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We study a one-dimensional mean field model of superconducting vortices with a finite London
penetration depth, flux pinning and nucleation of vorticity at inflow boundary sections. The existence
of a unique weak solution is proved and the long time behaviour is studied. A numerical discretization
of the model is derived and it is shown that as the time step and the mesh size tend to zero, the
discrete solution converges to the unique weak solution of the continuous model. Some numerical
computations are presented which illustrate the effects of flux pinning and the finite penetration
depth.

1. Introduction

We begin with a brief introduction to the three space dimensional mean field model of
superconducting vortices for a Type-II superconductor in its mixed state, derived in [4]. In the
domain occupied by the superconductor we have

wt + curl (w ∧ v) = 0, (1.1)

λ2(curl)2 H + H = w, (1.2)

∇ · H = 0, (1.3)

curl H = J, (1.4)

v = (J × ŵ)
f (|J|)
|J| , (1.5)

while in the region external to the superconductor we have

curl H= J, (1.6)

curlE + ∂H
∂t

= 0, (1.7)
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∇ · H = 0, (1.8)

∇ · E = ρ. (1.9)

Here w, v, H, J, E and ρ, respectively, denote vorticity, the velocity of the vorticity, average
magnetic field, current, electric field and charge density. Furthermore, λ is a length-scale relating to
the penetration depth, ŵ denotes a unit vector in the direction of w and gives the local direction of
the averaged flux lines. The magnitude |w| of w gives the density of flux lines. This is one model
in a hierarchy of mathematical models of superconductors. Starting from the Ginzburg–Landau
equations we can obtain in a high Ginzburg–Landau parameter limit, the London equation

λ2curl2 Hi + Hi =
∑
j 
=i

�δΓj ,

coupled with
Vi = curl Hi × �τi ,

for the motion of line vortices [5]. Here Γi is an evolving line vortex and �δΓi is the Dirac measure
on Γi ; Vi and τi denote the velocity and the unit tangent of Γi . The medium is in the normal state
on the vortex lines and in the superconducting state elsewhere. Since there are many millions of
vortices in a sample of appreciable size it is appropriate to carry out an averaging procedure, see
[4], to derive the above mean field vortex density model. The material is in the mixed state where
|w| > 0 and in the superconducting state where |w| = 0. We note that (1.5) gives the velocity of
vorticity in samples containing many small pinning sites (cracks and impurities in the material). The
given function f is non-decreasing and reflects the resistance to the movement of vorticity by the
pinning sites. In [4, 6] a linear law was assumed but, as described in [4], one is also interested in
more general relations and in particular the situation where the velocity is zero unless the magnitude
of the current density exceeds a critical value Jp, the pinning current.

On the interface between the superconducting sample (which we shall denote by Ω) and the
external region we have the following boundary conditions;

[(1/µ0)H ∧ n]= 0, (1.10)

[H · n]= 0, (1.11)

where [·] denotes the jump in the enclosed quantity across ∂Ω and µ0 is the permeability, which in
most practical applications is very similar for the superconducting region and the external region.

The need for an additional boundary condition on w depends on whether the characteristics of
(1.1) are directed into or out of Ω on the boundary. If v · n > 0, vortices are leaving the sample
and no extra boundary conditions are required. However if v · n � 0, vortices are moving into the
sample and in [4] the following extra boundary condition for the flux of vorticity is suggested;

−n ∧ (w ∧ v) = α[|J| − Jn]+
n ∧ J
|J| if v · n � 0, (1.12)

where α is a non-negative material constant and [·]+ = max(·, 0). Again there is a critical current
density Jn below which no vorticity is nucleated.

The model (1.1)–(1.12) can be greatly simplified by considering the case in which all the vortices
are rectilinear, aligned and orientated with the z-direction along with the magnetic field H. For this
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case we have

H= (0, 0, u(x, y, t)), u � 0, (1.13)

w= (0, 0, w(x, y, t)), w � 0, (1.14)

and (1.1)–(1.12) simplify to
wt + ∇ · (wv) = 0 in ΩT, (1.15)

−λ2∆u + u = w in ΩT, (1.16)

v = − [|∇u| − Jp]+∇u

|∇u| , (1.17)

u = ub on ∂ΩT, (1.18)

−n · vw = α[|J| − Jn]+ if v · n < 0, (1.19)

where ub is a positive constant denoting the externally applied magnetic field. We note that in this
simplified case, sgn(w) = 1 for all (x, t) ∈ ΩT and such situations arise if the initial vorticity w0(x)

and the externally applied magnetic field ub are taken to be non-negative. Restricting our model to
one dimension with Ω = (0, 1), we obtain;

wt + (wv)x = 0, (1.20)

−λ2uxx + u =w, (1.21)

v = − [|ux | − Jp]+ux

|ux | =



−(ux − Jp) for ux > Jp,

0 for |ux | � Jp,

(ux + Jp) for ux < −Jp.

(1.22)

u(0, t) = u(1, t) = ub, (1.23)

v(0, t)w(0, t) = α[|ux (0, t)| − Jn]+ ∀ t ∈ S0 = {t : v(0, t) > 0},
−v(0, t)w(1, t) = α[|ux (1, t)| − Jn]+ ∀ t ∈ S1 = {t : v(1, t) < 0}. (1.24)

In [9] and [20] the models (1.15)–(1.19) and (1.20)–(1.24) were considered with Jp = 0 and
α = 0, in the remainder of this paper we extend some of the results of [9] and [20] to the following
simplified form of (1.20)–(1.24) which is obtained by setting Jp = Jn and suitably smoothing
(1.22);

wt = −(wv)x in ΩT, (1.25)

−λ2uxx + u = w in ΩT, (1.26)

u(0, t) = u(1, t) = ub ∀ t > 0, (1.27)

w(x, 0) = w0(x) in Ω, (1.28)

w(0, t) = wb ∀ t ∈ S0 = {t : v(0, t) > 0}, (1.29)

w(1, t) = wb ∀ t ∈ S1 = {t : v(1, t) < 0}, (1.30)

where
v = − f (ux ). (1.31)
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We shall assume that f ∈ C2(R) satisfies

f (0) = 0, 0 � f ′(r) � µ, | f ′′| � C. (1.32)

We note that (1.29) and (1.30) follow directly from setting Jp ≡ Jn and α = wb in (1.22) and (1.24).
Also, since the conditions on f in (1.32) are necessary for proving the results of Sections 2–5 we
have to content ourselves with a smoother velocity law than the one suggested in [4] which has f
being piecewise linear and non-decreasing. In certain applications λ is small and it is appropriate
to consider the asymptotic limit λ tending to zero, which formally leads to a non-linear diffusion
equation for the flux line density, cf. [2, 13]. If in addition to this limit an extreme form of the
function f in (1.5) is taken, f (|ux |) = f (|J |) = 0 if |J | � Jp and f (|J |) = ∞ if |J | > Jp, then
we formally arrive at the critical-state Bean’s model [18, 19]. A rigorous derivation of Bean’s model
from a limit of a non-linear diffusion equation may be found in [1]. We note that the vortex density
model for an infinite cylinder in a transverse magnetic field has been studied in [10].

In Section 2 we adapt techniques from [20] to prove the existence of a solution {wε, uε} ∈
Hβ,

β
2 (ΩT) × Hβ,

β
2 (ΩT) for 0 < β < 1, of a regularized version of (1.25)–(1.30):

wε
t = (wε fε(uε

x ))x + εwε
xx in ΩT, (1.33)

−λ2uε
xx + uε = wε in ΩT, (1.34)

uε(0, t) = uε(1, t) = ub ∀ t > 0, (1.35)

wε(0, t) = wε(1, t) = wb ∀ t > 0, (1.36)

wε(x, 0) = wε
0(x) � 0 in Ω, (1.37)

where
fε(r) = f (r) + εr. (1.38)

Then we follow the techniques used in [17] to derive estimates on wε, uε and their derivatives
which enable us to prove that in the limit as ε → 0

wε −→ w strongly in L1(ΩT),

uε −→ u strongly in C([0, T ];C1(Ω)).

Here {w, u} ∈ (BV (ΩT)∩L∞(ΩT))×C([0, T ];C1(Ω)) satisfies the following weak form of (1.25)–
(1.30): ∫

ΩT

w(ϕt − f (ux )ϕx ) dx dt +
∫

Ω

w0(x)ϕ(x, 0) dx = 0 (1.39)

for all ϕ ∈ C∞(ΩT), ϕ|(0,1)×{T }∪∂Ω×(0,T ) = 0,∫
Ω

λ2uxφx dx +
∫

Ω

(u − w)φ dx = 0 ∀φ ∈ C([0, T ]; H1
0 (Ω)), (1.40)

and the entropy inequality∫
ΩT

(−(w −wb)
2ηt + (w − wb)

2 f (ux )ηx ) dx

�
∫

ΩT

(
((w − wb)

2 − 2w(w − wb))λ
−2 f ′(ux )(w − u)η

)
dx dt, (1.41)



FLUX PINNING AND BOUNDARY NUCLEATION 147

where η ∈ W 1,∞(ΩT) with η(·, 0) = η(·, T ) = 0 and η � 0. Since BV functions have traces on
the boundary, we are able to use the entropy inequality (1.41) to prove that w satisfies the boundary
conditions (1.29) and (1.30). In Section 5 we prove the existence of a Lyapunov functional

E(u(·, t)) = 1

2

∫
Ω

(
|ux |2 + (u − ub)

2
)

dx,

from which we conclude the existence of a steady-state solution {w̃, ũ} ∈ BV (Ω)×W 2,∞(Ω) which
satisfies

w̃ f (ũx ) = 0 in Ω, (1.42)

−λ2ũxx + ũ = w̃ � 0 in Ω, (1.43)

ũ(0) = ũ(1) = ub on ∂Ω, (1.44)

w̃(0) = wb if f (ũx (0)) < 0, (1.45)

w̃(1) = wb if f (ũx (1)) > 0. (1.46)

In Section 6 we adapt techniques from [9] and [8] to derive a numerical discretization of
(1.25)–(1.30) on the interval [0, 1] using a uniform mesh size h. We show that as the time step
and the mesh size tend to zero, the discrete solution converges to the unique weak solution of
the continuous model. In Section 7 we show that as t → ∞ there exists a unique sequence
{w̃h, ũh} ∈ L∞(Ω)×H1(Ω) which satisfies a discrete form of the continuous steady-state problem.
We conclude with Section 8 in which we display some one- and two-dimensional numerical
computations that illustrate the effects of flux pinning and boundary nucleation coupled with a
finite penetration depth. We note that in order to keep the paper from being too long, some of the
proofs in the following sections have been shortened, the full versions of these proofs can be found
in the technical report [11].

2. Existence of a solution of the regularized model

THEOREM 2.1 For all initial data wε
0(·)−wb ∈ C∞

0 (Ω), there exists a classical solution {wε, uε}
of (1.33)–(1.37) with

||wε||
Hα, α

2 (ΩT)
, ||uε||

Hα, α
2 (ΩT)

, ||uε
x ||Hα, α

2 (ΩT)
� C, (2.1)

for 0 < α < 1.

Proof. Throughout this proof, for the sake of simplicity of presentation, we often suppress the
dependence of uε and wε on ε and write w and u in place of wε and uε. We begin by embedding
(1.33)–(1.37) in the following family of problems Pσ : find vσ ∈ H2+α,1+ α

2 (ΩT) such that

vσ
t − εvσ

xx − vσ
x fε(ux ) − σ 2λ−2 f ′ε(ux )v

σ u + σλ−2 f ′ε(ux )w
2 = 0 in ΩT, (2.2)

vσ (0, t) = vσ (1, t) = σwb,

vσ (·, 0) − wb = σw0(x) − wb ∈ C∞
0 (Ω) in Ω,

where
w ∈ Hα, α

2 (ΩT), (2.3)
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and u satisfies

−λ2uxx + u = w in ΩT, (2.4)

u(0, t) = u(1, t) = ub. (2.5)

From [16] we see that if the coefficients of vσ in (2.2) are bounded in Hα, α
2 (ΩT), (i.e. if fε(ux ),

σ 2λ−2 f ′ε(ux )u and σλ−2 f ′ε(ux )w
2 are bounded in Hα, α

2 (ΩT)), and if vσ (·, 0) ∈ C2,α(Ω) and
σwb ∈ H2+α,1+ α

2 (∂ΩT), there exists a unique solution vσ ∈ H2+α,1+ α
2 (ΩT) of Pσ . Since w ∈

Hα, α
2 (ΩT) from (2.4), we have

w(·, t) ∈ C0,α(Ω) ⇒ u(·, t) ∈ C2,α(Ω) ∀t > 0

⇒ ||u(·, t2) − u(·, t1)||C1,α(Ω) � C ||u(·, t2) − u(·, t1)||W 2,∞(Ω)

� C ||w(·, t2) − w(·, t1)||L∞(Ω)

� C |t2 − t1| α
2

⇒ ||u||
Hα, α

2 (ΩT)
, ||ux ||Hα, α

2 (ΩT)
� C. (2.6)

From (1.32) and (2.6) it follows that

|| fε(ux )||Hα, α
2 (ΩT)

� C, (2.7)

and hence there exists a unique solution vσ ∈ H2+α,1+ α
2 (ΩT) of Pσ . Setting vσ = T (w, σ ) for all

w ∈ Hα, α
2 (ΩT) and all σ ∈ [0, 1], and applying the Leray–Schauder fixed point theorem [12], we

see that solving (1.33)–(1.37) in H2+α,1+ α
2 (ΩT) is equivalent to solving w = T (w, 1) in Hα, α

2 (ΩT).
In order to apply the Leray–Schauder fixed point theorem we need to prove that the mapping T is
continuous and compact and that

T (w, 0) = 0 ∀ w ∈ Hα, α
2 (ΩT), (2.8)

||w = T (w, σ )||
Hα, α

2 (ΩT)
< M ∀(w, σ ) ∈ Hα, α

2 (ΩT) × [0, 1]. (2.9)

The compactness of the mapping T follows from the fact that T maps bounded sets in Hα, α
2 (ΩT)×

[0, 1] into bounded sets in H2+α,1+ α
2 (ΩT), which are compactly embedded in Hα, α

2 (ΩT), [16]. Now
we prove the continuity of T . Using (1.34) and (2.6) we conclude that there exists subsequences wj

and uj such that

||uj (·, t) − u(·, t)||C2,α(Ω) � C ||wj (·, t) − w(·, t)||C0,α(Ω) → 0

⇒ uj → u
(ux )j → ux

}
in Hβ,

β
2 (ΩT) for 0 < β < α. (2.10)

Using (1.32) and (2.10) it follows that

⇒ fε((ux )j ) → fε(ux )

f ′ε((ux )j ) → f ′ε(ux )

}
in Hβ,

β
2 (ΩT) for 0 < β < α. (2.11)
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Also σw0(x) − wb ∈ C∞
0 (Ω), σw2 ∈ Hα, α

2 (ΩT) imply

σjw0 → σw0 in C2,β(Ω), (2.12)

σjw
2
j → σw2 in Hβ,

β
2 (ΩT). (2.13)

Since H2+α,1+ α
2 (ΩT) is compactly embedded in Hα, α

2 (ΩT) every subsequence v
σj
j of vσ has a

convergent subsequence v
σjk
jk

. Let v
σj
j be such a convergent subsequence with limit v̄σ ∈ Hα, α

2 (ΩT).
Then using (2.11), (2.12) and (2.13) we have

limj→∞v
σj
j t − εv

σj
j xx − v

σj
j x fε((ux )j ) − σ 2

j λ−2 f ′ε(ujx )v
σj
j u + σjλ

−2 f ′ε(ux )jw
2
j

= v̄σ
t − εv̄σ

xx − v̄σ
x fε(ux )− σ 2

j λ−2 f ′ε(ux )v̄
σ u + σjλ

−2 f ′ε(ux )σw2 = 0 in ΩT,

v̄σ (0, t)= v̄σ (1, t) = σwb,

v̄σ (·, 0)= σw0(x) in Ω.

Since Pσ admits a unique solution we conclude the sequence v
σj
j itself converges to v̄σ and the

continuity of the mapping is proved. To complete the proof we first note that if σ = 0, then w = 0
and hence it remains to set w = T (w, σ ) and prove (2.9). Following the techniques used in the
proof of Theorem 2.1 [20], and noting that f ′ε > 0 we arrive at the following

0 = min(w0(x), ub, wb) � min wσ � max w � max (w0(x), ub, wb), (2.14)

||wσ ||
H2+α,1+ α

2 (ΩT)
� C ∀ σ ∈ [0, 1),

where wσ = T (wσ , σ ) and 0 < σ < 1. Hence there exists a subsequence of wσ , which for
simplicity we denote wσ , such that

wσ −→ w in H2+β,1+ β
2 (ΩT) as σ → 1,

⇒ w ←− wσ = T (wσ , σ ) −→ T (w, 1),

i.e.
||w||

Hα, α
2 (ΩT)

� C ∀ σ ∈ [0, 1],

and the theorem is proved. ✷

LEMMA 2.1 The solution wε of (1.33)–(1.37) satisfies

0 � wε(x, t) � max(wε
0(x), ub, wb) � C. (2.15)

||uε||L∞(0,T ;W 2,∞(Ω) � C. (2.16)

Proof. The result follows directly from the proof of Theorem 2.1. ✷
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3. Existence of a weak solution of the model

Throughout this section, for the sake of simplicity of presentation, we often suppress the dependence
of uε and wε on ε and write w and u in place of wε and uε.

We begin by choosing regularized initial data wε
0(x) − wb ∈ C∞

0 (Ω), such that

wε
0(x) −→ w0(x) strongly in L p(Ω) ∀ 1 � p < ∞, (3.1)

and
||wε

0||W 1,1(Ω) � C, ||εwε
0||W 2,1(Ω) � C. (3.2)

LEMMA 3.1 There exist constants C independent of ε, such that

||√εwε
x ||L2(ΩT) � C, (3.3)

||uε
t ||L2(0,T ;H1

0 (Ω)) � C. (3.4)

||uε||Hβ,β/2(ΩT), ||uε
x ||Hβ,β/2(ΩT) � C, (3.5)

for some 0 < β < 1 .

We omit the proof of Lemma 3.1 since it follows the same techniques used in the proof of Lemma
3.1 [20] and can be found in [11].

LEMMA 3.2 There exists a C independent of ε, such that

||wε
x ||L∞(0,T ;L1(0,1)) � C. (3.6)

Proof. Differentiating (1.33) with respect to x , multiplying the resulting equation by sgn(wx ) and
integrating from x = 0 to x = 1 gives

d

dt

∫ 1

0
|wx | dx = ε

∫ 1

0
wxxx sgn(wx ) dx + 2

∫ 1

0
f ′ε(ux )uxx |wx | dx

+
∫ 1

0
(wxx fε(ux ) + w f ′ε(ux )uxxx )sgn(wx ) dx

= ε

∫ 1

0
wxxx sgn(wx ) dx + 2

∫ 1

0
f ′ε(ux )uxx |wx | dx

+
∫ 1

0
fε(ux )|wx |x dx +

∫ 1

0
f ′ε(ux )wuxxx sgn(wx ) dx

+
∫ 1

0
w f ′′ε (ux )(uxx )

2sgn(wx ) dx .

Following the techniques used in the proof of Lemma 5.1 [20], which in particular involve using
(1.34) coupled with the boundedness of ux to deal with the term involving the third derivative of u,
using the following useful inequality

ε

∫ 1

0
wxxx sgn(wx ) dx + [|wx |ux ]1

0 � 0,



FLUX PINNING AND BOUNDARY NUCLEATION 151

to deal with the ε
∫ 1

0 wxxx dx term, and finally noting from (1.32) that f ′ε(ux ) and f ′′ε (ux ) are
bounded in L∞(ΩT) we arrive at the following

d

dt

∫ 1

0
|wx | dx �

∫ 1

0
(|wx | f ′ε(ux )uxx + w f ′ε(ux )(u − w)x )sgn(wx ) dx (3.7)

+
∫ 1

0
λ−2 f ′′ε (ux )w(w − u)2sgn(wx ) dx

� C
∫ 1

0
|wx | dx + C

∫ 1

0
|ux | dx + C. (3.8)

Using (3.5) and Gronwall’s inequality in (3.8) gives the required result. ✷

LEMMA 3.3 There exists a constant C independent of ε, such that

||wε
t ||L∞(0,T ;L1(0,1)) � C. (3.9)

The proof of Lemma 3.3 is essentially the same as the proof of Lemma 5.3 [20], with the exception
of some terms involving f ′ε(·) and f ′′ε (·) which can be bounded in L∞(ΩT).

THEOREM 3.1 For every sequence {wε, uε}, of solutions of (1.33)–(1.37), there exists a
subsequence, which for simplicity of notation we also denote by {wε, uε}, which converges as
ε → 0, in L1(ΩT) × C(ΩT) to {w, u}. We obtain

w ∈ L∞(0, T ; BV (Ω)) and w ∈ L∞(ΩT) ∩ BV (ΩT), (3.10)

u, ux ∈ Hβ,β/2(ΩT) ⊆ C(ΩT) for some 0 < β < 1. (3.11)

Moreover, {w, u} is a weak solution of (1.39) and (1.40), and it satisfies the entropy inequality
(1.41).

Proof. We begin by noting that (3.10) and (3.11) are direct consequences of (2.15), (3.5), (3.6) and
(3.9). Furthermore, the following convergence results follow from (1.32), (1.38) and (3.5),

uε → u strongly in C(ΩT), (3.12)

uε
x → ux strongly in C(ΩT), (3.13)

fε(uε
x ) → f (ux ) strongly in C([0, T ]; L2(Ω)), (3.14)

f ′ε(uε
x ) → f ′(ux ) strongly in C([0, T ]; L2(Ω)). (3.15)

Lastly, from (3.6) and (3.9) it follows that wε ∈ W 1,1(ΩT) and since L1 is compactly embedded in
W 1,1 we conclude

wε −→ w strongly in L1(ΩT). (3.16)

To prove that {w, u} satisfies (1.39) we multiply (1.33) by ϕ ∈ C∞(ΩT) where supp ϕ ⊆ Ω×{T }∪
∂ΩT and integrate over ΩT, use the convergence properties (3.12)–(3.15) and follow the techniques
used in the proof of Theorem 3.1 in [20], to obtain∫

ΩT

wε(ϕt − fε(u
ε
x )ϕx ) dx dt +

∫
Ω

wε
0ϕ(x, 0) dx + ε

∫
ΩT

wεϕxx dx dt (3.17)

−→
∫

ΩT

w(ϕt − f (ux )ϕx ) dx dt +
∫

Ω

w0ϕ(x, 0) dx . (3.18)
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Similarly, multiplying (1.34) by φ ∈ C([0, T ] : H1(Ω)), integrating over Ω , using the convergence
properties (3.12)–(3.15) and following the techniques used in the proof of Theorem 3.1 in [20] we
obtain ∫

Ω

(
λ2uε

xφx − (wε − uε)φ
)

dx →
∫

Ω

(
λ2uxφx − (w − u)φ

)
dx . (3.19)

It remains to prove that {w, u} satisfies (1.41). To this end, we multiply (1.33) by wε −wb to obtain

(wε − wb)w
ε
t − (wε − wb)(w

ε fε(u
ε
x ))x − ε(wε − wb)w

ε
xx = 0

⇒ d

dt
(wε −wb)

2 − (wε −wb)
2
x fε(u

ε
x )+ 2λ−2 f ′ε(ux )w

ε(wε −wb)(w
ε − uε)− ε(wε −wb)

2
xx � 0.

Multiplying the above inequality by η ∈ W 1,∞(ΩT), η(0) = η(T ) = 0, and integrating over ΩT

gives∫
ΩT

(− (wε − wb)
2ηt + (wε − wb)

2 fε(u
ε
x )ηx + λ−2 f ′ε(ux )(w

ε − uε)(2wε(wε − wb)η) dx dt

−
∫

ΩT

(
λ−2 f ′ε(ux )(w

ε − uε)(wε − wb)
2)η

)
dx dt � −

∫
ΩT

ε(wε − wb)
2
xηx dx dt.

Using (2.15) and (3.3) it follows that in the limit as ε → 0 the right-hand side of the above inequality
converges to zero, while from (3.12), (3.13) and (3.16) we can conclude that in the limit as ε → 0
the left-hand side of the above inequality converges to (1.41) and the theorem is proved. ✷

LEMMA 3.4 The limiting solution {w, u} satisfies the boundary conditions

u(0, t) = u(1, t) = ub ∀t > 0, (3.20)

w(0, t) = wb ∀t ∈ S0, (3.21)

w(1, t) = wb ∀t ∈ S1, (3.22)

where the sets S0 and S1 are defined by

S0 = {τ > 0 : f (ux (0, τ )) < 0} and S1 = {τ > 0 : f (ux (1, τ )) > 0}. (3.23)

We omit the proof of Lemma 3.4 as it is a straightforward generalization of part of the proof of
Theorem 5.1 in [20].

4. Uniqueness of the weak solution

In Section 3 we proved the existence of a weak solution satisfying (1.27), (1.29), (1.30), (1.39),
(1.40) and (1.41). If this weak solution is unique (which we prove in this section), Theorem 3.1
implies the convergence of solutions of (1.33)–(1.37) to the weak solution of (1.25)–(1.30), i.e.

lim
ε→0

{wε, uε} = {w, u}.

We now prove the uniqueness of weak solutions of the limit problem (1.25)–(1.30). The main
difficulty in the proof is caused by the fact that the weak solution w is not necessarily smooth,
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so we bypass this difficulty by smoothing it appropriately. In order to do this we firstly extend ux to
R × [0, T ] by

ux (x, t) =



ux (0, t) x < 0,

ux (x, t) 0 � x � 1,

ux (1, t) x > 1,

and we define the ‘extended’ characteristic X = X (t; x̄, t̄) to be the unique solution of the initial
value problem

Xt = − f (ux (X, t)), t ∈ R, (4.1)

X (t̄; x̄, t̄) = x̄ ∈ R. (4.2)

We note that f (ux ) ∈ L∞(0, T ;C0,1(Ω)) ∩ C([0, T ];C0,α(Ω)) 0 � α < 1, for all t � 0, and
using the Picard–Lindelof Theorem [15], it follows that (4.1)–(4.2) has a unique solution. Next we
set up the coordinate transformation (x, t) ↔ (s, τ ) to be the following,

(s, τ ) ↔ (x, t)

{
s = X (0; x, t),
τ = t,

(4.3)

(i.e. s is the initial value of the ‘extended’ characteristic X , which passes through (x, t)), and we
note that from (4.3) it follows that

x = X (τ ; s, 0). (4.4)

Lastly, we define QT to be the image of ΩT in the (s, τ )-plane, we set w̃(s, τ ) = w(x, t) and extend
w̃ to s ∈ R by its boundary values.

LEMMA 4.1 The function w̃ has a bounded τ derivative:

w̃τ = w̃ f ′(ux )uxx ∈ L∞(QT).

Proof. Using the extended value of ux and the coordinate transformation (s, t) ↔ (x, t) defined
above, we have

det

(
∂(s, τ )

∂(x, t)

)
=

∣∣∣∣∣
∂s
∂x

∂s
∂t

∂τ
∂x

∂τ
∂t

∣∣∣∣∣ = ∂ X (0; x, t)

∂x
.

Since
∂

∂t

∂ X

∂x
= − f ′(ux )uxx (X, t)

∂ X

∂x
,

with
∂ X

∂x
(0; x, 0) = 1,

we obtain
∂ X (0; x, t)

∂x
= exp

[∫ t

0
f ′(ux )uxx (X, r) dr

]
,

⇒ det

(
∂(x, t)

∂(s, τ )

)
= exp

[
−

∫ t

0
f ′(ux )uxx (X, r) dr

]

= 0.
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Since det
(

∂(x,t)
∂(s,τ )

)

= 0, it follows that the coordinate transformation (x, t) ↔ (s, τ ) is invertible

and using standard arguments it can be shown that (x, t) ↔ (s, τ ) and its inverse (s, τ ) ↔ (x, t)
are in C0,1

loc (R×[0, T ]). For ϕ ∈ C∞
0 (ΩT) the weak formulation of (1.39) reads∫
ΩT

w(ϕt − f (ux )ϕx ) dx dt = 0.

We now set ϕ̃(s, τ ) = ϕ(x, t) and from (4.4) we have ϕ̃τ = ϕt − f (ux )ϕx , which together with the
change of variables s = s(x, t), τ = t gives∫

QT

w̃ϕ̃τ

∣∣∣∣ ∂(x, t)

∂(s, τ )

∣∣∣∣ ds dτ = 0.

Thus ∫
QT

w̃ exp

[
−

∫ τ

0
f ′(ux )uxx (X, r) dr

]
ϕ̃τ ds dτ = 0 ∀ ϕ ∈ C∞

0 (QT). (4.5)

Since (4.5) holds for all ϕ̃ ∈ C∞
0 (QT) we have

∂

∂τ

(
w̃ exp

[
−

∫ τ

0
f ′(ux )uxx (X, r) dr

])
= 0 ∀ (s, τ ) ∈ QT,

⇒ w̃τ = f ′(ux )w̃uxx

and the result follows since f ′(ux )w̃ũxx ∈ L∞(QT). ✷

THEOREM 4.1 For Ω = (0, 1), there is at most one solution {w, u} of (1.39) and (1.40) with

w, uxx ∈ L∞(ΩT),

u, ux ∈ Hβ,β/2(ΩT) ⊆ C(ΩT) for some 0 < β < 1.

w ∈ L∞(0, T ; BV (Ω)) ∩ BV (ΩT).

We omit the proof of Theorem 4.1 as it is a straightforward generalization of the proof of Theorem
6.1 in [20].

5. Steady-state solutions

We denote the steady-state solutions of w and u by w̃ and ũ, respectively.

LEMMA 5.1 Let {w, u} solve (1.39) and (1.40) for all T > 0, with u(0, t) = u(1, t) = ub and
w(0, t) = wb for all t ∈ S0 and w(1, t) = wb for all t ∈ S1. Then all points of the ω-limit set

ω(w0) = {(w̃, ũ) : ∃{tj } s.t. w(·, tj ) → w̃ in L1(Ω), u(·, tj ) → ũ in H1(Ω) as tj → ∞},
(for 1 < p < ∞) are steady-state solutions in the sense that
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w̃ f (ũx ) = 0 in Ω, (5.1)

−λ2ũxx + ũ = w̃ � 0 in Ω, (5.2)

ũ(0) = ũ(1) = ub, (5.3)

w̃(0) = wb if f (ũx (0)) < 0, (5.4)

w̃(1) = wb if f (ũx (1)) > 0. (5.5)

We omit the proof of Lemma 5.1 as it is similar to the proof of Lemma 4.1 in [20] and can be found
in [11].

LEMMA 5.2 If w0(x) ≡ 0 for all x ∈ [0, 1] and ub
λ

tanh( 1
2λ

) < Jp, then no vorticity enters the
domain and

w(x, t) = 0, ∀ (x, t) ∈ ΩT. (5.6)

Proof. We can explicitly solve −λ2ũxx + ũ = 0 to obtain

u = ubcosh
( x

λ

)
− ubtanh

(
1

2λ

)
sinh

( x

λ

)
, (5.7)

⇒ ux = ub

λ
sinh

( x

λ

)
− ub

λ
tanh

(
1

2λ

)
cosh

( x

λ

)
. (5.8)

Since vorticity only enters the sample at inflow boundaries when v · n � 0, i.e. when |ux (0, t)| =
|ux (1, t)| � Jp, from (5.8) if |ux (0, t)| = |ux (1, t)| = ub

λ
tanh( 1

2λ
) < Jp, then no vorticity enters

the domain and (5.6) holds. ✷

6. Numerical discretization

In this section we derive a combined finite volume/element approximation of (1.25)–(1.30) on an
interval [0, 1] using a uniform grid, with mesh size h. We adapt the upwinding method used in [9]
where we discretized a simplified version of (1.25)–(1.30) in which v = − f (ux ) and wb ≡ 0. We
set Ω = (0, 1), h(∈ R+) = 1

J , tn = n∆t , and we define Sh , S0
h , Wh , W 0

h and ah(η, ξ), by

Sh = {φ ∈ C[0, 1] : φ|[ jh,( j+1)h] is linear ∀ j ∈ [0, J − 1)},

S0
h = {φ ∈ Sh : φ(0) = φ(1) = 0},

Wh = {η ∈ L∞(0, 1) : η(x) = ηj , x ∈ ( j − 1
2 )h, ( j + 1

2 )h), ∀ j ∈ [1, J − 1]

η(x) = η0, x ∈ (0, ( j − 1
2 )h) and η(x) = ηJ , x ∈ (1 − h

2 , 1)},

W 0
h = {η ∈ Wh : η0 = ηJ = 0},

ah(η, ξ) ≡ λ2
∫ 1

0
ηxξx dx + (η, ξ)h ∀ η, ξ ∈ H1(0, 1),



156 C. M. ELLIOTT AND V. STYLES

where

(η, ξ)h = h
2 (η0ξ0 + ηJ ξJ ) + h

J−1∑
j=1

ηjξj ∀ η, ξ ∈ Sh or Wh . (6.1)

For any η ∈ Sh , with ηj = η( jh), we have

η =
J∑

j=0

ηjξj (x),

where ξj ∈ Sh with ξj (ih) = δi j for 0 � i, j � J . For every continuous function η on Ω we define
the interpolation operator πh : C(Ω) → Sh by πhη ∈ Sh , where πhη = η at every grid point. From
[7] we have the following results

|η − πhη|0 + h|η − πhη|1 � Ch2 ∀ η ∈ H2(Ω), (6.2)

where C is a positive constant and

|η|0 =
(∫

Ω

η2 dx

) 1
2

, |η|1 =
(∫

Ω

|ηx |2 dx

) 1
2

,

and also that for all η, ξ ∈ S0
h ,

|(η, ξ) − (η, ξ)h | � Ch2|η|1|ξ |1 � Ch|η|0|ξ |1, (6.3)

where |η|h = (η, η)
1
2
h . We now define a numerical approximation of (1.25)–(1.30).

w0
j =

1

h

∫ ( j+ 1
2 )h

( j− 1
2 )h

w0(x) dx, ∀ j ∈ [1, J − 1], (6.4)

w0
0 = h

2

∫ 1
2h

0
w0(x) dx, w0

J = h

2

∫ 1

1− 1
2h

w0(x) dx,

w0
h(x) =

J∑
j=0

w0
j ξj (x) ∈ Sh, (6.5)

ŵ0
h(x) ∈ Wh . (6.6)

ah(un
h, ξ) = (ŵn

h , ξ)h ∀ξ ∈ S0
h , (6.7)

un
0 = un

J = ub, (6.8)

where ŵn
h − wb = ∑J

j=0 wn
j ξj (x) − wb ∈ S0

h and un
h − ub = ∑J

j=0 un
j ξj (x) − ub ∈ S0

h . Note that
(6.7) can be written explicitly as;

λ2(qn
j − qn

j−1) = h(un
j − wn

j ) ∀ j ∈ [1, J − 1], (6.9)
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where qn
j = 1

h (un
j+1 − un

j ). Adapting the semi-implicit upwinding scheme in [9] we arrive at the
following discretization of (1.25)

wn+1
j = wn

j +
∆t

h

(
wn+1

j+1 [ f n
j ]+ + wn+1

j [ f n
j ]− − wn+1

j [ f n
j−1]+ − wn+1

j−1 [ f n
j−1]−

)
, (6.10)

for all j ∈ [1, J − 1], where f n
j := f (qn

j ). From (1.32) we have

| f n
j | � µ|qn

j |, | f n
j − f n

j−1| � µ|qn
j − qn

j−1|, 0 � f [r, s], | f [r, s, t]| � C, (6.11)

where f [r, s] = ( f (s)− f (r))/(s − r) and f [r, s, t] = ( f [s, t]− f [r, s])/(t − r) are, respectively,
the first and second divided differences of f . Finally we set

wn
0 = wn

J = wb ∀ n � 0. (6.12)

From (6.9) and (6.11) we see that if ( f n
j−1 − f n

j ) � 0, we have

0 � ( f n
j − f n

j−1) � µ(qn
j − qn

j−1) � µhλ−2(un
j − wn

j ) � µhλ−2un
j . (6.13)

LEMMA 6.1 Set Λ = max(||w0
h ||∞, ub, wb). Then for all h > 0 and 0 < ∆t < λ2

µΛ
, there exists a

unique sequence {ŵn
h , un

h}, which for un
h solves (6.7) for all n � 0 and ŵn

h solves (6.10) for n � 1.
Also we have

0 � wn
j � max

j∈[0,J ]
wn

j � Λ, (6.14)

0 � un
j � max

j∈[0,J ]
un

j � Λ, (6.15)

||un
h ||2a � C, (6.16)

for n � 0, where ||u||2a = ah(u, u) and C is a constant depending on the initial data w0
h and the

boundary data ub and wb.

Proof. We omit proving that if (6.14) holds for any n then there exists a unique un
h satisfying (6.15)

for that n, since it follows directly from the proof of Lemma 2.2 in [9]. We prove (6.14) by induction.
Firstly we rewrite (6.10) as(

1 + ∆t

h
([ f n

j−1]+ − [ f n
j ]−)

)
wn+1

j + ∆t

h

(
wn+1

j+1 [ f n]+ − wn−1
j−1 [ f n

j−1]−
)
= wn

j (6.17)

which is a system of equations of the form

L(un
h)wn+1

h = wn
h, (6.18)

where wn
h = (wn

j ,∀ j ∈ [1, J − 1])T and L(un
h) is a matrix with diagonal elements L j j � 1, and

off-diagonal elements L jk � 0, for all j 
= k. Since L j j − ∑
k 
= j |L jk | = 1 + ∆t

h ( f n
j−1 − f n

j ), if
( f n

j−1 − f n
j ) > 0 we have L j j − ∑

k 
= j |L jk | > 1. However, if ( f n
j−1 − f n

j ) � 0, from (6.13) it

follows that since ∆t < λ2

µΛ
, we have ∆tµ||un

h ||∞ < λ2 and thus the matrix L is strictly diagonally

dominant and therefore invertible, giving a unique solution w̄n+1
h . We now prove (6.14) by induction.
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Trivially the result holds if n = 0, now we assume the result holds for n and then prove it holds
for n + 1. Firstly we note that L is an M-matrix [21], and hence L(un

h)−1 has only non-negative
elements, thus from (6.18) it follows that

wn
h � 0 ⇒ wn+1

h � 0.

We now prove the second part of (6.14) by contradiction and suppose that there exists an integer
j0 ∈ [1, J − 1] such that

wn+1
j0

= max
j∈[1,J−1]

wn+1
j > max(w0

j , ub, α). (6.19)

Writing (6.17) using the index j0 gives

wn+1
j0

[
1 − ∆t

h
( f n

j0
− f n

j0−1)

]
� wn

j0
, (6.20)

and hence if ( f n
j0
− f n

j0−1) < 0, then (6.14) holds. However, if ( f n
j0
− f n

j0−1) � 0, using (6.11) and
(6.20), we have that

wn+1
j0

[
1 − µ∆t

h
(qn

j0
− qn

j0−1)

]
� wn

j0
⇒ wn+1

j0

(
1 + µ∆t

λ2
(wn

j0
− un

j0
)

)
� wn

j0
. (6.21)

From (6.21) we see that if wn
j0

� un
j0

, then we obtain a contradiction to (6.19). Thus it remains to
consider the case where

wn
j0

< un
j0
. (6.22)

Since µΛ∆tλ−2 < 1, if wn
j0

< un
j0

, then (6.19) and (6.21) imply

wn
j0

> Λ∆t (wn
j0
− un

j0
) > Λ + wn

j0
− un

j0
,

which contradicts un
j0

� Λ. Thus (6.14) holds for n = n + 1 and by induction (6.14) holds for all
n � 0.

To prove (6.16) we set χ = un
h − ub in (6.10) and use (6.14) and (6.15) to obtain

ah(un
h, un

h) = ah(un
h, ub) + (wn

h , un
h − ub)h � C

⇒ ||un
h ||2a = λ2

∫
Ω

|(un
h)x |2 dx + (un

h, un
h)h = ah(un

h, un
h) � C.

This completes the proof. ✷

REMARK 6.1 For Lemma 6.1 to hold we require

∆t <
λ2

µmax(||w0
h ||L∞(Ω), ub)

= λ2

µΛ
, (6.23)

and from here onwards we assume ∆t satisfies (6.23).
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LEMMA 6.2 There exist constants C independent of h and ∆t , such that for all n � 0

| f n
j |�

C

λ2
, (6.24)

|qn
j+1 − qn

j |
h

� C

λ2
. (6.25)

Proof. For the proof of this lemma see the proof of Lemma 5.6 [9]. ✷

LEMMA 6.3 Let 0 < ε < 2λ2/µ. Then for all ∆t < ε
2Λ

, and n � 0, we have

Eh(un+1
h − ub) + (1/µ − ε

2λ2 )∆t
J−1∑
j=0

h
(
wn+1

j+1 [ f n
j ]2+ + wn+1

j [ f n
j ]2−

)
� Eh(un

h − ub), (6.26)

where
Eh(v) = 1/2||v||2a = 1/2ah(v, v).

Proof. Setting χ ≡ un+1
h − ub in (6.7), using (6.1) and noting that un

0 = un
J = ub for all n � 0,

gives

ah(un+1
h − un

h, un+1
h − ub)= (wn+1

h − wn
h , un+1

h − ub)h

=∆t
J−1∑
j=0

(wn+1
j+1 [ f n

j ]+ + wn+1
j [ f n

j ]−)(un+1
j − ub)

−
J∑

j=1

(wn+1
j [ f n

j−1]+ + wn+1
j−1 [ f n

j−1]−)(un+1
j − ub)

=∆t
J−1∑
j=0

(wn+1
j+1 [ f n

j ]+ + wn+1
j [ f n

j ]−)(un+1
j − un+1

j+1 )

=∆t
J−1∑
j=0

(wn+1
j+1 [ f n

j ]+ + wn+1
j [ f n

j ]−)(un
j − un

j+1)

+∆t
J−1∑
j=0

(wn+1
j+1 [ f n

j ]+ + wn+1
j [ f n

j ]−)(un+1
j − un+1

j+1 )

−∆t
J−1∑
j=0

(wn+1
j+1 [ f n

j ]+ + wn+1
j [ f n

j ]−)(un
j − un

j+1).

Setting ||ū||2a = ah(u − ub, u − ub) and rearranging gives

||ūn+1
h ||2a + ||ūn+1

h − ūn
h ||2a (6.27)

� ||ūn
h ||2a − 2h∆t

J−1∑
j=0

(wn+1
j+1 [ f n

j ]+ + wn+1
j [ f n

j ]−)qn
j
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+λ2∆t

hε

J−1∑
j=0

(wn+1
j+1 + wn+1

j )((un+1
j − un+1

j+1 ) − (un
j − un

j+1))
2

+hε∆t

λ2

J−1∑
j=0

(wn+1
j+1 [ f n

j ]2+ + wn+1
j [ f n

j ]2−). (6.28)

Noting that f j > 0 ⇒ qj > 0 and f j < 0 ⇒ qj < 0, from (6.28) we have

||ūn+1
h ||2a + ||ūn+1

h − ūn
h ||2a

� ||ūn
h ||2a − 2h∆t

J−1∑
j=0

(wn+1
j+1 [ f n

j ]+[qn
j ]+ + wn+1

j [ f n
j ]−[qn

j ]−)

+λ2∆t

hε

J−1∑
j=0

(wn+1
j+1 + wn+1

j )((un+1
j − un+1

j+1 ) − (un
j − un

j+1))
2

+hε∆t

λ2

J−1∑
j=0

(wn+1
j+1 [ f n

j ]2+ + wn+1
j [ f n

j ]2−)

� ||ūn
h ||2a −

2h∆t

µ

J−1∑
j=0

(wn+1
j+1 [ f n

j ]2+ + wn+1
j [ f n

j ]2−)

+λ2∆t

hε

J−1∑
j=0

(wn+1
j+1 + wn+1

j )((un+1
j − un+1

j+1 ) − (un
j − un

j+1))
2

+hε∆t

λ2

J−1∑
j=0

(wn+1
j+1 [ f n

j ]2+ + wn+1
j [ f n

j ]2−).

Since

||ūn
h ||2a = λ2

h

J−1∑
j=0

((un+1
j − un+1

j+1 ) − (un
j − un

j+1))
2 +

J∑
j=0

h(un
j − ub)

2 (6.29)

it follows that

||ūn+1
h ||2a + (

2

µ
− ε

λ2 )h∆t
J−1∑
j=0

(wn+1
j+1 [ f n

j ]2+ + wn+1
j [ f n

j ]2−)

� ||ūn
h ||2a +

(
2||wn+1

h ||∞∆t
ε

− 1

)
||ūn+1

h − ūn
h ||2a .

Taking ε and ∆t such that ( 2
µ
− ε

λ2 ) > 0 and ( 2∆tΛ
ε

− 1) < 0 gives the required result. ✷

We omit the proof of the following lemma as it is essentially the same as the proof of Lemma
5.5 in [9] with qn

j replaced by f n
j and can be found in [11].

LEMMA 6.4 There exists a constant C independent of h and ∆t , such that

N∑
n=0

1

∆t
||un+1

h − un
h ||2a � C. (6.30)
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LEMMA 6.5 Set Λ∗ > Λ to be a constant. Then for all ∆t � min
(

λ2

µΛ
, Λ∗−Λ

Λ∗Λ

)
and all n � 0 we

have

|ŵn
h |T V [0,L] =

J−1∑
j=0

|wn
j+1 − wn

j | � C1(|ŵ0
h |T V [0,L] + C(λ−4 + µλ−2)(n + 1)∆t), (6.31)

where
C1 = e(n+1)Λ∗∆t .

Proof. From (6.10) we see that for j = 1, . . . , J − 1

wn+1
j =wn

j +
∆t

h

(
wn+1

j+1 [ f n
j ]+ + wn+1

j [ f n
j ]− − wn+1

j [ f n
j−1]+ − wn+1

j−1 [ f n
j−1]−

)
=wn

j +
∆t

h

(
(wn+1

j+1 − wn+1
j )[ f n

j ]+ + (wn+1
j − wn+1

j−1 )[ f n
j−1]−

)
+∆t

h
wn+1

j ( f n
j − f n

j−1). (6.32)

Setting ξn
j = wn

j+1 − wn
j gives the following for j = 1, . . . , J − 2

ξn+1
j =ξn

j + ∆t

h

(
ξn+1

j+1 [ f j+1]+ + wn+1
j+1 ( f n

j+1 − f n
j ) + ξn+1

j [ f n
j ]− − ξn+1

j [ f n
j ]+

)
− ∆t

h
wn+1

j ( f n
j − f n

j−1) −
∆t

h
ξn+1

j−1 [ f n
j−1]−

⇒
(

1 + ∆t

h
[ f n

j ]+ − ∆t

h
[ f n

j ]−
)

ξn+1
j = ξn

j + ∆t

h
ξn+1

j+1 [ f n
j+1]+ − ∆t

h
ξn+1

j−1 [ f n
j−1]−

+∆t

h
(wn

j+1 − wn
j )( f n

j+1 − f n
j )

+∆t

h
wn+1

j ( f n
j+1 − 2 f n

j + f n
j−1). (6.33)

Using the divided difference notation of (6.11) we see that

f n
j+1 − 2 f n

j + f n
j−1 = f [qn

j+1, qn
j ](qn

j+1 − qn
j ) − f [qn

j , qn
j−1](qn

j − qn
j−1)

= (qn
j+1 − qn

j )( f [qn
j+1, qn

j ] − f [qn
j , qn

j−1])

+ f [qn
j , qn

j−1](qn
j+1 − 2qn

j + qn
j−1)

= (qn
j+1 − qn

j ) f [qn
j+1, qn

j , qn
j−1](qn

j+1 − qn
j−1)

+ f [qn
j , qn

j−1](qn
j+1 − 2qn

j + qn
j−1)

= h2λ−4(un
j+1 − wn

j+1)(u
n
j+1 − wn

j+1 + (un
j − wn

j )) f [qn
j+1, qn

j , qn
j−1]

+hλ−2((un
j+1 − un

j ) − (wn
j+1 − wn

j )) f [qn
j , qn

j−1]

= h2λ−4(un
j+1 − wn

j+1)
2 f [qn

j+1, qn
j , qn

j−1]

+h2λ−4(un
j+1 − wn

j+1)(u
n
j − wn

j ) f [qn
j+1, qn

j , qn
j−1]

+h2λ−2qn
j f [qn

j , qn
j−1] − hλ−2ξn

j f [qn
j , qn

j−1]. (6.34)
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Using (6.34) in (6.33) gives the following for j = 1, . . . , J − 2,(
1 + ∆t

h
[ f n

j ]+ − ∆t

h
[ f n

j ]− − ∆t

h
( f n

j+1 − f n
j )

)
ξn+1

j

= (1 − ∆tλ−2wn+1
j f [qn

j , qn
j−1])ξn

j + ∆t

h
ξn+1

j+1 [ f n
j+1]+

−∆t

h
ξn+1

j−1 [ f n
j−1]− + ∆tλ−2hwn+1

j qn
j f [qn

j , qn
j−1]

+∆tλ−4hwn+1
j (un

j+1 − wn
j+1)(u

n
j − wn

j ) f [qn
j+1, qn

j , qn
j−1]

+∆thλ−4wn+1
j (un

j+1 − wn
j+1)

2 f [qn
j+1, qn

j , qn
j−1].

From Lemma 6.1 and (6.11) we see that all the coefficients of ξ in the above equation are positive
and hence for j = 1, . . . , J − 2 we have(

1 + ∆t

h
[ f n

j ]+ − ∆t

h
[ f n

j ]− − ∆t

h
( f n

j+1 − f n
j )

)
|ξn+1

j |

� |ξn
j | +

∆t

h
|ξn+1

j+1 |[ f n
j+1]+ − ∆t

h
|ξn+1

j−1 |[ f n
j−1]− + ∆thλ−2wn+1

j |qn
j | f [qn

j , qn
j−1]

+∆thλ−4
(
(un

j+1 − wn
j+1)

2 + |(un
j+1 − wn

j+1)(u
n
j − wn

j )|
)
| f [qn

j+1, qn
j , qn

j−1]|.
Summing the above inequality from j = 1 to J − 2, using Lemma 6.1 and (6.11), gives

(1 − Λ∆t)
J−2∑
j=1

|ξn+1
j |�

J−2∑
j=1

|ξn
j | +

∆t

h

J−2∑
j=1

(
|ξn+1

j+1 |[ f n
j+1]+ − |ξn+1

j−1 |[ f n
j−1]−

)

−∆t

h

J−2∑
j=1

|ξn+1
j |

(
[ f n

j ]+ − [ f n
j ]−

)
+ C(λ−4 + µλ−2)∆t

J−2∑
j=1

h

=
J−2∑
j=1

|ξn
j | + C(λ−4 + µλ−2)∆t

J−2∑
j=1

h

+∆t

h

(
|ξn+1

J−1|[ f n
J−1]+ − |ξn+1

1 |[ f n
1 ]+

)
+∆t

h

(
|ξn+1

J−2|[ f n
J−2]− − |ξn+1

0 |[ f n
0 ]−

)
. (6.35)

Using (6.12) and (6.32) we have

ξn+1
0 = ξn

0 + ∆t

h

(
ξn+1

1 [ f n
1 ]+ + wn+1

1 ( f n
1 − f n

0 ) + ξn+1
0 [ f n

0 ]−
)

,

ξn+1
J−1 = ξn

J−1 −
∆t

h

(
ξn+1

J−1[ f n
J−1]+ + wn+1

J−1( f n
J−1 − f n

J−2) + ξn+1
J−2[ f n

J−2]−
)

.

and from (6.11) it follows that

(1 − Λ∆t)|ξn+1
0 |� |ξn

0 | +
∆t

h
|ξn+1

1 |[ f n
1 ]+ + ∆t

h
|ξn+1

0 |[ f n
0 ]−

+Cµλ−2∆t |wn+1
1 (wn

1 − un
1)|
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(1 − Λ∆t)|ξn+1
J−1|� |ξn

J−1| −
∆t

h
|ξn+1

J−2|[ f n
J−2]− − ∆t

h
|ξn+1

J−1|[ f n
J−1]+

+Cµλ−2∆t |wn+1
J−1(w

n
J−1 − un

J−1)|.
The above definitions of |ξn+1

0 | and |ξn+1
J−1| coupled with (6.35) and the fact that ∆t � C∗−Λ

C∗Λ , we
obtain

J−1∑
j=0

|ξn+1
j |� 1

1 − Λ∆t

(
J−1∑
j=0

|ξn
j | + C(λ−4 + µλ−2)∆t

)

� (1 + Λ∗∆t)

(
J−1∑
j=0

|ξn
j | + C(λ−4 + µλ−2)∆t

)
,

⇒
J−1∑
j=0

|ξn+1
j |� (1 + Λ∗∆t)n+1

J−1∑
j=0

|ξ0
j | + C

n∑
j=0

(1 + Λ∗∆t) j∆t

� (1 + Λ∗∆t)n+1
J−1∑
j=0

|ξ0
j | + (n + 1)(1 + Λ∗∆t)n+1C(λ−4 + µλ−2)∆t,

⇒
J−1∑
j=0

|ξn+1
j |� e(n+1)Λ∗∆t

(
J−1∑
j=0

|ξ0
j | + C(λ−4 + µλ−2)(n + 1)∆t

)
,

and the result follows. ✷

LEMMA 6.6 There exists a constant C independent of h and ∆t , such that

||ŵn+1
h − ŵn

h ||L1(0,L) =
J−1∑
j=1

h|wn+1
j − wn

j | � C(λ−4 + µλ−2))∆t ∀ n � 0, (6.36)

|qn+1
j − qn

j | � C∆t ∀ j ∈ [0, J − 1], n � 0. (6.37)

Proof. We omit the proof of (6.36) as it is a straightforward generalization of the proof of Lemma
5.8 in [9]. To prove (6.37) we set ξ = un+1

h − un
h in (6.7) to obtain

ah(un+1
h − un

h, un+1
h − un

h) = (ŵn+1
h − ŵn

h , un+1
h − un

h)h

noting that in one dimension and || · ||∞ � C || · ||H1 , we have

||un+1
h − un

h ||2a � ||ŵn+1
h − ŵn

h ||L1(Ω)||un+1
h − un

h ||L∞(Ω)

⇒ ||un+1
h − un

h ||L∞(Ω) � C ||ŵn+1
h − ŵn

h ||L1(Ω). (6.38)

Replacing qn
j with qn+1

j − qn
j in the proof of Lemma 5.6 in [9] we obtain

J (qn+1
j − qn

j )=−
J−1∑

k= j+1

k∑
i= j+1

h(un+1
i − un

i − wn+1
i + wn

i )

+
j−1∑
k=0

j∑
i=k+1

h(un+1
i − un

i − wn+1
i + wn

i )
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⇒ |qn+1
j − qn

j | � 2
J∑

i=1

h|un+1
i − un

i | + 2
J∑

i=1

h|wn+1
i − wn

i |. (6.39)

Using (6.36), (6.38) and (6.39) gives the required result. ✷

Before we prove the main result of this section we introduce some notation and two useful
lemmas.
Let gn ∈ X , for a function space X where gn might be a finite element function. We define,

g∆t (t) := gn t ∈ [n∆t, (n + 1)∆t), (6.40)

g+∆t (t) := gn+1 t ∈ (n∆t, (n + 1)∆t]. (6.41)

THEOREM 6.1 There exists functions {w, u} ∈ C([0, T ]; L1(Ω)) ∩ L∞(0, T ; BV (Ω)) ×
C([0, T ]; H1(Ω)) and subsequences such that

uh,∆t → u strongly in L2([0, T ]; H1(Ω)), (6.42)

f ((uh,∆t )x ) → f (ux ) strongly in L2([0, T ]; L2(Ω)), (6.43)

f ′((uh,∆t )x ) → f ′(ux ) strongly in L2([0, T ]; L2(Ω)), (6.44)

ŵh,∆t (t) → w(t) weakly in L2(ΩT), (6.45)

ŵh,∆t → w strongly in L1(ΩT), (6.46)

where ŵh,∆t (t)−wb = ŵn
h −wb ∈ W 0

h and uh,∆t (t)−ub = un
h−ub ∈ S0

h for all t ∈ [n∆t, (n+1)∆t)
and {w, u} is the unique solution of (1.39), (1.40) and (1.41).

Proof. Using (6.11), (6.14), (6.16), (6.30) and (6.36) and applying the techniques used in the
proof of Lemma 6.1 [9] we obtain (6.42)–(6.46). Furthermore, proving that {w, u} satisfies (1.39)
and (1.40) follows using a straightforward generalization of the proof of Theorem 6.1 in [9]. We
now prove that {w, u} satisfies the entropy inequality (1.41). To this end we note that for any
φ ∈ C∞(ΩT), the mesh functions φh,∆t (t) and δt (φh,∆t )(t) defined on [0, T ) by

φh,∆t (t)=πh(φ(n∆t)) ≡ φn
h , ∀ t ∈ [n∆t, (n + 1)∆t)

δt (φh,∆t )(t)= (φn+1
h − φn

h )/∆t, ∀ t ∈ [n∆t, (n + 1)∆t)

have the approximation properties

t = n∆t, πhφ(t) → φ(t) strongly in H1
0 (Ω)

φh,∆t → φ strongly in L2(0, T ; H1
0 (Ω))

δt (φh,∆t ) → φt strongly in L2(0, T ; H1
0 (Ω)).

(6.47)

Rewriting (6.10) gives

h(wn+1
j − wn

j ) = −∆t
(
wn+1

j j+1 f n
j − wn+1

j j−1 f n
j−1

)
∀ j ∈ [1, J − 1], (6.48)

where

wn+1
j j+1 =

{
wn+1

j+1 if f n
j > 0,

wn+1
j if f n

j < 0.
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Multiplying (6.48) by (wn+1
j −wb), noting that 2(a − b)a = (a − b)2 + a2 − b2 and applying some

algebraic manipulations, gives the following for all j ∈ [1, J − 1]

h
(
(wn+1

j − wb)
2 − (wn

j − wb)
2
)

� (wn+1
j+1 − wb)

2[ f n
j ]+ + (wn+1

j − wb)
2[ f n

j ]−

−(wn+1
j − wb)

2[ f n
j−1]+ − (wn+1

j−1 − wb)
2[ f n

j−1]−
+2∆twn+1

j (wn+1
j − wb)( f n

j − f n
j−1)

−∆t (wn+1
j − wb)

2( f n
j − f n

j−1).

Noting that f n
j+1 − f n

j = f [qn
j+1, qn

j ](qn
j+1 − qn

j ), multiplying the above inequality by ηn
j (where

η ≡ ηI (n∆t) and η ∈ C∞(ΩT), with ηn
0 
= 0, ηn

J 
= 0, η0
j = ηN−1

j = 0 for all j ∈ [0, J ]) and
summing from j = 1 to J − 1 gives

J−1∑
j=1

h((wn+1
j − wb)

2− (wn
j − wb)

2)ηn
j

� ∆t
J−1∑
j=0

(
(wn+1

j+1 − wb)
2[ f n

j ]+ − (wn+1
j − wb)

2[ f n
j ]−

)
(ηn

j − ηn
j+1)

+∆t
(
(wn+1

J − wb)
2[ f n

J−1]+ − (wn+1
J−1 − wb)

2[ f n
J−1]−

)
ηn

J

−∆t
(
(wn+1

1 − wb)
2[ f n

0 ]+ − (wn+1
0 − wb)

2[ f n
0 ]−

)
ηn

0

+2h∆t
J−1∑
j=1

(un
j − wn

j )w
n+1
j (wn+1

j − wb)η
n
j f [qn

j , qn
j−1] (6.49)

−h∆t
J−1∑
j=1

(un
j − wn

j )(w
n+1
j − wb)

2ηn
j f [qn

j , qn
j−1]. (6.50)

Since wn
0 = wn

J = wb using some simple algebraic manipulations, and noting that wn
h , un

h and f n
h

are bounded in L∞(Ω), we have

J−1∑
j=1

h
(
(wn+1

j − wb)
2 −(wn

j − wb)
2
)

ηn
j

� ∆t

2

J−1∑
j=0

(
(wn+1

j+1 − wb)
2 + (wn+1

j − wb)
2
)

f n
j (ηn

j − ηn
j+1)

+∆t

2

J−1∑
j=0

(
(wn+1

j+1 − wb)
2 − (wn

j − wb)
2)([ f n

j ]+ − [ f n
j ]−

)
(ηn

j − ηn
j+1)

+h∆t
J−1∑
j=1

(2wn+1
j (wn+1

j − wb) − (wn
j − wb)

2)(un
j − wn

j ) f [qn
j , qn

j−1]ηn
j

=∆t

2

J−1∑
j=0

((wn+1
j+1 − wb)

2 + (wn+1
j − wb)

2) f n
j (ηn

j − ηn
j+1)
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+∆t
J−1∑
j=1

h(2wn+1
j (wn+1

j − wb) − (wn
j − wb)

2)(un
j − wn

j ) f [qn
j , qn

j−1]ηn
j )

+∆t

2

J−1∑
j=0

(wn+1
j+1 − wn

j )((w
n+1
j+1 + wn

j ) − 2wb)([ f n
j ]+ − [ f n

j ]−)(ηn
j − ηn

j+1)

�
J−1∑
j=0

((wn+1
j+1 − wb)

2 + (wn+1
j − wb)

2) f n
j (ηn

j − ηn
j+1)

+∆t
J−1∑
j=1

h(2wn+1
j (wn+1

j − wb) − (wn
j − wb)

2)(un
j − wn

j ) f [qn
j , qn

j−1]ηn
j )

+C∆t
J−1∑
j=0

|wn+1
j+1 − wn

j ||ηn
j − ηn

j+1|.

Since f [qj , qj−1] = ( f (qj ) − f (qj−1))/(qj − qj−1) we set

f [qn
j , qn

j−1] = f ′(qn
j ) + 1

2
f ′′(ξ)(qn

j−1 − qn
j ) = f ′(qn

j ) + h

2
f ′′(ξ)(wn

j − un
j ),

where ξ ∈ (qn
j−1, qn

j ), and from the boundedness of f ′′ we conclude that

J−1∑
j=1

h
(
(wn+1

j −wb)
2 −(wn

j − wb)
2
)

ηn
j

�
∫ 1

0
−(wn+1

h − wb)
2 f ((un

h)x )(η
n
h)x dx

+
(

f ′((un
h)x ))(u

n
h − wn

h)(2wn+1
h (wn+1

h − wb) − ((wn+1
h − wb)

2), ηn
h

)
h

−C∆t
J−1∑
j=1

h2|wn+1
j (wn+1

j − wb) − (wn
j − wb)

2|(un
j − wn

j )
2

+C∆t
J−1∑
j=0

|wn+1
j+1 − wn

j ||ηn
j − ηn

j+1|.

Summing the above inequality from n = 0 to n = N − 1 and noting that η0
j = ηN

j = 0 for all
j ∈ [0, J ] and that |ηn

j+1 − ηn
j | � Ch (since η ∈ C∞(ΩT)) we have

−
∫ T

0

(
w+

h,∆t (t)wb)
2, δtηh,∆t (t)

)
h

dt

� −
∫ T

0

∫ 1

0
(w+

h,∆t (t) − wb)
2 f ((uh,∆t )x (t))(ηh,∆t )x (t) dx dt

+ 2
∫ T

0

(
f ′((uh,∆t )x (t))w

+
h,∆t (t)(w

+
h,∆t (t) − wb)(uh,∆t (t) − wh,∆t (t)), ηh,∆t (t)

)
h

dt
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−
∫ T

0

(
f ′((uh,∆t )x (t))(w

+
h,∆t (t) − wb)

2(uh,∆t (t) − wh,∆t (t)), ηh,∆t (t)
)

h
dt

+ Ch + Ch∆t
N−1∑
n=0

J−1∑
j=1

|wn+1
j+1 − wn+1

j ||ηn
j − ηn

j+1|. (6.51)

Noting that η ∈ C∞(ΩT) it follows that ηh,∆t and η
′
h,∆t , satisfy the convergence properties (6.47),

thus letting h and ∆t tend to zero in (6.51) and using the strong convergence properties of f (uh,∆t ),
f ′(uh,∆t ), wh,∆t , ηh,∆t and δtηh,∆t , (6.42), (6.46) and (6.47), we obtain (1.41). Thus {w, u} satisfies
(1.41) and from this, [20], we can conclude that w also satisfies w = wb on all inflow boundary
sections and hence {w, u} is the unique solution of (1.39), (1.40) and (1.41). It also follows that the
whole sequences uh,∆t and wh,∆t converge. ✷

7. Steady-state solutions of the discretization

Throughout this section we denote the steady-state solutions of wh,∆t and uh,∆t by w̃h and ũh ,
respectively.

LEMMA 7.1 All points {w̃h, ũh} ∈ L∞(Ω)×H1(Ω) of the ω-limit set:

ω(wh
0 ) = {(w̃h, ũh) ∈ W wb

h ×Sh : ∃{nk} s.t. w
nk
h → w̃h, uh → ũh as nk → ∞},

are steady-state solutions which satisfy

w̃j+1[ f̃ j ]
2− + w̃j [ f̃ j ]

2+ = 0 ∀ j ∈ [0, J − 1], (7.1)

λ2(q̃j − q̃j−1) = ũ j − w̃j ∀ j ∈ [1, J − 1], (7.2)

and
ũ0 = ũ J = ub, (7.3)

where q̃j = (ũ j+1−ũ j )

h and f̃ n
j = f (q̃j ).

Proof. From Lemma 6.1 it follows that there exist functions {w̃h, ũh} and a sequence nk , such that
as nk → ∞

w
nk
h → w̃h and unk

h → ũh, (7.4)

and hence ω(w0
h) is non-empty. Summing (6.26) from n = 0 to N − 1 we have

Eh(uN
h − ub) + (1/µ − ε

2λ2 )

N−1∑
n=0

∆t
J−1∑
j=0

(
wn+1

j+1 [ f n
j ]2+ + wn+1

j [ f n
j ]2−

)
� Eh(u0

h − ub).

Since u0
h is the interpolant of u0 ∈ H1(Ω) and the discrete L2-norm is equivalent to the L2-norm,

it follows that
N−1∑
n=0

∆t
J−1∑
j=0

(
wn+1

j+1 [ f n
j ]2+ + wn+1

j [ f n
j ]2−

)
� C. (7.5)
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Since (7.5) holds for all N > 0 it follows that

lim
nk→∞

(
wn+1

j+1 [ f n
j ]2+ + wn+1

j [ f n
j ]2−

)
= 0, (7.6)

and from (6.10) and (7.6) we can conclude that

lim
nk→∞w

nk+1
j = lim

nk→∞w
nk
j = w̃j . (7.7)

Since (6.9) and (6.12) hold for all n � 0, from (7.7) we can conclude that {w̃h, ũh} is a steady-state
solution satisfying (7.1)–(7.3). ✷

8. Numerical computations

In this section we display some one- and two-dimensional computations obtained using the
numerical scheme (6.7)–(6.12) with f (r) := sgn (r)[|r |− Jp]+, and an equivalent two-dimensional
scheme for a uniform right-angled triangular mesh. We note that although this choice of f coincides
with the pinning function defined in [4], it does not satisfy (6.11). However, the numerical results
produced using this value of f are consistent with results obtained using ‘smoother’ versions of f .
For the one-dimensional results we set Ω = (0, 1) and h = 0.01, while for the two-dimensional
results we set Ω = (0, 1) × (0.1) and h = 0.01, with ∆t satisfying (6.23) in both cases. We
begin with a brief description of the two-dimensional scheme followed by an introduction to the
computational results displayed.

Two-dimensional numerical scheme

We now define a numerical approximation of the two-dimensional model (1.15)–(1.19), with Jp =
Jn and w(x, t) = wb for all (x, t) ∈ ∂ΩT. We discretize (1.16) and (1.18) using a standard finite
element approximation,

ah(un
h, χ) = (wn

h , χ)h ∀ χ ∈ S0
h , ∀ n � 0, (8.1)

un
h − ub ∈ S0

h , ∀ n � 0, (8.2)

and we discretize (1.15) using a semi-implicit upwinding finite volume scheme [14]. To implement
the finite volume scheme we first create a dual mesh by perpendicularly bisecting each edge of
our triangulation, giving rise to dual cells denoted by Vj associated to each node xj of the original
triangulation. To approximate (1.15) we integrate it over each interior dual cell Vj = Vj1 ∪ Vj2 ∪
V j3 ∪ Vj4 ∪ Vj5 ∪ Vj6 (see Fig. 1), to obtain∫

Vj

wt dx =
∫

Vj

∇·(wv) dx =
∫

∂Vj

wv · n dS = −
∫

∂Vj

w f (|∇u|)∂u

∂n
dS. (8.3)

Substituting wh ∈ Wh and uh ∈ Sh for w and u in (8.3) we have∫
Vj

(wh)t dx = −
∫

∂Vj

wh( f (|∇uh |)∂uh

∂n
dS. (8.4)
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FIG. 1. Dual mesh.

Setting

A= ∂Vj1 ∩ ∂Vk1, B = ∂Vj2 ∩ ∂Vk1, C = ∂Vj2 ∩ ∂Vk2,

D = ∂Vj3 ∩ ∂Vk2, E = ∂Vj3 ∩ ∂Vk3, F = ∂Vj4 ∩ ∂Vk3,

G = ∂Vj4 ∩ ∂Vk4, H = ∂Vj5 ∩ ∂Vk4, I = ∂Vj5 ∩ ∂Vk5,

J = ∂Vj6 ∩ ∂Vk5, K = ∂Vj6 ∩ ∂Vk6, L = ∂Vj1 ∩ ∂Vk6,

(8.5)

where Vj1, Vj2, etc are defined in Fig. 1, and denoting the lengths of A through to L , by A′ through
to L ′, and the length of the edge joining nodes j and k by hjk we have∫

A+B
∂u
∂n dS = (A′ + B ′)(un

k1 − un
j )/hjk,

∫
C+D

∂u
∂n dS = (C ′ + D′)(un

k2 − un
j )/hjk,∫

E+F
∂u
∂n dS = (E ′ + F ′)(un

k3 − un
j )/hjk,

∫
G+H

∂u
∂n dS = (G ′ + H ′)(un

k4 − un
j )/hjk,∫

I+J
∂u
∂n dS = (I ′ + J ′)(un

k5 − un
j )/hjk,

∫
K+A

∂u
∂n dS = (K ′ + A′)(un

k6 − un
j )/hjk .

(8.6)

We approximate
∫

Vj
wt dx with a time difference by

mj
∆t (w

n+1
j − wn

j ), and we use an upwinding
scheme to approximate w in the right-hand side of (8.4), since f (|∇u|) � 0 for all x ∈ Ω we
set our approximate value of w to depend on the sign of ∂u

∂n on each section of ∂Vj ; yielding the
following for all n � 1 and all interior nodes j

mj (w
n+1
j −wn

j )/∆t =
( f (Aj )A′ + f (Bj )B ′)(wn+1

k1 [un
k1 − un

j )]+ + wn+1
j [un

k1 − un
j )]−)/hjk

+( f (Cj )C ′ + f (Dj )D′)(wn+1
k2 [un

k2 − un
j )]+ + wn+1

j [un
k2 − un

j )]−)/hjk

+( f (Ej )E ′ + f (Fj )F ′)(wn+1
k3 [un

k3 − un
j )]+ + wn+1

j [un
k3 − un

j )]−)/hjk

+( f (Gj )G ′ + f (Hj )H ′)(wn+1
k4 [un

k4 − un
j )]+ + wn+1

j [un
k4 − un

j )]−)/hjk

+( f (Ij )I ′ + f (Jj )J ′)(wn+1
k5 [un

k5 − un
j )]+ + wn+1

j [un
k5 − un

j )]−)/hjk

+( f (Kj )K ′ + f (Aj )A′)(wn+1
k6 [un

k6 − un
j )]+ + wn+1

j [un
k6 − un

j )]−)/hjk,

where f (Aj ) = f (|∇uh |) evaluated on the edge A, f (Bj ) = f (|∇uh |) evaluated on the edge B,
etc.

We set wn
j = wb for all n � 1 and all boundary nodes j .
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FIG. 2. Evolution with pinning, Jp = 2, ub = 1, wb = 0.

FIG. 3. Evolution with nucleation and pinning, Jp = Jn = 2, ub = wb = 1.
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FIG. 4. Steady states with pinning, ub = 1, wb = 0.

FIG. 5. Steady states with nucleation and pinning, ub = wb = 1.
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FIG. 6. Steady states with pinning, Jp = 2, ub = 1, wb = 0.

FIG. 7. Steady states with nucleation and pinning, Jp = Jn = 2, ub = wb = 1.
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FIG. 8. Bean model simulations, λ2 = 0.0001, Jp = Jn = 2, wb = ub.

FIG. 9. Bean model simulations, λ2 = 0.0001, Jp = Jn = 2, wb = ub.
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One-dimensional computations

The one-dimensional results are displayed in Figs 2–9, in which plots of wh(t) (bold line) and uh(t)
(dashed line) are displayed together on one plot, at various times t . Figures 2–9 can be divided up
into four sets, the first set, Figs 2 and 3, show the evolution of wh and uh from some given initial data
(top left-hand subplots) to their steady states w̃h and ũh (bottom right-hand subplots). The second
set of results, Figs 4 and 5, each contain six subplots showing the steady states w̃h and ũh , obtained
using the same initial data but different values of Jp = Jn . The top left-hand subplots in Figs 4 and 5
show w̃h and ũh obtained by taking Jp = Jn sufficiently large so that all the vorticity is pinned and
no vorticity enters the domain, thus in fact these top left-hand subplots are plots of the initial data
from which the remaining five steady states have evolved. At the top of each subplot are the values
of Jp and Jn that were used and the time taken for the steady state to be reached. In Figs 2–5 we
set λ = 0.1, while in Figs 6 and 7 we display steady-state solutions obtained using varying values
of λ. The top left-hand subplot shows the initial data wh(0) and uh(0) while the three remaining
plots show steady states obtained from this data using the same values of Jp = Jn, ub and wb but
different values of λ.

The fourth set of figures, Figs 8 and 9, show the following results; the top left-hand subplot
displays the steady-state solution, obtained using no initial vorticity and the value of ub displayed
above the subplot, the top middle subplot depicts the steady-state solution obtained using the steady-
state solution of the previous subplot as initial data and a different value of ub. Similarly, the
remaining subplots (with the exception of the bottom right-hand subplot) are steady-state solutions
obtained using varying ub’s and the subplot on their left (or on the subplot on the end of the
row above) as initial data. The bottom right-hand subplot displays the results of the previous four
subplots together in one subplot.

Two-dimensional computations

The two-dimensional results, Figs 10–17, are displayed in much the same format as the first four
one-dimensional figures, except that this time we display contour plots of wh and uh in separate
figures which we group together on the same page. The first four two-dimensional figures, Figs 10–
13, show the evolution of initial data to their steady state, while the remaining figures, Figs 14–17,
show the steady-state solutions w̃h and ũh obtained using various values of Jp = Jn . In all the
two-dimensional results we have taken λ = 0.1.

Discussion of the numerical results

Figures 2, 4, 10, 11, 14 and 15 display results obtained for superconducting samples in which flux
pinning of vorticity occurs, but no vorticity is nucleated at the boundary (i.e. samples in which Jn

is very large). From these figures we see that the minimum value of the magnitude of the current
J := |ux | (which is in fact J = 0) occurs at the centre of the initial blocks of vorticity and as
a result the vorticity remains pinned to this site throughout the computation, while the vorticity
situated away from the centre of the block spreads out either side of the block. Clearly the greater
the value of the critical pinning current Jp, the less the vorticity is free to move and the less spread
out the block becomes.

Figures 3, 5, 12, 13, 16 and 17 display results obtained for superconducting samples initially
containing no flux lines. Vorticity enters by nucleation at the boundary and we take the critical
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FIG. 10. Evolution of w with pinning, Jp = 4, ub = 1 wb = 0.

FIG. 11. Evolution of u with pinning, Jp = 4, ub = 1 wb = 0.
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FIG. 12. Evolution of w with nucleation and pinning, Jp = Jn = 4, ub = wb = 1.

FIG. 13. Evolution of u with nucleation and pinning, Jp = Jn = 2, ub = wb = 1.
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FIG. 14. Steady-state solutions of w with pinning ub = 1, wb = 0.

FIG. 15. Steady-state solutions of u with pinning ub = 1, wb = 0.
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FIG. 16. Steady-state solutions of w with Nucleation and Pinning ub = wb = 1.

FIG. 17. Steady-state solutions of u with Nucleation and Pinning ub = wb = 1.
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nucleation current Jn to be equal to the critical pinning current Jp. From these figures we see that
the vorticity enters the domain at the boundary and then spreads towards the centre of the domain.
Furthermore, the smaller the value of Jn = Jp used, the more vorticity enters the domain and
the further to the centre of the domain it spreads. From Figs 12 and 16 we see that the flux lines
are constricted along the diagonals of the rectangular cross-section, this effect is due to the finite
penetration depth λ.

In Figs 6 and 7 we see the effects of varying values of λ. In particular, we note two things,
firstly, the absolute value of the gradient of the magnetic field, |ux | = J increases and secondly, the
difference between the vorticity and the magnetic field within the sample decreases. In Fig. 6 we see
the effects that occur when the value of J is increased in samples in which no vorticity is nucleated
at the boundary, but in which there are pinning sites (i.e. samples in which the nucleation current
Jn is very large); there become more places in which J exceed the critical pinning current Jp and
as a result, fewer places where the vorticity is pinned, resulting in the vorticity spreading out more
in the domain. Similarly, in Fig. 7 we see the effects that occur when the value of J is increased in
samples in which vorticity is nucleated at the boundary and then pinned in the domain; eventually
J exceeds the critical nucleation current Jn at the boundary and enters the domain, where at certain
places it is pinned.

Figures 8 and 9 are presented to enable comparisons between solutions of Bean’s model and the
mean field model with λ small. Comparing the results in Figs 8 and 9 to the critical state Bean’s
model solutions described for example in [3] we see that solutions of the two models compare
favourably. We note that for an increasing applied magnetic field at the boundary, the Bean magnetic
field or the vorticity, satisfies

u = max(ub − Jpdist (x, ∂Ω), 0).

9. Conclusion

In this paper we give a precise formulation of a vortex density model incorporating flux pinning and
vortex nucleation at the boundary. We note that the nucleation condition (1.12) was only postulated
by Chapman in [4] as a natural choice and was not derived from say the Ginzburg–Landau equations.
We show that the problem has a unique solution in one space dimension and we derive a numerical
scheme which we show to be convergent. We present some numerical simulations obtained using
this scheme with non-zero λ and a non-extreme pinning function f , whereas numerical studies in
the physics literature are related to non-linear diffusion equations (i.e. λ = 0) or the classical Bean’s
model.

This work may be regarded as one of the initial steps in the rigorous mathematical study of
vortex density models. Further work in this area could include investigating some of the following;

• the well posedness of the free boundary problem for the motion of a line vortex

• the convergence of the Ginzburg–Landau equations to the aforementioned free boundary line
vortex problem

• rigorous mathematical analysis of the well posedness of vortex density models in three
dimensions

• convergence of the averaging procedure for the motion of line vortices to vortex density
models
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• various asymptotic limits for the vortex density models giving a chain that rigorously links
Bean’s model to the Ginzburg–Landau equations, for example, in cylindrical geometries with
parallel or transverse applied magnetic field.

Finally, a Bean’s model suitable for three dimensions might be obtained via a limit of a suitable
vortex density model in three dimensions.
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