mappings p and o. With the help of G € c%s x [0, t*], R?), Assumption (2+) and (4.2d) we
obtain p € CO(S x [0, t*]) as well as 0 € CO(S x [0, t*], S). Besides, for any u € S and ¢ € [0, t*]
we calculate

lo(u, )| = | sdist (¢, G(u, )| = dist (¢(S, 1), Gu, ) < |G, 1) — g, )| (4.3)

by using Lemma 4.2. Hence,

ds (o (u, 1), 1) <DQ ()™ G, 1) — p(u, ) n(o(u, 1), 1) — g(u, 1)

<

S Dba. |G(u,t) —gu,nl. (4.4)
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We thus have | arg (o(u, t)/u)| =ds (a(u, 1), u) < in S x [0, t*] by Assumption (3+) and the
function

S x [0,£*] 3 (u, t) > arg (a(u, t)/u) € R is continuous. 4.5)

Together with the continuity of p, o, and n, this implies ‘H € CO%R x S x [0, ], R x S). The
inequality in statement (i) follows from (4.3), (4.4), and 0 < n < 1. Statement (i) thus is established.

Let us prove statement (ii). As before, we first derive corresponding statements on p and
o.Lett € [0,1*]. The facts G'(-,1) € C'(Ug+/2(g(S. 1)) and G(-,1) € WL (S, R?) imply
p(, 1) € WolO (S)ando (-, 1) € Wgo (S, S). Moreover, the chain rule yields (recall the convention for
derivatives)

Guu, 1) — gu(u,t) =n(o(u, 1), 1) p(u, 1)
+ (l + po(u, t)k(a(u, 1), t)) gu(o(u, 1), t) ou(u,t) —gu(u,t). (4.6)

In order to estimate |p, (u, t)| we take the scalar product of (4.6) and n(a(u, 1), t) and arrive at

ouu, )] <Gy, 1) — gu(u, )|+ |gu (0 (u, 1)) — gulu, 1)].
With the help of (4.4) we estimate

2 ”guu ”CO(gT’RZ)

|gu (o (u, 1)) — gulu, D] < G (u, 1) — gu, ). 4.7
DQ,
Inserting this inequality in the previous one, we get
lou(u, ) < ¢ (1Gu(u, 1) — guu, )| + |G (u, 1) — g(u, 1)]), (4.8)

where ¢ depends on DQ, ! and | Guue |l o Sr.R2) increasingly. Next, let us estimate the expression

loy(u, t) — 1|. We take the scalar product of (4.6) and n(a (u,t), t)J', use (4.2a) and |k(u, t)| <
|guu (e, 1)1/18u (u, 1)|* in order to get

3 Lelou(u, 1) = 1] < 1Gu(u, 1) — gu(u, 1) + [8uctet, 1] lo @, )]+ 1gu (0 (u, 1)) — gulu, 1)].
|gu (u, )]
This implies
low(u, 1) =11 < ¢ (IGuu, 1) = guu, D] + |G (u, 1) — g(u, 1)]) 4.9)

with ¢ = c(DQ;l, ”gW”CO(ST RZ)) because of |g,(u,t)| > DQ,, (4.3) and (4.7). The regularity

of p, o, and n yield H(-, 1) € W;O(Md, R x S) for any d > 0. Moreover, choosing the basis
(1,0), (0, ut) in T(R x S) 4.4, we have
1+n'(d) p(u, 1) n(d) pu(u, 1) )
DH(,u,t) =
(d,u, 1) (n’(d) arg (o (u, 1)/u) 1+ n(d)(ou(u, 1) — 1)
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for alld € R and a.e. u € S. Therefore, inequalities (4.3), (4.4), (4.8), (4.9), and the properties of 1
imply

D, 1)~ B < ¢ (1GuGe 1) — gute, 0P +16G, ) — g, 0P)

where ¢ depends on (d*)~! additionally. The proof of statement (ii) is complete; statement (iii) is
established in a similar manner. a

The next lemma is the key step in establishing that H is bijective.

LEMMA 4.4 Let ¢o be the constant in statement (ii) of Lemma 4.3. Suppose in addition to (2+)
and (3+) that

1 .
IG — g”wgo(s,]RgZ) < \/—8—00 in [0, £*]. (4+)

Then the mapping H(-, t) is bilipschitz (that is H(-, ) and HCL 1) = (H(-, t))fl are Lipschitz
continuous) for any ¢ € [0, t*] and we have

IDH(, I <3, ID(HTY)C.0I<2, §<THC. 1) =det DH(, 1) < 3,
DM 0 = [DH(H ¢ 0),0)]

almost everywhere in R x S. Moreover, for every (d,u) € R x S the mappings H(d, u, -) and
H~'(d, u, -) are Lipschitz and their Lipschitz constants do not depend on (d, u).

Proof. Define a group operation on R x S by (dy, u1) + (da, up) := (d1 + da, uj uz) and denote
the identity on R x S with Z. Let ¢t € [0, #*]. Assumption (4+) implies that H(-,7) — Z is
a contraction on R x S with Lipschitz constant % From this fact and the observation that the
distance and group operation on R x S are ‘compatible’ one derives that (-, ¢) is bijective, that
HCn) = (HC, t))*1 is Lipschitz and that the inequalities for [DH(-, )|, |D(H ") (-, #)| and
JH(-, t) are satisfied. The formula for D(H‘l)(~, t) is a consequence of [14,3.1.2, Corollary 1
(ii)]. Choose (d, u) € R x S such that this formula is valid. Then det DH(d, u,t) > 0, because
[0,1] > @+ o DH(d, u,t)+ (1 —a) E is a continuous path in the regular matrices. Thus, we have
JH(-, t) = det DH(-, t) almost everywhere.

Let (d,u) € R x S be arbitrary. Lemma 4.3 (iii) and G € C'([0, *], Y) imply that H(d, u, -)
is Lipschitz, and its Lipschitz constant does not depend on (d, u#). Following the lines of [2, (3.1.4)]
one proves that the last statement implies the corresponding one on H~'(d, u, -). O

The statements on H in Lemma 4.4 imply analogous ones on H provided the assumptions
(24)—(4+) hold; this can be proved by using the statements (4.2) on the diffeomorphisms G(:, t),
t € [0, T]. Moreover, one can verify the following formulae:

DH(x,t) = DQ<H(Q‘1(x, 1),1), z) DH(G ' (x,1),1) D(G™")(x, 1), (4.10a)
D(H™Y)(x,) = [DH(H ' (x,0),1)]" (4.10b)
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for almost every x € Ug« 2 (g(S, t)) and every ¢ € [0, t*], and

H =DGoHoG 'DHoG ' (G7),
+DGoHoG 'HioG  +GoHoG
(7", =—([pH] " H) o ™! (4.10d)

(4.10c)

almost everywhere in Uy+ 2. In addition, the chain rule [32, Theorem 2.2.2] and the trace theorem
[14,4.3, Theorem 1 (with Remark)] lead to

V(po H(t)) = (Vg) o H(1) DH(1),
peH (2) = woH) e H (2)

forevery ¢ € H'(£2),1 € [0,1*],and 6 o H~! € WL (2 x [0, t*]) with
(OoH™"), =)o H ' (H") +6,0H". (4.11)

Therefore, (4.1) is valid for every @ € X and almost every t € [0, t*].

Control of the temperature field (Part 2)

In this subsection we aim at estimating & — 6 in terms of the error of the free boundary. In order to
reach such an estimate we split the difference ® — 6 in the following way. Let A6 be the parabolic
projection (compare with [21]) of § onto H'(0, t*; X), that is A6 € H'(0, t*; X) solves

/ (Aé)rqb—i—/ V(Aé)-VcD:/ é,¢>+/ VO .Vo Vo eX, ae. in (0,1,
2 2 2 2
(46)(0) =6(0) =0,

and write

~

O —0=(6—A40)+ (40 —0).
Let us estimate @ — A9 first. Equation (4.1) remains valid, if we substitute 6 by Af. We test the

equation for @ in Problem 2.2 and (4.1) for A with @ = © — Af , take their difference, integrate
in time, and get for any ¢ € [0, *]

t

t
e — Ae(r)n%z(m +/0 Iv(e - A9)||%2(Q) < I+/O £(O — A0), 4.12)

where

t
z;z_/o A(G,-Gj—g,-gj)(@—Ae)(G).

We proceed with two lemmata. The first one concerns £ and the second one 7.
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LEMMA 4.5 Suppose that (2+)—(4+) hold. Then,

€@ < ¢ (ANIG —gllgisry + 1G = &llL,sry) 191L202)
+cAlG = gllgsr2y IVelL,2)
for every ¢ € H! (£2) and almost every ¢ € [0, ¢*]. Here the constant ¢ depends on DQ, L dist, L
Iguller s, z2y- 18t co, rey 1V6. 6l L) increasingly and

5 5 1/2
A= (14 gl g oy + 8wl s 5))

Proof. We only estimate the first integral in the definition of £; the estimates of the other integrals
are more straight-forward. Let ¢ € [0, +*] and drop it normally. Since

/Q (Vo H' (H™"), go‘ <NVOl L@ I(H™Y), a2 €l o)
we have to estimate [|(H "), [|L,(). Using (4.10d) and (H '), = 0 off Ug«/2(g(S. 1)), we get
2
1) Nesiay < et [ @0y ) ol
Myx)p

Formulae (4.10a) and (4.10c) yield ((DH]™'H;) 0 G = Z?:l D;, where
Dy := DG [DH]™' H,,
D, := DG[DH]™' (E — DH) ([DG1™' G;) o H,

D3 := DG[DGI™' o H (DG — DG o H) [DG]™' G, o H,
D4 = g[OH_gt~

We estimate Dy, Dy, D3, and D4 in the || - || Ly(My ,, R2)-ROTM by using the inequalities of the
previous subsection. We establish

/ DI < (16 = 81l 20y + 16 = 812 o))
Mo

with ¢ = ¢(DQ;', I*, lgrullco s, g2,) and

f IDy* < e (DQ;I, dist, !, llgrllcogs, o) ||gu||cl(gT,Rz)) IG = gl31 5.0
My '

by using (4.2b), (4.2¢), (4.2f), Lemma 4.3 (ii), (iii), and Lemma 4.4. Furthermore,
/ D3> < et 1% gl cro, o)) / |DG o H — DG
My )p Myx )»
For « € [0, 1] define the auxiliary mapping H* : R x S x [0, #*] - R x S by
Ha(d, u, t ))

u

HO(d, u, 1) = (d +a(Hi(d. u.1) —d), e *? u) with ¢ = arg <
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where (H1, Hz) := H. Observing that HO(-, ¢) is the identity on R x S, H' = H, |8, H*(d, u, 1)| =
dr«s (H(d ,u,t), (d, u)), and that H? is bilipschitz with similar estimates like H, we deduce

/ IDG o H — DGI* < 4 sup dgs(H( 1), )’ / 104 DG|* + 18, DG 4.13)
Md*/Z RxS Md*/2

This, (4.2g), (4.2h), d* < 1, Lemma 4.3 (i) and the embedding H'(S, R?) — CO(S, R?) yield

/ |D3|* < ¢ (1 + ||guuu||iz(S,Rz)) IG — &l sm2)
My o

with ¢ = ¢(DQ; . g lcos, 2y 18ull e (gr»Rz))' In a similar way we arrive at

fM D42 < ¢ (DQ7 Iguller, gy ) (1+ Ngnal? ) 16 = 81216 20,
% )2

and the estimate of || (H_l)t lL,(02) is established. (|

LEMMA 4.6 Suppose that (1+) in Lemma 4.1, (2+) in Definition 4.1, and

DQ,

T in [0, %] (5+)
8 ”n”CLO(gr,RZ)

IG — 53||VV30(S,E§2) <

hold. Then, for any ¢ € [0, *] the boundary of Int (G(t)) is locally a Lipschitz graph. Moreover, we
have ((p o H) (g) = ¢(G) and

le@I, ) < (72190130 + 2701} 0 )

forany ¢ € (0,1], ¢ € HY(£2), and ¢ € [0, ¢*]. Here ¢ depends on L;l, l*_l, I*, (d*)_l, and «*
increasingly.

Proof. At first let us sketch the proof that the boundary of Int (G(t)) is Lipschitz. Let ug € S.
We use coordinates given by 1o := g, (o (uo, 1),1)/|gu(0 (o, 1), )| and ng := n(o (ug, 1), 1). Let
us write G(exp(ir) uop, t) = G(uo,t) + a1(r) ©o + a2(r) ng, r € R. Check that Assumption (5+)
guarantees ai(r) > L,/4 > 0 for small |r|. So, 0 Int (G(t)) can be represented close to G (ug, t) as
the graph of a composition of «; and a local inverse of «1. This composition is Lipschitz continuous,
as o} (r) > Ly/4 for small |r| and G(t) € WL (S, R?).

Consequently, the expression go(G(t)) = 9|y mG)) © G(¢) is well defined for any ¢ € H'(£2)
and ¢t € [0, t*]. Furthermore, the identity ((p oH ) (g) = ¢(G) follows from H(g) = G and an
approximation of ¢ by smooth functions.

We still have to show the estimate of ||@(G)||1,(2). Without loss of generality we may assume
that N is the outer normal of Int(G). Apply [16, Theorem 1.5.1.10] with the vector field

o) {n(sdist (810, %)) 029(G™" (x,1),1), if x € Ug(g(S, 1);

0, otherwise.

This vector field satisfies [|v||¢1 g g2y < c(I;1 1%, (@)™, k*) and, due to (5+), the inequality
N -v(G) > % 1. Combining all this with Assumption (1+), we get the claimed estimate. |
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The identity Gy - Gj- — 8- g,j- =(G; — &) - Gj- + g - (GJ- - g 1) and Lemma 4.6 yield

t t
2 2 2 2
Ti<e [ [ 16— 016 +e o, o, [ 164 = 8l
t - c t -
+e [ 19© =10l o)+ 55 [ 16— 4010

for small ¢ > 0. Inserting this inequality with a sufficiently small ¢ and Lemma 4.5 in (4.12) we
arrive at

%||@(r)—Aé(t)||i2(m+;/ IV(© — A0)|* < fnGt gl sr2)
+c/0 A ||G—g||§{1(SYR2)+ch 16 — Abl7, ),  (4.14)

provided assumptions (1+)—(5+) hold. Here ¢ depends on the quantities L L DQ; I dist, 1
llgu ||C1(§T,R2)’ lg: ||C0(§T,R2)’ V6, 6l L (o) increasingly and A is defined as in Lemma 4.5.

As a preliminary of the estimates for AG — 0, let us prove the following lemma. Set

M= sup (16100l 2wy + 1010! Ol i2wiey)
1e(0,7T)

and denote the orthogonal projection L, (§2) — X by P.
LEMMA 4.7 Suppose that (2+)—(4+) and & € (0, 1] hold. Then, we have

1BA(t) — (1)l Ly2) < c1h

and
! SH A2 2 ! SH AN 112
/O 156 — 612, o). I /0 IV — 02, 0,

t
<o h3 (1 +/ (1 + ”guuuniz(g R2)> hiz 1G — g”%—II(S Rz))
0 , ,

for any 7 € [0, t*]. Here ¢ depends on l*_l, I*, ||9||W30(Q), Caprx increasingly and on §2; the constant
¢y additionally depends on DQ;l, dist;l, llgu ”CLO(ST,RZ)? M, ciny, and T'.

Proof. Let us prove the estimate with ¢ first. For any ¢ € [0, *] we have
1P = OllLy2) < I1PO = Ollyc2) + I1BE = 6) — 0 — )1, (02)- (4.15)
Assumptions (3.5) and (3.6) imply the inequalities

10 = 01l Ly(2) < Caprx 1 101l 111(2)
1B —6) — (0 — 0)lly2) < Caprx 10 — Ol g1 (2)- (4.16)
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Since
lpo H™' = ol < el 1) 1@l Vo € L(£2), 4.17)
IV(po H' = @)@ < el %) 1Vely@) Vo e H' (),

and 0 € CO([O, ], Lz(.Q)), the estimate with c¢; is established.
In order to prove the estimates with ¢, we rely on (4.15), (4.16),

V(PO — 0)ll1y2) < IVEPI — O)l12) + IV[PEO —0) — @ — )]l (2,
and

IV[B@ —0) — (0 — 0)]ll @) < (Caprxs €im) 10 — Oll 12y

Besides, we use the theory of interpolation spaces (see for example [3] or [4]). The real interpolation
space of the Banach spaces A and B with ‘order’ («, ¢) € (0, 1) x [1, oc] is denoted by [A, Bl g-
Modifying the proof of [24, Theorem 1] slightly we check that the Assumptions (3.8) imply 6(¢) €

[H'(2). HZ(Q)]I/M with

16O 1 @), 2@ < (@) 101 ) M. 2) (4.18)

for almost every ¢ € [0, T']. An application of the Interpolation Lemma (e.g. [4,(12.1.5)]) on (3.5)
with m = 1, 2 yields

1o = @lry@ +hIVUIe = 9)ls2) < capx B2 1011112, 12021, (4.19)

forany ¢ € [H'(22), H*(2)] . Hence,

1/2,00
IP0 — OllLyc2), B IVBO —0)llLy2) < ch*?

in [0, T'], where ¢ depends on (d*)_l, I*, ||9||W01¢(Q), M, Caprx» Ciny increasingly and on §2. We still
have to estimate ||é — 9||H1(.(2) in such way that we take advantage of the [Hl(.Q), Hz(.Q)]
regularity of 6. We have (compare (4.13))

1/2,00

lp o H— ¢l < el %) 90 GoH — ¢ 0 GlliLymy,
< c(DQ. ") IVollLy2) IG — gl s k2
forany ¢ € H'(£2). Together with |||l 1,2) < c(I;71, 1*) 1¥ o H||1,(e) this yields
lpo H™' = ¢llLy2) < ¢(DQL. I*) IVollLy2) 1G — gl g1 s k2 (4.20)
for any ¢ € H'(£2). Hence,
||é - 9||L2(.(2) < C(DQQI, I, ||0||W010(Q): 9) 1G — g||H1(S,R2) (4.21)
in [0, t*]. Interpolation of (4.17) and (4.20) gives

-1 —1 1/2
lgo H " —oliLye) < (3(DQ>|< al*) 1G — g”H/1(S,R2) ||§0||[142(9),111(_9)]1/2OO
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for any ¢ € [Lg(.Q), H! (.Q)] . Therefore, with the help of

1/2,00
IVOlliLy @) 5 @100 S 1PN H @), H2 @)1 2100

forany ¢ € [H!(22), H*(2)] d

1/2,00 @0
V(@ o H™ =)Ly < IVl ID(H™") = EllLy@) + (Vo) o H' = Vol 1,0
for any ¢ € WOIO(SZ), we arrive at (compare Lemma 4.5)
IV© = 0)llL,2)
5 1/2 12
<c (1 + IIguuulle(S,Rz)) G — gl srey +1IG — g”Hl(S’RZ) (4.22)

and thus
A ) 172 1/2
6 — 9||H1(Q) <c¢ (1 + ||g”“””L2(S,R2)> G — g”H'(S,R2) +1G - g”Hl(S’RZ)

< ch? (14 (14 |l guunll? lﬂh*‘uc— I
<1 ¢ Buuullps.R2) EllH! SR

with ¢ depending on DQ;!, dist,!, lgullcros, m2y 101wy o)» M increasingly and on £2.
Collecting all the above estimates, we get

1B — 61,02y, B IVPO —0)l 1y

3/2 2 12
<cn (14 (14 lgual? ) H7'IG = gl re ) -
We square these inequalities, integrate in time, and arrive at the claimed ones with c;. O

LEMMA 4.8 Suppose that (2+)—(4+) and & € (0, 1] hold. Then,
t
A A2 A A2
1480 =0 )+ [ 19040 = 8)1E, 0

t
<crh (1 + fo (1 + ||guuu||iz(S,Rz)) h2 G —gn%,l(S,Rz))

and

t t t
/0 140 =617 o) < 2’ <1+/0 AR~ ||G—g||i,l(S,R2)+h/0 ||Gf—g,||iz(S,Rz>)

for any 7 € [0, 1*]. Here ¢; depends on DQ; ", dist, ", llgull 1065, g2)> 191lwi (0)s M Caprxs Cinvs T
increasingly and on §2; the constant ¢, depends on || g; || » L0S; R2) and ce)) additionally. The function
A is defined as in Lemma 4.5.

Proof. In order to prove the estimate with ¢ follow the lines of [28, Theorem 1.3], but replace RO
by PO and use the previous Lemma 4.7. Then the estimate with ¢, follows by a standard duality
argument, which resorts to Assumption (3.1), Equality (4.11), and the estimate of || (H _1) N 2ee))
(see the proof of Lemma 4.5). (|
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Control of the free boundary (Part 2) and coupling

In Lemma 4.1 the error of the free boundary is controlled in terms of the error of the interfacial
temperature. In order to couple this inequality with (4.14) we still have to estimate the error of the
interfacial temperature. With the help of Lemma 4.6, we observe that it can be controlled by the part
© — 6 of the error of the temperature field. More precisely, we have

16G) =612, = 1@ —8)(G)I3 g,
<2 (I(0 = 26)G)13 5 + ||( ~0) (O,
<e V(O = AD)I o) + = 10 = 481},

+h V(A6 = D)} q) + 7 140 =61} )

for any h € (0, 1] and small ¢ > O , provided assumptions (1+), (2+), and (5+) hold. We integrate
in time, assume that we can apply Lemma 4.8 and get for any ¢ € [0, *]

t t t
A Cl A
/O 10(G) — 0()I,s) < e/o IV(© = 407, 0) + — /O 16 — AbI7, @)
t t
+or b (1+ /0 APh? ||G—;;||§L,I(S,Rz)>+c3h3 /0 IG: — g1} g rays  (423)

where c1,c2, and ¢3 depend on the constants in Lemma 4.6 and Lemma 4.8.

In the following proposition we finish the first stage of the proof by summarizing the results that
we have obtained so far.

PROPOSITION 4.1 Let t* € [0, T] and suppose that (®, G) is a solution on [0, t*] of the semi-
discrete Problem 2.2, which satisfies G € C! ([O, t*, Y ) and assumptions (1+)—(5+). Moreover,

suppose that
1 \!/3
h<h:=min{l, , (4.24)
4ccs

where c is as in Lemma 4.1 and c3 as in (4.23). Then, for any ¢ € [0, ¢*]

t t
1 A2 1 2
! fo IV(© — 40113, ) + & /0 1G: — g2 s e,

+ 3100 = (A0) D7, @) + 1G@) = gDl31 s poy
t t
< </0 e — AQ”L(Q) +/0 A%NG - g||§11(S’Rz) +h2> . (425)

Here the function A is defined as in Lemma 4.5 and the constant ¢; depends on the quantities L 1

1 e T
L*, DQ* 1’ dlSt* 19 ||g||c2,l(§T’]R2)’ ||gtu||co(§T’R2), fo ”gl‘ ”i]Q(S’RZ)’ ||9||W<lo<Q)’ M’ Caprx, Cinv, Cell,
T increasingly and on 8, a, §2.
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2

H2S.R2) additionally, such that

Furthermore, there exists a constant ¢;, depending on fOT [lgull

hIO =617, + 1G = gl g pey < 2B in [0, 7],

Proof. Inequality (4.25) follows from Lemma 4.1, inequalities (4.14), (4.23), and Assumption
(4.24). Applying Gronwall’s Lemma to this inequality we get

A T 42 .
10 = 48113 ) + 1G = 8131 g oy < 2€16 0 A 1% in [0, 17].

Using this in Lemma 4.8 and (4.21) we estimate

T
h11(A0)(®) =07, 100) =617, < ¢ <c1, / A2> 0.
0
for all r € [0, t*]. Thus, the second estimate is established too. (Il

Now, we turn to the second stage of the proof, namely that we establish Inequality (4.25) on
[0, T'] for small & without supposing the additional assumptions (1+)—(5+). This crucial step relies
on the estimate with c¢; in the previous Proposition 4.1 and the inverse estimate (3.4).

LEMMA 4.9 There is a h* > 0 such that for all 2 € (0, #*] there exists a unique semi-discrete
solution (©, G) on [0, T] of Problem 2.2 with G € C'([0, T], Y). Moreover, (©, G) satisfies
Inequality (4.25) for all + € [0, T]. The constant A* depends on the same quantities as ¢ in
Proposition 4.1, but in a decreasing manner.

Proof. For the sake of simplicity, we prove only a simplified claim by assuming the (unique)
existence of a solution (€, G) of Problem 2.2 with G € C!([0, T'], Y). The proof of the general
claim is obtained along the same lines; one just modifies the following definition of the set C, and
uses the local existence result in Lemma 2.1.

Set K := /2 c,, where c; is as in Proposition 4.1. Let us consider the set

Cri=1{r* €0, T1| V1 €[0.*] hO1) =007, + 1G®) — gD} 5 oy, < K> h).

Without loss of generality we can assume that K is so large that the approximation of the initial
data implies Cj, # (0. Besides, Cj, is open by definition. So, since [0, T'] is connected, we can prove
Cn = [0, T'] by verifying the implication

[0, CCp = t* €y,
which means that Cj, is closed. Let [0, t*) C Cj,. Then we have
1O =617, + G = gl g gy < K*A in[0,1].

This, assumptions (3.4), (3.7), and the embedding H' (S, R?) < C°(S, R?) yield

G — g”W(}O(S,RZ) < ¢(Cinv, Caprx,» K) n'/?
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for all & € (0, 1]. Thus, there exists a h* € (0, 1], such that & € (0, h*] implies that assumptions
(2+)—(5+) as well as (1+) with L, = %l* and L* = % [* hold. Without loss of generality we may
assume h* < h, where h is defined as in Proposition 4.1. Consequently, we can apply Proposition
4.1 and conclude

RO @) =0, o) + 1GE) = g1 g2y < 207 < K2R,

that is t* € Cp, with the help of the estimate with ¢, and the definition of K. Therefore, C, =
[0, T] and the additional assumptions (as above) are satisfied in [0, T']. One further application of
Proposition 4.1 thus yields that Inequality (4.25) holds in [0, T]. O

Error estimates for the unknowns

Now we are ready to prove Theorem 3.1. Let & € (0, h*], where h* is chosen as in the previous
Lemma 4.9. Statement (i) of Theorem 3.1 thus is valid and we get

T
sup 0 — AG1I7, (o) sup G = gl s g2y /O IV(© — AD)7, (0
0,7) '

0,7)
’ 2 r 2 2
/ IG: — &2, 552 < c<c1,/ A ) R, (4.26)
0 ’ 0

by applying Gronwall’s Lemma to (4.25). Inserting (4.26) in Inequality (4.23), we obtain the error
estimate

T
/O 10(G) = 0,5 < ch?

for the interfacial temperature. Here ¢ depends on the same quantities as before. In order to finish the
proof, we still have to estimate Af — 6 in the corresponding norms. Let us start with the Lso(L2)-
estimate. Although R(6;) and thus R (é,) does not exist in general, we have RO € Wolo (0, T; X)
This can be recognized with the help of 0 e Wolo(Q) (see (4.11)), integration by parts, and the
assumption that elements of X are piecewise smooth on a partition of §2 into Lipschitz domains.
So, using assumption (3.3), we can follow the proof of [28, Theorem 2.6] and obtain

A A T A A
sup | A6 — 0|, 2) < c(Cinv) (1 + max {0, In —2}) sup [[RO —0llL,0)-
0.7) h=y) o1

Proceeding in a similar manner as in Lemma 4.7, we get

sup [|RO — 8ll1,(2) < ch®/?
0,T)

with the help of assumptions (3.1), (3.6) and inequalities (4.19), (4.18). Hence, we have
sup(o, 1) A0 — 01l L,2) < ¢ h where ¢ does not depend on 4. Since

sup 10 — 0lLy2) < ch
0,7)
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by inequalities (4.21) and (4.26), the error estimate for sup 7y |@ — 0||,(2) is established. It
remains the L, (L;)-estimate for the heat flux. Inserting (4.26) in Lemma 4.8 and (4.22), we obtain

T T
/0 ||V<A9—9)||i2(9),/0 IVO =)l ) < ch.

Thus, the estimate of the heat flux is established as well and Theorem 3.1 is proved.

Remarks on Optimality

We first show that the error estimate for the heat flux is of optimal order. The Stefan condition
implies a jump of (VG)(t), t € [0, T, across the interface y (¢), if the interface is non-stationary.
As a consequence, the maximal regularity of 6(¢), measured in Ly(£2), is [H'(£2), Hz(.Q)]l/2 o
(compare [24]). The interpolation error for VO(z) thus is at most of order 1/2 and so the optin’lal
order of the error estimate for the heat flux is established.

Next, we discuss the optimality of the error estimate for the interfacial temperature 6(g). We
rely on the following assumption: in order to estimate the interpolation error for the interfacial
temperature 6(g) one has to apply a trace theorem in L. We thus need at least 1/2-derivative in
L,($2) (see [23]) and so the interpolation error for the interfacial temperature is at most of order 1.
Hence, the error estimate of the interfacial temperature is of optimal order.

Since 6(g) is a coupling quantity, all the other error estimates also are of optimal order, provided
the above assumption that one has to use a trace theorem in L.

Error estimates for the phase distribution

In order to prove Corollary 3.1 we introduce a ‘signed Hausdorff distance’

s6(f1, f2) := sup |sdist(f1, x) — sdist( f2, x)|

xeR2

between two injective parametrizations fi, f> : S — R2. Then the error estimates of Corollary 3.1
are implied by the inequalities

S(ANC,BNC) < (A, B)
for any non-empty A, B, C C R? with C > 9A U 3B and
s8(G(1), g(1)) < Ch (4.27)

forallh € (0, h*]and t € [0, T].
In order to show the latter we first derive Or (G (1)) = Or(g(¢)) for all ¢ € [0, T]. For a fixed
t € [0, T] let us consider

Fi(u,t) = g(r p(u,t),exp (ir arg(o (u, t)/u)) u, t), uesS, telol]

In view of (4.5) the mapping F; is a homotopy from g(¢) to G(¢). Choose ug € S and set xg :=
g( - % Or (g(t)) d*, ugp, t). As xg € Int (g(t)) but xo € Fi(S x [0, 1]), we arrive at Or (G(t)) =
Or (g(t)).
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Next, let us verify that
s8(G(1), g()) < NG @) — g0l cogs r2)- (4.28)

Let x € R? and set r := sdist (G (), x) sdist (g(t), x). We consider two cases: r < 0and r > 0.1In
the case r < 0 let us consider a second homotopy:

Fu, )y =01—-1t)Gu,t)+tgu,t), ues, telol]
From Or (G(r)) = Or (g(1)) we obtain x € F»(S x [0, T]) and thus
| sdist (G(t), x) — sdist (g(t), x)|
= dist (G(S, 1), x) + dist (g(S, 1), x) < [[G(1) — gl cos R2)

that is (4.28). In the easier case r > 0 we get (4.28) by switching to the unsigned distance function
dist. So, Inequality (4.28) is established in general and estimate (4.27) follows with the help of the
embedding H'(S, R?) < C(S, R?) and Theorem 3.1.

Error estimates for the geometric quantities

Let us prove Corollary 3.2. Since

2
IV =nlser < po 100~ slie e,
IV = vlia@) S 1G: = srllysm2) + 18 lco, m) IN = 1l m2):

and

1
1K =Kl < —(lallw ) Il oy, + 18wy @ 1Vl cogy) ) IN = nll, k)
k
*

1 B
+ —10(G) =0 Ly + — IV = vllLys)
ax Qs

for any ¢ € [0, T], the error estimates in Corollary 3.2 follow from Theorem 3.1.

Error estimates for measuring quantities

Let us first prove Corollary 3.3 and then Lemma 3.1. We only show the estimate for Viip — vyjp in
Corollary 3.3; the one for Ky — kiip can be obtained in the same manner. Suppressing ¢ and writing
Ziip = Glo Giip, We can estimate

Viip — viip| < [Vip — (Qu)(Ziip)| + [(Qu)(Ziip) — (Jv) (Xip)|
+ 1(Jv)(Ziip) — v(Zip)| + [v(Ziip) — viipl-
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Moreover, we have
Vip — Zip)l < cim B2 Q(V — e h V2V -
| tip (Qv)( t1p)| X Cinv 1O( v)”Lz(S) X Cinv l U”LZ(S)»

Q) (Zip) = (TN Eip)| < cimy ™72 (100 = vl a6 + 190 = vl 1,6 )

< c(Cinv, Caprx)hl/2 ”v”WéO(S),

[(J0)(Zip) — v(Ziip)| < c(h*, Ciny, Capr) 1 0l ),

lvllwe s) _
[0(Zip) = vipl < — = [¢(G™ (Gup)) — g
bQ.
v 1
_ Il

(1Gip — il +1G — gl .z )

~ DQ.
Therefore, using Corollary 3.2, Theorem 3.1 and sup ) lvllwe ) < oo, we get the claimed
estimate for Viip — vyip.

It remains to prove Lemma 3.1. Clearly, the conditions of Lemma 3.1 determine Gyjp uniquely.
Next, we show thattheset A :={x-e | x € I'(t) and x - et = 0} is non-empty for any ¢ € [0, T].
Using e - (D'H(O, u,t) — E) ey = oy, (u, t) — 1 and following the lines of Lemma 4.4, on gets that
o (-, t) has an inverse, which will be denoted by o~ 1(-, t). With the abbreviation Otip := g_1 o &tip
we have g, (Utip (1), t) - ¢ = 0 and therefore,

G(O'_I(O'[ip(t), 1), t) = g(oup(0), 1) + p(O'_l(O'[ip(t), 1), t) n(oiip(1), 1) € A,

which establishes the existence of the mapping Gyp. Furthermore, the function Gy - € is upper
semi-continuous and Gy, thus measurable. Finally, we have

G(Zip(1), 1) - e — g(Ziip(1), 1) - €
cllG@) — gDl Ry

Gtip(t) ce — gtip(t) e <
<

and

gup(1) - € — Gup(t) - ¢ < g (0up(1), 1) - e = G (07" (oup0), 1), t) e
S G DllLgs) < clG@) — gl i R

whence |Gyip(¢) — giip(#)| < ¢ h with the help of Theorem 3.1.
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