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Crystallization and solidification in polymers is a problem of great importance to the polymer
processing industry. In these processes, the melt is subjected to deformation while being cooled
into the desired shape. The properties of the final product are strongly influenced by the deformation
and thermal histories and the final solid is invariably anisotropic. In this work we present a model to
capture the effects during solidification and crystallization in polymers within a purely mechanical
setting, using the framework of multiple natural configurations that was introduced recently to study
a variety of non-linear dissipative responses of materials undergoing phase transitions. Using this
framework we present a consistent method to model the transition from a fluid-like behaviour to a
solid-like behaviour. We also present a novel way of incorporating the formation of an anisotropic
crystalline phase in the melt. The anisotropy of the crystalline phase, and consequently that of the
final solid, depends on the deformation in the melt at the instant of crystallization, a fact that has
been known for a long time and has been exploited in polymer processing. The proposed model is
tested by solving three homogenous deformations.

1. Introduction

The mechanical behaviour of polymeric materials is intimately related to the polymer structure
and morphology. The key aspects of a polymer’s structure include its molecular weight, molecular
weight distribution and the organization and composition of atoms down the polymer chain. The
morphology of polymeric materials is highly variable. Many polymers are semi-crystalline, and the
shape, size, crystallinity and organization of the crystallites depend on the conditions under which
the crystallization took place. Other polymers are amorphous, often because their chains are too
irregular to permit regular packing.

The majority of plastic products are manufactured by heating the polymer to above its melting
temperature and then cooling it in a mould (e.g. injection moulding) or subjecting the melt to
deformation while simultaneously cooling it to achieve the desired shape (e.g. film blowing and
fibre spinning). The properties of the final product strongly depend on the processing conditions
the polymer is subjected to during manufacture, for e.g., in the case of film blowing the crystalline
orientation depends on the amount of stretch imparted in the machine direction and the transverse
direction. Bi-axial extension strengthens the film in the plane, due to which films find widespread
use as packaging materials. Uni-axial extension of melts is used to form high-strength fibres, in
these fibres the polymer molecules crystallize with their backbone parallel to the fibre direction. The
successful use of polyester bottles for carbonated drinks was made possible by the development of
a special blow moulding process that ensures that the polymer in the bottle is bi-axially oriented.
The surface layer of an injection moulded article is highly oriented; this has a negative influence on
the product quality, resulting in products that are easily cleaved. The above examples illustrate the
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importance of understanding the phase transition from the melt to a semi-crystalline or amorphous
solid as it determines the properties of the final product. In this section we provide a review of the
different efforts to model phase transitions with an emphasis on crystallization in polymers. This
does not purport to be an exhaustive review.

Polymer melts are generally modelled as isotropic viscoelastic liquids (see Doi & Edwards [12]
and Astarita and Marucci [2]). Depending on the molecular structure and processing conditions,
the final solid can either be in an amorphous or semi-crystalline state. Polymers that are unable to
crystallize, on cooling to below their glass transition temperature form amorphous solids. These
amorphous solids can have anisotropy† in the mechanical behaviour if the melt is subjected to
deformation while cooling below the glass transition temperature. As the deformed amorphous
polymer cools below its glass transition temperature, the molecules lose their mobility and are
‘ frozen’ in this oriented configuration. Polymers having a regular molecular structure, when kept
at temperatures below the melting temperature for a sufficiently long time, form a semi-crystalline
solid. Under quiescent conditions, the crystallization process is very slow and the solid has a
spherulitic morphology. The rate of crystallization strongly depends on the molecular orientation
in the melt. Subjecting the melt to deformations that align the molecules dramatically increases
the rate of crystallization. When the temperature falls below the glass transition temperature,
there is a cessation of molecular motion and the crystallization process halts. The crystallization
process also halts as the crystallinity increases, decreasing the mobility of the polymer molecule
in the amorphous fraction. A number of polymeric solids like polyethylene find applications
at temperatures between their melting temperature and glass transition temperature. At these
temperatures, the solid consists of rigid crystals and a flexible amorphous fraction resulting in a solid
that is both flexible and tough. The mechanical properties of the final product are strongly dependent
on the final morphology of the amorphous and semi-crystalline regions. The morphology, in turn, is
a function of the thermal and deformation history undergone by the material during processing.

The early work on phase transitions was devoted to analysing problems where conduction was
the dominant mechanism. Such studies can be traced back to the works of Lamé & Clayperon
[29] and Stefan [56], in which temperature is considered to be the basic variable (see Crank [11],
Fasano & Primicerio [15], Bankoff [8] and Rubinstein [51]) Another popular approach is the ‘Phase-
Field’ model which involves another parameter (other than temperature) called the order parameter.
The order parameter has extreme values of +1 (for pure liquid) and −1 (for pure solid). The heat
conduction equation is modified to incorporate the effect of the order parameter that leads to an
additional equation whose origin can be traced back to the Landau–Ginzburg theory of phase
transitions [30]. In most practical situations in which fluid to solid phase transitions take place,
several other mechanisms other than conduction come into play, for e.g., convection in the liquid
and deformation in the solid. This shortcoming is partially overcome by introducing a special
kinematics for the fluid (see Glicksman et al. [19]); however, the forming solid is still assumed
to be completely quiescent. This approach results in a model that cannot predict the structural
and mechanical properties of the newly formed solid. The ability to predict the properties of the
newly formed solid are however essential in all applications, especially so in polymers where

† Generally, the term amorphous is synonymous with the term isotropic. However, with regard to polymers, even though
X-ray diffraction methods reveal no evidence of three-dimensional order, optical methods detect small differences in the
refractive index in different directions. The structure of these may be regarded as a somewhat oriented, tangled collection of
spaghetti-like molecules. Of course, this implies that the material is anisotropic with respect to optical properties. However,
it is commonly observed that the body is also mechanically anisotropic. (see Ward & Hadley [60]).
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the properties of the final solid depend strongly on the processing conditions. Solid–liquid phase
transitions present additional challenges as there is a discontinuous transition in the symmetry of
the material. Since the issue of symmetry enters the problem only when the kinematical fields of the
fluid and solid are taken into account, both the Stefan approach and the phase-field approach do not
deal with one of the thorniest issues in phase transitions. Baldoni & Rajagopal [7] have developed a
continuum theory for phase transitions, that can account for changes in symmetry. However, in the
specific model developed they assume that the solid is isotropic and the response is like that for a
neo-Hookean solid.

The condition under which the melt nucleates, its subsequent growth and its final equilibrium
characterize the crystallization in polymers as in other solidifying systems. Nuclei develop either
randomly or at impurities. These nuclei can either grow or are destroyed. New nuclei can be
generated in uncrystallized regions of the melt. This process of nucleation and growth continues
until crystals impinging on one another restrict the growth or growth is restricted due to constraints
imposed by the amorphous region. The morphology of the solid formed under quiescent conditions
is spherulitic. The traditional way to model crystallization in polymers is based on the work
of Avrami ([4, 5, 6]). The Avrami equation that has been used widely in modelling quiescent
crystallization is based on the theory of filling space through the nucleation and growth of one
phase into another. Different variations of the basic Avrami equation to account for isothermal
and non-isothermal conditions can be found in a detailed review by Eder et al. [13]. Experimental
correlations for Avrami’s equations can be found in the text by Mandelkern [36]. Of course, it is
possible within the framework of the theory presented here to assume a very general form for the
equation that governs the crystallization kinetics.

The Stefan problem for polymer solidification has been studied by a number of researchers. In
the classical Stefan problem, solidification of a semi-infinite pool of liquid is initiated by quenching
the ‘wall’ at the origin. After quenching, a solidification front propagates into the melt. In polymers,
however, crystallization takes place over a range of temperatures between the melting temperature
and the glass transition temperature, resulting in diffuse crystallization in the melt, before the arrival
of the solid phase boundary. Experimental evidence for this phenomenon has been reported by
Krobath et al. [27], Janeschitz-Kriegl et al. [21] and Eder [13]. This problem has been modelled by
a number of researchers by combining the crystallization kinetics equations, similar to the Avrami
equation, with the transient heat conduction equation (see Malkin et al. [34, 35], Berger & Schneider
[9], Eder [13] and Astarita & Kenny [1]). This approach is similar to the phase-field approach.

As the process of crystallization of polymeric melts is quite complicated depending on a plethora
of quantities, we shall try to provide some details concerning experimental studies of crystallization.
In most practical processes, crystallization rarely takes place under quiescent conditions. When the
phase transition takes place in a flowing polymer melt, the morphology of the final solid depends on
the temperature and deformation history. Crystallization under flow conditions increases the rate of
crystallization by orders of magnitude (see Haas & Maxwell [20], Lagasse & Maxwell [28], Eder
et al. [13] and McHugh [37]). Usually, a highly oriented row-nucleated crystalline morphology
is obtained (Keller & Machin [25], Kawai et al. [24]) in contrast to the spherulitic morphology
observed under conditions of quiescent crystallization. The effect of different polymer processes on
the orientation and morphology has been widely studied (see Peterlin [40], White [61] and White &
Spruiell [62]). In spun fibres the lamellae are found to be perpendicular to the fibre axis and in the
case of blown film the lamellae are distributed in the plane of the film. The outer layer of injection
moulded articles has lamellae oriented perpendicular to both the surface and injection directions
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while the interior is spherulitic, in the intermediate layers the lamellae remain perpendicular to the
surface but lose their preferred orientation with respect to the direction of injection.

A number of experiments have been conducted concerning crystallization in sheared polymer
melts. One of the early experiments on crystallization in simple shear flow between parallel plates
was carried out by Haas & Maxwell [20]. In their experiments, tiny samples of polyethylene and
polybutene-1 (less than 0.5 mm thick) were sheared between two parallel glass plates by applying
a constant load under isothermal conditions at a temperature below the melting point. At low loads
spherulitic growth was observed, while at sufficiently high loads flow-induced crystallization was
so profuse that no textural detail was observed in the polarizing microscope. Also, the time required
for crystallization was orders of magnitude less than that for quiescent crystallization. Similar
experiments have been performed by Katayama et al. [23], Nogami et al. [39] and Lagasse &
Maxwell [28]. Lagasse & Maxwell [28] performed the experiment under conditions of constant
shear rate instead of constant load. At low shear rates spherulitic crystallization was observed
and at higher shear rates flow induced crystallization was observed, the two regions being clearly
demarcated. Enhanced crystallization was determined to be due to chain extension arising from
entanglements between molecules. Flow-induced crystallization has also been studied in rotational
viscometers (see Kobayashi & Nagasawa [26], Ulrich & Price [58], Sherwood et al. [53] and
Wolcowicz [63]), the results are similar to those obtained from simple shear experiments.

Experiments on flow-induced crystallization have also been performed in ducts of rectangular
cross-section (see Eder et al. [14]). This is very similar to injection moulding, where one finds highly
oriented surface layers which appear due to flow-induced crystallization. In this work polypropylene
was extruded in a channel, the exiting fluid tape was either laid directly on a chill roll or was placed
on a heated conveyor belt and was chilled at some length from the exit of the duct. The main
conclusion of this work was that the relaxation time of the melt has a strong impact on the final
thickness of the highly oriented surface layer. When the melt was allowed to relax on the heated
conveyor belt at a high temperature after exit from the extruder, the thickness of the surface layer
decreased rapidly with increasing residence time on the belt. For sufficiently high residence times
this layer was negligible in thickness. This effect diminished significantly when the temperature of
the heated conveyor belt was lowered, i.e. at lower conveyor belt temperatures the thickness of the
surface layer did not decrease as rapidly with an increase in the residence time on the heated belt.

Experiments in extensional flows are not as numerous as in shear flows, the main reason being
the extreme sensitivity of crystallization to extensional flow, often resulting in flow blockage due
to massive crystallization (see van der Vegt & Smit [59]). Early work on extensional flows was
carried out by Mackley & Keller [32] and Mackley et al. [33], and they reported qualitative rheo-
optical characteristics of extensional flow induced crystallization in a confined geometry. In a
more recent paper, McHugh et al. [37] studied the crystallization of polyethylene in extensional
flows by suspending a high-density polyethylene droplet at the stagnation point of a four-roll mill
extensional device with linear low-density polyethylene as the carrier phase. The crystallization rate
was enhanced by orders of magnitude and the accompanying analysis demonstrates that the melting
point elevation model cannot predict the phenomena observed.

Flow induced crystallization in melts has been modelled from two main perspectives. The
classical work of Flory [16] on the stress-induced crystallization of rubber has been used to
model crystallization from melts. Extension of Flory’s work to melts requires the assumption that
the temporary network junctions play the same role as the chemical cross-links in the theory of
rubber crystallization. Flory’s theory rests on the connection between decrease in entropy of the
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stretched molecule and the tendency of the polymer to crystallize. This work by Flory has been
extended by deriving more complicated expressions for the Helmholtz potential which describe
the morphological effects in greater detail (see Gaylord & Lohse [17], Gaylord [18], Smith
[54] and Smith [55]). In polymer melts, however, the relaxation time of the melt has a strong
influence on the crystallization. Melts with long relaxation times will experience higher amounts
of crystallization compared with ones having a shorter relaxation time. All the theories developed
for the crystallization of rubber do not account for relaxation effects of the network. The other
approach to model flow induced crystallization is to modify the Avrami equation to account for
enhanced crystallization rates due to the flow. In this approach, the effect of flow is built into the
equation by the inclusion of an orientation factor, which depends on the flow (see Ziabicki [64],
[65], Eder [13] and Schultz [52]).

From the experiments performed on phase transitions in polymers that crystallize, it is clear
that the transition from a melt to a semi-crystalline solid is continuous, i.e. during this process the
material is a mixture of an amorphous polymer melt and a crystalline solid. On the completion of
crystallization the solid formed is a mixture of a crystalline and amorphous solid. Orientation in the
melt tremendously accelerates the process of phase transition. However, as the melt is a viscoelastic
fluid, the orientation of the molecules can either build up or relax depending on the deformation
history and the relaxation time of the melt. Orientation of the crystallites formed depends strongly
on the orientation of the molecules in the melt just prior to crystallization.

In this paper we model the phase transition process within a purely mechanical setting. A model
for phase transitions in a purely mechanical setting is not adequate as thermodynamical issues
dominate the phase transition process. The aim of this paper is to clarify the mechanical issues
relating to phase transitions and describe a method to capture changes in symmetry of the newly
formed solid. Previous work done on crystallization in polymers has primarily concentrated on
ways to incorporate the effect of different variables like stress, temperature, etc. on the equation
governing the rate of crystallization (see Ziabicki [64, 65], Eder [13] and Schultz [52]) in an ad
hoc manner, not based on a criterion like, say, that the rate of dissipation or entropy production
be maximized, etc. These papers are essentially concerned about the crystallization kinetics and
invariably treat the solid as though it is a fluid with a large viscosity, or this transition from a fluid-
like to a solid-like behaviour is ignored. More importantly, these works do not address the important
issue of anisotropy in the mechanical response of the crystalline phase formed during crystallization
and the role of the rate of dissipation in the evolution of the stress-free state of the material. As
has been illustrated earlier, the anisotropy of the newly formed crystalline phase depends on the
deformation history of the melt and the model developed here is able to capture this effect. We
feel that it is important to explain these ideas in a clear manner without clouding the matter with
other issues, especially since the changes of symmetry during solidification has not been tackled
adequately. In this work a model is developed using a continuum theory based on the concept of
‘multiple natural configurations’ (see Rajagopal [41]). This approach has been used to explain the
material response of a large class of materials under one framework: ligaments and tendons (Johnson
et al. [22]), multi-network theory (Rajagopal & Wineman [42]), traditional plasticity (Rajagopal &
Srinivasa [43]), twinning (Rajagopal & Srinivasa [44]), solid to solid phase transitions (Rajagopal &
Srinivasa [45]), viscoelastic liquids (Rajagopal & Srinivasa [46]) and anisotropic liquids (Rajagopal
& Srinivasa [47]) have all been modelled within this framework, and classical elasticity and classical
linearly viscous fluids arise naturally as sub-cases. The melt is modelled as a viscoelastic fluid,
within the framework of natural configurations as formulated by Rajagopal & Srinivasa [46]. In
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this approach, the stress in the fluid depends on the mapping between the tangent spaces associated
with the natural configuration and the current configuration. This mapping also contains information
about the orientation of the polymer molecules, albeit in an averaged sense. Once the phase change is
initiated, continuous conversion of the melt into a semi-crystalline solid takes place. This conversion
is never complete in polymers. The newly formed crystalline phase is an anisotropic material and
the anisotropy depends on the orientation of the molecules in the amorphous phase at the instant
of crystallization. This is captured in the model by making the anisotropy in the crystalline solid
depend on the mapping between the tangent spaces of the natural configuration and the current
configuration of the melt. Crystallization ceases when molecules in the amorphous phase lose there
mobility, this effect is captured by making the relaxation time of the melt increase with increasing
crystallinity. For sufficiently large values of relaxation time the amorphous phase acts as an elastic
solid. The final solid is a mixture of a crystalline and amorphous elastic solid. The model is tested
for three different homogenous deformations, viz. simple extension, bi-axial extension and simple
shear.

2. Preliminaries

Consider a body B in a configuration κ0. Let X denote a typical position of a material point in κ0.
Let κt be the configuration at a time t , then the motion χκ0 assigns to each particle in configuration
κ0 a position in the configuration κt at time t , i.e.

x = χκ0(X, t). (1)

The deformation gradient Fκ0 is defined through

Fκ0 ≡ ∂χκ0

∂X
. (2)

The left and right Cauchy–Green stretch tensors Bκ0 and Cκ0 are defined through

Bκ0 ≡ Fκ0FT
κ0

, (3)

Cκ0 ≡ FT
κ0

Fκ0 . (4)

The modelling of crystallization can be delineated into three main categories, viz. the modelling
of the melt, the intermediate mushy region between a fluid and solid and finally the solid region.
Constitutive assumptions have to be made for each of these regions.

3. Modelling

3.1 Modelling the melt

The melt is modelled as a viscoelastic fluid with instantaneous elasticity. It has been shown by
Rajagopal & Srinivasa [46] that a viscoelastic fluid that is capable of instantaneous elastic response
can be described within the context of a material with evolving natural configurations. A large
number of viscoelastic fluid models can be written in this form (see Rajagopal & Srinivasa [46]).
In this approach, the stress in the fluid is determined from the mapping between the tangent spaces
of the natural configuration of the fluid to the current configuration occupied by it. In Fig. 1 this is
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FIG. 1. Natural configurations associated with the fluid.

the mapping between the configurations κp(t) and κc(t). The natural configuration is not fixed as in
an elastic solid but evolves as the fluid is subjected to deformation. We will consider viscoelastic
fluid models cast into this framework. The stress tensor of a viscoelastic fluid with instantaneous
elasticity can be written in the following form:

T = −pI + fκp(t) (Bκp(t) ), (5)

where the left Cauchy–Green stretch tensor is

Bκp(t) = Fκp(t)F
T
κp(t)

. (6)

An evolution equation is prescribed for Bκp(t) , i.e.,

∇
Bκp(t)≡ Ḃκp(t) − LBκp(t) − Bκp(t)L

T = h(Bκp(t) ), (7)

where
∇
Bκp(t) is the upper-convected Oldroyd derivative, the dot signifies the usual material time

derivative, L is the gradient of velocity, i.e. L = gradv, and h is a tensor valued function of Bκp(t) .
Equation (7) is tantamount to prescribing the evolution of the underlying natural configuration.
Rajagopal & Srinivasa [46] obtain particular forms of h in (7) by assuming a specific form for the
Helmholtz potential, and the rate of dissipation as well as making the additional assumption that
the rate of dissipation is maximized. Depending on the functional forms of the Helmholtz potential
and the rate of dissipation chosen, a whole range of models can be derived. Rajagopal & Srinivasa
[46] derive the constitutive equation for a generalized Maxwell fluid using this procedure. For a
Helmholtz potential consistent with that of a neo-Hookean solid, the stress in the fluid is related to
Bκp(t) as:

T = −pI + µ f Bκp(t) . (8)
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The generalized Maxwell fluid proposed by Rajagopal & Srinivasa [46] has an evolution equation
for Bκp(t) of the form

∇
Bκp(t)=

1

λ

(
3

tr(B−1
κp(t) )

I − Bκp(t)

)
, (9)

which upon linearization reduces to the Maxwell fluid. The constitutive equations for a Maxwell
fluid in this framework take the form

∇
Bκp(t)=

1

λ

(
I − Bκp(t)

)
, (10)

where µ f and λ are material constants. Models similar to the one in (9) have also been derived
by Leonov & Prokunin [31] using non-equilibrium thermodynamics. However, the framework
presented in [41] includes a variety of responses, has a more general structure and can deal
with symmetry changes, observed, for e.g., in shape memory alloys. Also, the thermo-mechanical
framework is quite different, and more importantly, the significance attached to many of the
quantities are quite different. In another similar approach, viscoelastic fluids are modelled using
an internal variable called the configuration tensor, C. In viscoelastic fluid models based on the
configuration tensor, the stress is related to the configuration tensor in the same way as (8), i.e.
with Bκp(t) replaced by C. In these models an evolution equation is prescribed for C. More details
on these models can be found in Leonov & Prokunin [31]. The main difference between these
two approaches is the meaning given to Bκp(t) and C. The tensor Bκp(t) has a specific kinematic
meaning, which implies that it satisfies the constraint due to incompressibility, det(Bκp(t) ) = 1. The
configuration tensor, however, does not satisfy any such constraint. In this work we shall use the
Maxwell fluid model to represent the melt. However, any other fluid model developed within the
framework of natural configurations can be used instead of the Maxwell fluid model. We shall use
the linearized Maxwell fluid model mainly for the sake of simplicity, even though it does not satisfy
the constraint det(Bκp(t) ) = 1 exactly.

The tensor Bκp(t) contains information about the orientation and stretch in the polymer
molecules, albeit in an averaged sense. We shall use this information to determine the orientation of
the crystalline solid. Before crystallization can begin, certain activation conditions have to be met.
We shall assume that crystallization takes place when the temperature falls below a certain value, the
melting temperature. The next step is to model the mixture of a crystalline solid and a viscoelastic
fluid. Once crystallization commences, assumptions need to be made about the state in which the
solid is formed. Experiments suggest that the crystals have a preferred orientation in the direction
in which the molecules in the melt are stretched, this phenomenon has to be accounted for by the
model. In the following section we shall discuss the approach used.

3.2 Modeling the fluid to solid transition

Once solidification is initiated, the rate at which it progresses is also prescribed by a rate equation for
the mass fraction, α, of the solid phase. The equation commonly used in the literature to characterize
the growth of the crystalline phase is the Avrami equation. A particular form of the Avrami equation
that is often used is

α = A(1 − exp(−ktn)), (11)

where n is called the Avrami exponent, k is a constant and A is the mass fraction of the crystalline
part after crystallization has ceased. The Avrami equation has been modified to include the effects
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of the deformation in the polymer melt chain by making the constants k and n functions of the
extension in the melt.

A general form of a constitutive equation for the crystallization growth kinetics would be

dα

dt
= h(α, Bκp(t) , θ). (12)

Note that (11) can be written in the form of (12) by differentiating with respect to time:

dα

dt
= Ak

1
n n

(
1 − α

A

) [
ln

(
1

1 − α/A

)] n−1
n

. (13)

In this work we use the Avrami equation in the form of (13) to determine the rate of crystallization.
Here, it should be noted that the Avrami equation has been correlated with experimental data
for slow crystallization in a controlled environment. In many processing applications, for e.g., in
film blowing, however, the melt is cooled very rapidly and experiments suggest that the rate of
crystallization is controlled by the rate at which heat is removed from the melt. Currently, a good
understanding of this type of non-equilibrium crystallization is not available and this is an area that
needs to be addressed in the future.

We shall treat the fluid–solid mixture as a constrained mixture. As in traditional mixture theory
(see Truesdell [57], Bowen [10], Atkin & Craine [2] and Rajagopal & Tao [48]), we allow co-
occupancy, in a homogenized sense, of the phases at a point. However, unlike traditional mixture
theory both the phases are constrained to have the same displacement, i.e. one phase does not
diffuse through the other. This is a reasonable assumption for polymeric materials because the same
molecule traverses both the amorphous and crystalline phases and the crystalline phase pins down
the molecule preventing it from diffusing. We also assume that the stress at a point is given by a
combination of the form

T = pI + Ts + T f , (14)

where the stress T f is given by

T f = (1 − α)fκp(t) (Bκp(t) ), (15)

∇
Bκp(t)= h(Bκp(t) ). (16)

The additive decomposition in (14) can be shown to result naturally within a full thermodynamic
framework (see Rao & Rajagopal [49]) if one assumes that the internal energy and entropy for the
mixture are additive and an appropriate form of the second law of thermodynamics is used.

Once the fluid begins to solidify, assumptions have to be made about the nature of the solid
and the configuration in which the solid is formed. We treat the newly formed solid as an elastic
solid, and we suppose that the elastic solid is formed in its stress-free state. This is similar to the
approach used by Rajagopal & Wineman [42] for their multi-network theory for polymers. As
further deformation takes place this newly formed solid is deformed. The solid that is subsequently
formed is also born in a stress-free state. The crystallized solid can be thought of as a mixture of
elastic solids with different natural configurations. The stress-free configuration of the solid fraction
born at some time t is the configuration of the body at the time t . Solidification is initiated at time
t1 and terminates at t2. In Fig. 2, let τ be some time later than t1 at which solidification is taking
place. We shall assume that the current stress (at time t) in the body due to the solid fraction born at
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FIG. 2. Natural configurations associated with the crystallizing fluid-solid mixture.

time τ is determined by the deformation gradient from the configuration of the body at time τ and
the current configuration at time t , Fκc(τ )

, while the stress in the fluid is determined by Fκp(t) . Under
these assumptions, the equation for the stress in the solid during crystallization is:

Ts =
∫ t

t1
gκc(τ )

(Fκc(τ )
)
dα

dτ
dτ, (17)

and if crystallization ceases at time t2, the stress in the crystalline solid is:

Ts =
∫ t2

t1
gκc(τ )

(Fκc(τ )
)
dα

dτ
dτ, (18)

where the functional form for the stress in the solid formed at time τ , gκc(τ )
, can be that of an

anisotropic elastic solid. Also, the anisotropy of this newly formed solid can depend upon the
conditions under which it is formed. This aspect of the theory makes it very robust in modelling
problems of solidification and phase change where the anisotropy of the newly formed solid
depends on the deformation history of the material. The way in which this is built into the model
depends on the physical problem under consideration. In this paper we are modelling the problem
of crystallization in polymers and will tailor the model to fit the requirements of this problem. In
polymers, as we have discussed earlier, the anisotropy in the formed solid depends on the orientation
of the molecules in the melt at the time of crystallization. The tensor Bκp(τ )

gives us information
about the orientation of the molecules in the melt at time t = τ , albeit in an averaged sense. The
three principal directions of Bκp(τ )

gives us the directions of principal stretch in the melt. We use
these mutually perpendicular principal directions to determine the directions of anisotropy in the
solid. The principal directions can be quantified by any two of the three eigenvectors of Bκp(τ )

,
viz. nκc(τ )

and mκc(τ )
. The symmetry group of an orthotropic solid is determined by three mutually

perpendicular directions, and it is the form of anisotropy that seems appropriate that the solid will
have when formed under conditions of unequal stretch in three principal directions. For this reason,
we assume that the elastic solid that is formed at each instant is an orthotropic elastic solid. The
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three principal directions of the orthotropic solid formed at time t = τ are determined by nκc(τ )

and mκc(τ )
and, in general, can change with time. In this work we assume that the functional form

gκc(τ )
is that for an orthotropic solid with respect to the configuration κc(τ ). We assume the directions

nκc(τ )
and mκc(τ )

are given by any two of the three principal stretch directions of Bκp(τ )
in order to

incorporate the dependence of the orientation of the crystalline solid on the directions of stretch in
the melt at the instant of crystallization. We could require the anisotropy to be determined by the
symmetry group induced due to the deformation gradient from a configuration in which the material
was originally isotropic. This would be the case if the natural configuration associated with the state
at which solidification has taken place is obtained by F−1

κp(t)
. This is however not the case as we

assume the current configuration in which the solid is formed is its natural state. It is also possible
to decide on the symmetry of the solid that is formed based on the symmetry induced by using
Noll’s rule for the fluid, but this would be too restrictive in general flows, yielding only materials
with trivial symmetry.

The general form of the stress tensor while crystallization is taking place is:

T = −pI + (1 − α)fκp(t) (Bκp(t) ) +
∫ t

t1
gκc(τ )

(Fκc(τ )
)
dα

dτ
dτ, (19)

and after crystallization ceases the stress is given by (19) with t2 replacing t in the limits of the
integration.

We want to choose a form for the stress in the solid, gκc(τ )
, that can be derived from a

Helmholtz potential for an orthotropic material. The reason for doing this is to ensure that this
purely mechanical model will fit into the full thermodynamic model that is being developed (see
Rao & Rajagopal [49]). The constitutive equation for the Helmholtz potential for an incompressible
orthotropic elastic solid depends on the first two invariants of the right Cauchy–Green stretch tensor,
Cκc(τ )

, which we denote by I1, I2, and the following scalars:

J1 = nκc(τ )
· Cκc(τ )

nκc(τ )
, K1 = mκc(τ )

· Cκc(τ )
mκc(τ )

,

J2 = nκc(τ )
· Cκc(τ )

nκc(τ )
, K2 = mκc(τ )

· Cκc(τ )
mκc(τ )

, (20)

The most general form of the Helmholtz potential for the elastic solid can then be written as:

ψ = ψ(I1, I2, J1, J2, K1, K2), (21)

where the invariants depend on t and τ . Choosing a specific form for the function ψ results in a
specific form for gκc(τ )

and hence the form of the stress tensor in the solid. For an elastic solid the
stress is given by:

T = −pI + 2ρFκc(τ )

∂ψ

∂Cκc(τ )

FT
κc(τ )

. (22)

Substituting (21) into (22) and simplifying we obtain the most general form for the stress of an
incompressible orthotropic elastic solid:

T = −pI + 2ρ

{
∂ψ

∂ I1
Bκp(τ )

− ∂ψ

∂ I2
B−1

κp(τ )
+ Fκc(τ )

(
∂ψ

∂ I1
nκc(τ )

⊗ nκc(τ )

+ ∂ψ

∂K1
mκc(τ )

⊗ mκc(τ )
+ ∂ψ

∂ J2

(
nκc(τ )

⊗ Cκc(τ )
nκc(τ )

+ Cκc(τ )
nκc(τ )

⊗ nκc(τ )

)
+ ∂ψ

∂K2

(
mκc(τ )

⊗ Cκc(τ )
mκc(τ )

+ Cκc(τ )
mκc(τ )

⊗ mκc(τ )

))
FT

κc(τ )

}
. (23)
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A specific functional form will have to be chosen that is appropriate for the particular material in
question. In this work we assume the following form for the stored energy:

ψ = c1(I1 − 3) + c2(J1 − 1)2 + c3(K1 − 1)2, (24)

and this results in the following functional form for stress:

T = −pI + 2ρc1Bκp(τ )
+ 4ρFκc(τ )

(c2(J1 − 1)nκc(τ )
⊗ nκc(τ )

+c3(K1 − 1)mκc(τ )
⊗ mκc(τ )

)FT
κc(τ )

. (25)

For this material gκc(τ )
takes the form

gκc(τ )
(Fκc(τ )

) = 2ρc1Bκc(τ )
+ 4ρFκc(τ )

(c2(J1 − 1)nκc(τ )
⊗ nκc(τ )

+c3(K1 − 1)mκc(τ )
⊗ mκc(τ )

)FT
κc(τ )

. (26)

The material moduli in (26) can, in general, also depend on the conditions in the melt through the
eigenvalues of Bκp(τ )

, i.e.,

ci = ci (σ1, σ2, σ3), i = 1, 2, 3, (27)

where σ1, σ2 and σ3 are the eigenvalues of Bκp(τ )
. Since the material is assumed to be incompressible,

the product of the three eigenvalues is unity. Note that instead of using the eigenvalues in (27) we can
use instead the first two invariants of Bκp(t) . We also assume that if all three eigenvalues are distinct,
then all three material constants are non-zero and the solid formed at each instant is orthotropic.
This is the most restrictive symmetry the newly formed material can have. If two of the eigenvalues
are the same and different from the third, then the material formed is transversely isotropic, i.e. c1
and c2 are non-zero and c3 is zero. This assumes that nκc(τ )

is the eigenvector associated with the
eigenvalue that is not equal to the other two eigenvalues. If all three of the eigenvalues are the same,
then the solid formed at that instant is isotropic and c2 = c3 = 0 and c1 is non-zero.

As crystallization proceeds the remaining amorphous chains lose their mobility, as a part of the
polymer molecules are in the crystalline portion and a part in the amorphous portion. Also, as the
temperature drops the amorphous chains lose their mobility. Both these effects cause the relaxation
time of the amorphous part to increase, till it becomes sufficiently large compared to the time scales
pertinent to the problem, i.e. it behaves more like a solid. This effect can be incorporated by making
the relaxation time in the fluid model (λ in (10)) to be a function of the mass fraction of the solid,
i.e.

λ = λ(α). (28)

In general, the relaxation time will also be a function of temperature. When the relaxation time
becomes sufficiently large, the stress-free configuration of the melt, i.e. κp(t), does not change with
further deformation. Hence the part of the mixture that was the melt now behaves like an elastic
solid. If the original fluid was chosen to be a Maxwell fluid, the resultant solid behaves like a neo-
Hookean solid. The stress in this mixture of an isotropic and anisotropic solid is given by (19) with
the difference that the stress-free configuration, κp(t), of the part that was originally a fluid does
not change with time. This completes the modelling of the phase transition and the final solid is a
mixture of an isotropic and anistropic elastic solid.
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4. Calculations for homogenous deformations

We now study some sample problems involving homogenous deformations to obtain a better
understanding of the model that has been developed. The Helmholtz potential used is that in (24)
which results in a functional form for gκc(τ )

, given by (26). The melt is assumed to behave like a
Maxwell fluid, for which the stress is given by (8). The stress in the fluid–solid mixture is then given
by (19) with (26) used for gκc(τ )

and (8) for the stress in the fluid. With these substitutions, the stress
in the fluid–solid mixture reduces to:

T = −pI + (1 − α)µ f Bκp(t) + 2ρ

∫ t

t1
c1Bκp(τ )

dα

dτ

+4ρ

∫ t

t1

(
Fκc(τ )

(c2(J1 − 1)nκc(τ )
⊗ nκc(τ )

+ c3(K1 − 1)mκc(τ )
⊗ mκc(τ )

)FT
κc(τ )

) dα

dτ
dτ.(29)

We study three different homogenous deformations, viz. simple extension, bi-axial extension and
simple shear.

4.1 Simple extension

The first deformation we study is simple extension. Simple extension is commonly encountered
in polymer processing, for e.g., in fibre spinning, where the polymer melt is spun into fibres
by subjecting them to large extensional deformations. In these types of processes, the polymer
chains crystallize with their chains parallel to direction of extension imparting high strength in that
direction. This type of deformation illustrates the strong dependence of the final material properties
on the processing conditions. For simple extension, the solid formed is transversely isotropic and
the principal stretch direction does not change as the directions of the unit vector nκc(τ )

remains
constant. We shall neglect the inertial effects in this analysis. The deformation in simple extension
for an incompressible material is given by:

x = Λ(t)X, y = 1√
Λ(t)

Y, z = 1√
Λ(t)

Z , (30)

where Λ(t) is the stretch ratio. The material is being extended in the x-direction. For this flow, Fκc(τ )

is given by

Fκc(τ )
= diag

(
Λ(t)

Λ(τ)
,

√
Λ(τ)

Λ(t)
,

√
Λ(τ)

Λ(t)

)
. (31)

For this motion, the stress tensor in (29) reduces to:

T = −pI + µ f (1 − α)Bκp(t) + 2ρ

∫ t

t1
c1diag

((
Λ(t)

Λ(τ)

)2

,
Λ(τ)

Λ(t)
,
Λ(τ)

Λ(t)

)
dα

dτ
dτ

+4ρ

∫ t

t1
c2diag

(((
Λ(t)

Λ(τ)

)2

− 1

) (
Λ(t)

Λ(τ)

)2

, 0, 0

)
dα

dτ
dτ. (32)

Assuming that the lateral surfaces are stress free, the expression for the stress in the direction of
extension is

T11 = (1 − α)µ f (B11 − B22) + 2ρ

∫ t

t1
c1

((
Λ(t)

Λ(τ)

)2

− Λ(τ)

Λ(t)

)
dα

dτ
dτ
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+4ρ

∫ t

t1
c2

((
Λ(t)

Λ(τ)

)2

− 1

) (
Λ(t)

Λ(τ)

)2 dα

dτ
dt. (33)

Bi j in (33) is the i j th component of Bκp(t) , and at time t it is obtained by solving the ordinary
differential equation for Bi j , (10). We shall assume that the mass fraction of the crystallized solid
is given as a function of time by the differential form of the Avrami equation, (13). We assume that
crystallization starts at a known time. The crystallization equation is then given by

α = 0, for 0 � t � t1

dα

dt
= Ak

1
n

(
1 − α

A

) [
ln

(
1

1 − α/A

)] n−1
n

, for t > t1, (34)

here A is the mass fraction of the crystalline portion of the polymer after crystallization has ceased.
The relaxation time λ is assumed to depend on the mass fraction α in the following manner:

λ = λ0

A − α
. (35)

As the mass fraction of the crystalline material increases, the relaxation time of the fluid increases,
until it starts behaving like an elastic solid. The crystallization of rubber is easily incorporated into
this framework by treating the initial amorphous polymer as a elastic solid instead of a fluid. Finally,
the stretch ratio Λ(t) is assumed to have the form:

Λ(t) = 1 + t. (36)

With the assumptions stated above, the resulting ordinary differential equations are solved using
a 4th–5th-order Runge–Kutta method. Figure 3 shows the stress in the direction of extension as a
function of time. As the crystallization proceeds the stress rises rapidly. After crystallization ceases
the material was then unloaded. From this unloaded condition, the final solid was subjected to
uniform extension in the direction of the initial extension and in a direction perpendicular to the
initial extension. The stress versus stretch is plotted for these in Fig. 4. The stress increases more
rapidly in the direction of initial extension as the material is stronger in that direction due to the
formation of a crystalline material that is transversely isotropic. The effect of the induced anisotropy
on the mechanical response of the material is made transparent by Fig. 4. Note that in all the graphs,
the stress has been non-dimensionalized by the elastic modulus of the fluid, µ f .

4.2 Extension in two perpendicular directions

Extension in two perpendicular directions is another common deformation encountered in polymer
processing, for e.g., in film blowing and sheet forming. In these processing operations, the
morphology of the final polymeric solid depends on the extension in each direction. In the case
of equal bi-axial extension, the polymer chains in the crystals are oriented equally in all directions
in the plane, and hence the solid has transverse isotropy. However, if the stretches are unequal,
the orientation of the polymer chains will not be equally distributed. The current framework being
developed is capable of handling the above-mentioned situation. We assume a deformation of the
form:

x = Λ1(t)X, y = Λ2(t)Y, z = 1

Λ1(t)Λ2(t)
Z . (37)
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FIG. 3. Non-dimensional stress versus time for λ0 = 0.2s, k = 0.5s−3, n = 3, A = 0.5, t1 = 0.5s,
ρc1

µ f
= 1

and
4ρc2

µ f
= 0.5

FIG. 4. Non-dimensional stresses in the final solid in the direction of stretch and perpendicular to the direction

of stretch for λ0 = 0.2s, k = 0.5s−3, n = 3, A = 0.5, t1 = 0.5s,
ρc1

µ f
= 1 and

4ρc2

µ f
= 0.5
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For this flow, Fκc(τ )
is given by

Fκc(τ )
= diag

(
Λ1(t)

Λ1(τ )
,

Λ2(t)

Λ2(τ )
,
Λ1(τ )Λ2(τ )

Λ1(t)Λ2(t)

)
. (38)

For this motion, the stress tensor reduces to;

T = pI + µ f (1 − α)Bκp(t)

+4ρ

∫ t

t1
diag

(
c2

((
Λ1(t)

Λ1(τ )

)2

− 1

)(
Λ1(t)

Λ1(τ )

)2

, c3

((
Λ2(t)

Λ2(τ )

)2

− 1

)(
Λ2(t)

Λ2(τ )

)2

, 0

)
dα

dτ
dτ

+2ρ

∫ t

t1
c1diag

((
Λ1(t)

Λ1(τ )

)2

,

(
Λ2(t)

Λ2(τ )

)2

,

(
Λ1(τ )Λ2(τ )

Λ1(t)Λ2(t)

)2
)

dα

dτ
dτ. (39)

Assuming that the lateral surface perpendicular to the directions in which extension is taking place
is stress free, the expression for the stress in the two directions along which the material is extended
is

T11 = (1 − α)µ f (B11 − B33) + 2ρ

∫ t

t1
c1

((
Λ1(t)

Λ1(τ )

)2

−
(

Λ1(τ )Λ2(τ )

Λ1(t)Λ2(t)

))
dα

dτ
dτ

+4ρ

∫ t

t1
c2

((
Λ1(t)

Λ1(τ )

)2

− 1

) (
Λ1(t)

Λ1(τ )

)2 dα

dτ
dτ, (40)

T22 = (1 − α)µ f (B22 − B33) + 2ρ

∫ t

t1
c1

((
Λ2(t)

Λ2(τ )

)2

−
(

Λ1(τ )Λ2(τ )

Λ1(t)Λ2(t)

))
dα

dτ
dτ

+4ρ

∫ t

t1
c3

((
Λ2(t)

Λ2(τ )

)2

− 1

) (
Λ2(t)

Λ2(τ )

)2 dα

dτ
dτ. (41)

We shall assume that (34) and (35) for the mass fraction and the relaxation time are the same. We
further assume the following specific forms for Λ1 and Λ2

Λ1 = K1t + 1, Λ2 = K2t + 1. (42)

When K1 = K2 the deformation reduces to equal bi-axial extension. Figure 5 shows the stresses for
the two in plane directions plotted against time for equal bi-axial extension. Since the extension is
equal in both the directions (K1 = K2 = 1.5), the crystalline phase formed is transversely isotropic
with axis of symmetry being the z-direction perpendicular to the plane in which the material is being
subjected to the bi-axial extensions and the stresses in the other two directions are equal. Figure 6
shows the stress in the two in plane directions for unequal bi-axial extensions. In this case, the values
for K1 and K2 were chosen to be K1 = 1.5 and K2 = 1.0. The crystalline phase formed in this case
is orthotropic.
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FIG. 5. Non-dimensional stresses versus time for equal bi-axial extension for λ0 = 0.2s, K1 = K2 = 1.5s−1,

k = 0.8s−3, n = 3, A = 0.5, t1 = 0.5s,
ρc1

µ f
= 0.5, 4

ρc2

µ f
= 0.5 and 4

ρc3

µ f
= 0.5

22

FIG. 6. Non-dimensional stresses versus time for equal bi-axial extension for λ0 = 0.2s, K1 = 1.5s−1,

K2 = 1.0s−1, k = 0.8s−3, n = 3, A = 0.5, t1 = 0.5s,
ρc1

µ f
= 0.5, 4

ρc2

µ f
= 0.5 and 4

ρc3

µ f
= 0.5
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4.3 Simple shear

Crystallization in the case of simple shear is different from extensional flows in that the principal
stretch directions constantly change with time. Experiments indicate (Haas & Maxwell [20] and
Eder et al. [13]) that at sufficiently high shear rates a high degree of anisotropy was observed in
the crystallized sample. This feature can be captured in the current framework through two of the
eigenvectors of Bκp(τ )

, nκc(τ )
and mκc(τ )

, which are changing in a simple shear flow, and which will
tend to align towards the direction of flow and perpendicular to the direction of flow for a sufficiently
high shear rate. The deformation for simple shear is of the form:

x = X + k(t)Y, y = Y, z = Z . (43)

For this flow, Fκc(τ )
is given by

Fκc(τ )
=


 1 ∆k 0

0 1 0
0 0 1


 , (44)

where ∆k = k(t) − k(τ ). Once again the stress tensor is given by (29). For this flow the
two eigenvectors of Bκp(τ )

, nκc(τ )
and mκc(τ )

are in the x–y plane and the third eigenvector is
perpendicular to x–y plane and is the unit vector in the z-direction. Define nκc(τ )

and mκc(τ )
through:

nκc(τ )
=


 a

b
0


 , mκc(τ )

=

 c

d
0


 . (45)

In the above equations, a, b, c and d are functions of τ and are determined from the eigenvectors of
Bκp(τ )

. The invariants J1 and K1 in (20) can be expressed as:

J1 = a2 + 2∆kab + (1 + ∆k2)b2,

K1 = c2 + 2∆kcd + (1 + ∆k2)d2. (46)

For this flow we assume that the stress in the z-direction is constant, i.e. solving (29) for p in terms
of the stress in the z-direction

−p = T33 − (1 − α)µ f − 2ρ

∫ t

t1
c1

dα

dτ
dτ. (47)

Solving for the other non-zero stress components using (29), (44), (45), (46) and (47) we obtain:

T11 = (T33 − (1 − α)µ f ) + (1 − α)µ f B11 + 2ρ

∫ t

t1
c1∆k2 dα

dτ
dτ

+4ρ

∫ t

t1

[
c2(J1 − 1)(a2 + 2∆kab + b2∆k2)

] dα

dτ
dτ

+4ρ

∫ t

t1

[
c3(K1 − 1)(c2 + 2∆kcd + d2∆k2)

] dα

dτ
dτ (48)

T22 = (T33 − (1 − α)µ f ) + (1 − α)µ f B22 + 4ρ

∫ t

t1

[
c2(J1 − 1)b2

] dα

dτ
dτ

+4ρ

∫ t

t1

[
c3(K1 − 1)d2

] dα

dτ
dτ, (49)
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FIG. 7. Non-dimensional stresses versus time for simple shear for λ0 = 0.2s, K = 1.0s−1, k = 0.5s−3,

n = 3, A = 0.6, t1 = 0.5s,
ρc1

µ f
= 0.5, 4

ρc2

µ f
= 0.3 and 4

ρc3

µ f
= 0.3

T12 = (1 − α)µ f )B12 + 2ρ

∫ t

t1
c1∆k

dα

dτ
+ 4ρ

∫ t

t1

[
c2(J1 − 1)(ab + ∆kb2)

] dα

dτ
dτ

+4ρ

∫ t

t1

[
c3(K1 − 1)(cd + ∆kd2)

] dα

dτ
dτ. (50)

For the purpose of illustration we shall assume that k(t) is a linear function of time, i.e.

k(t) = K t. (51)

We shall assume that (34) and (35) for the mass fraction and the relaxation time are the same.
With these assumptions, the equations were solved and the two components of the stress are plotted
against time in Fig. 7. As in the other two cases, growth in the stress is rapid after crystallization is
completed and at high levels of shear T11 grows more rapidly than T12.

5. Conclusions

In this paper we have developed a model using the framework of multiple natural configurations to
capture the effects observed during crystallization in polymers as the material evolves from a fluid-
like response to a solid-like response. The model is capable of capturing the evolving anisotropy of
the crystalline phase as it is formed. The induced anisotropy of the crystalline phase is determined
by the deformation of the melt and this is borne out by the results depicted in Figs 4, 6 and 7.
However, in order to make comparisons with the predictions from experiments, it is necessary to
take into account thermodynamic considerations. Such an analysis, which studies the problem of
crystallization from a fully thermodynamic framework, is being carried out by Rao & Rajagopal
[50]. Here, Rao & Rajagopal [50] simulate crystallization during the stretching of polyethylene
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terephthalate films. Preliminary results indicate very good agreement between the experimental data
and the predictions of the model.
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