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We study a one-dimensional mean field model of superconducting vortices with a finite London
penetration depth, flux pinning and nucleation of vorticity at inflow boundary sections. The existence
of a unique weak solution is proved and the long time behaviour is studied. A numerical discretization
of the model is derived and it is shown that as the time step and the mesh size tend to zero, the
discrete solution converges to the unique weak solution of the continuous model. Some numerical
computations are presented which illustrate the effects of flux pinning and the finite penetration
depth.

1. Introduction

We begin with a brief introduction to the three space dimensional mean field model of
superconducting vortices for a Type-ll superconductor in its mixed state, derived in [4]. In the
domain occupied by the superconductor we have

wi + curl (w A v) =0, (1.2)
A2cur)®H +H =w, (1.2)
V-H=0, (1.3)
curlH =, (1.4)
v=(J x\fv)%, (1.5)

while in the region external to the superconductor we have

curlH=1J, (1.6)
oH
curle + T 0, .7)
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V.H=0, (18)
V-E=p. (2.9

Here w, v, H, J, E and p, respectively, denote vorticity, the velocity of the vorticity, average
magnetic field, current, electric field and charge density. Furthermore, A is alength-scalerelating to
the penetration depth, W denotes a unit vector in the direction of w and gives the local direction of
the averaged flux lines. The magnitude |w| of w gives the density of flux lines. Thisis one model
in a hierarchy of mathematical models of superconductors. Starting from the Ginzburg-Landau
eguations we can obtain in a high Ginzburg-L andau parameter limit, the London equation

201112 H. - E :*
A CUI’| H| +H| 5ﬂv
j#i

coupled with
Vi =curl Hj x 5,

for the motion of line vortices [5]. Here I} is an evolving line vortex and §pi is the Dirac measure
on I7; Vi and 7; denote the velocity and the unit tangent of 7. The medium isin the normal state
on the vortex lines and in the superconducting state elsewhere. Since there are many millions of
vortices in a sample of appreciable size it is appropriate to carry out an averaging procedure, see
[4], to derive the above mean field vortex density model. The material is in the mixed state where
|[w| > 0 and in the superconducting state where |w| = 0. We note that (1.5) gives the velocity of
vorticity in samples containing many small pinning sites (cracks and impuritiesin the material). The
given function f is non-decreasing and reflects the resistance to the movement of vorticity by the
pinning sites. In [4,6] alinear law was assumed but, as described in [4], one is also interested in
more general relations and in particular the situation where the vel ocity is zero unless the magnitude
of the current density exceeds acritical value Jp, the pinning current.

On the interface between the superconducting sample (which we shall denote by £2) and the
external region we have the following boundary conditions;

[(1/no)H ANn] =0, (1.10)
[H-n]=0, (1.12)

where[-] denotes the jump in the enclosed quantity across 952 and g is the permesability, which in
most practical applicationsis very similar for the superconducting region and the external region.
The need for an additional boundary condition on w depends on whether the characteristics of
(1.1) are directed into or out of £2 on the boundary. If v - n > 0, vortices are leaving the sample
and no extra boundary conditions are required. However if v - n < 0, vortices are moving into the
sample and in [4] the following extra boundary condition for the flux of vorticity is suggested;

J .

—NAWAV) =a[[J] — Jn]+n|%| if v.n <0, (1.12)
where « is a non-negative material constant and [-]; = max(-, 0). Again there is a critical current
density J, below which no vorticity is nucleated.

Themodel (1.1)—«(1.12) can be greatly simplified by considering the casein which all thevortices
are rectilinear, aligned and orientated with the z-direction along with the magnetic field H. For this
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case we have

H=(0,0,u(x,y,t)), uzo,
w=(0,0, w(x,y,1t)), w >0,
and (1.1)—(1.12) simplify to
wi+V-(wv) =0 in $2;,
—AAu4+u=w  infx,
_ _[IVul = Jpl4Vu

s

[Vul
u=u, on 942,
—n-vw = «[|J] — Inl+ if v.-n <0,

145

(1.13)
(1.14)

(1.15)
(1.16)

(1.17)

(1.18)
(1.19)

where u, is a positive constant denoting the externally applied magnetic field. We note that in this
simplified case, sgn(w) = 1for al (x,t) € £2; and such situations arise if theinitia vorticity wo(x)
and the externally applied magnetic field u, are taken to be non-negative. Restricting our model to

one dimension with 2 = (0, 1), we obtain;

wt + (wv)x =0,
—)vzuxx +u=w,
Uy| — J u _(UX - \]p) for Uy > Jp,
_ _[uxd = Jplux 0 for lux] < Jo,
|Ux| (Ux + Jp) for uy < —Jp.
u(o’ t) = u(]-’ t) = ub7

v(0,H)w(0,t) = of|ux(0,t)| — In]+ Vte S ={t:v01t) > 0},
—v(0, Hw(L, t) = of|ux(L,t)| — In]+ Vte S ={t:vlt) <0}

(1.20)
(1.21)

(1.22)

(1.23)

(1.24)

In [9] and [20] the models (1.15)—(1.19) and (1.20)—<1.24) were considered with J, = 0 and
a = 0, in the remainder of this paper we extend some of the results of [9] and [20] to the following
simplified form of (1.20)«1.24) which is obtained by setting Jp = Jn and suitably smoothing

(1.22);
wt = —(wv)x in 2,
—)\.ZUXX +UuUu=w II"I QT,
u®O,t) =u@,t) =u, Vt=>0,
w(X, 0) = wo(X) in$2,
w(0,t) = w, Vte S ={t:v01t) > 0},
w(l,t) = w, Vte S ={t:v(@t) <0},
where

v =—f(uy).

(1.25)
(1.26)
(1.27)
(1.28)
(1.29)
(1.30)

(1.31)
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We shall assumethat f € C2(R) satisfies
fO=0  0<f'(r)<uy, |f”] < C. (1.32)

We note that (1.29) and (1.30) follow directly from setting Jp = Jy and o = w, in (1.22) and (1.24).
Also, since the conditionson f in (1.32) are necessary for proving the results of Sections 2-5 we
have to content ourselves with a smoother velocity law than the one suggested in [4] which has f
being piecewise linear and non-decreasing. In certain applications A is small and it is appropriate
to consider the asymptotic limit A tending to zero, which formally leads to a non-linear diffusion
equation for the flux line density, cf. [2,13]. If in addition to this limit an extreme form of the
function f in (1.5) istaken, f(Jux|) = f(|1J)) = 0if [J| < Jpand f(|I]) = oo if [J| > Jp, then
weformally arrive at the critical-state Bean's model [18, 19]. A rigorous derivation of Bean's model
from alimit of a non-linear diffusion equation may be found in [1]. We note that the vortex density
model for an infinite cylinder in atransverse magnetic field has been studied in [10].

In Section 2 we adapt techniques from [20] to prove the existence of a solution {w?, u®} €

HA5(2,) x HP5(2,) for 0 < B < 1, of aregularized version of (1.25)—(1.30):

wi = (w fo(U))x + ewiy in$2,, (2.33)
—Azuix + U = wt in $£2;, (1.34)
uéO0,t) =u (L, t) =u, Vt>D0, (1.35)
wé(0,1) = wé (@, t) = w, Vt>D0, (1.36)
w(X,0) = wg(x) =0 in$, (2.37)
where
fo(r) = f(r) +er. (1.38)

Then we follow the techniques used in [17] to derive estimates on w®, u® and their derivatives
which enable usto provethat in thelimitase — 0

we —> w strongly in L1(£2,),
u® —s u strongly in C([0, T]; C1(2)).

Here {w, u} € (BV (£2,)NL>®(£2,))xC([0, T]; C1(2)) satisfiesthe following weak form of (1.25)—
(1.30):

[ wi = fwom e+ [ wo0px, 0dx=0 (139
foral ¢ € C®(£27), ¢lo,1x{Tyusex©o,T) =0,
/9 22Uy dX + /Q (U—w)pdx =0 V¢ e C([0, T]; HE(22)), (1.40)
and the entropy inequality

(- wy) 20t + (w — wy)? f (U nx) dx

< / (((w — wy)? — 2w(w — wy))A 2 (Uy) (w — u)n) dxdt,  (L41)
27



FLUX PINNING AND BOUNDARY NUCLEATION 147
where n € WL-(2;) with (-, 0) = 5(-, T) = 0and n > 0. Since BV functions have traces on

the boundary, we are able to use the entropy inequality (1.41) to prove that w satisfies the boundary
conditions (1.29) and (1.30). In Section 5 we prove the existence of a Lyapunov functional

1
E(u(. 1) = 5/9 (1uxl? + @ = u)?) dx,

from which we conclude the existence of a steady-state solution {i, 0} € BV (£2)xW?2%>°(£2) which
satisfies

wf(ly) =0 in 2, (1.42)
—Mlxx +0=w=>=0 ing, (1.43)
G0 =0 = u, onas2, (1.44)
w(0) = w, if f(lx(0)) <O, (1.45)
w(1) = w, if f(lyx(1) > 0. (1.46)

In Section 6 we adapt techniques from [9] and [8] to derive a numerical discretization of
(1.25)—«1.30) on the interval [0, 1] using a uniform mesh size h. We show that as the time step
and the mesh size tend to zero, the discrete solution converges to the unique weak solution of
the continuous model. In Section 7 we show that ast — oo there exists a unique seguence
{Wh, On} € L*®(£2) x H1(£2) which satisfies adiscrete form of the continuous steady-state problem.
We conclude with Section 8 in which we display some one- and two-dimensional numerical
computations that illustrate the effects of flux pinning and boundary nucleation coupled with a
finite penetration depth. We note that in order to keep the paper from being too long, some of the
proofs in the following sections have been shortened, the full versions of these proofs can be found
in the technical report [11].

2. Existence of a solution of the regularized model

THEOREM 2.1 For al initial datawg(-) — w, € C3°(£2), there exists a classical solution {w®, u®}
of (1.33)—(1.37) with
[Tw?||

U] (21)

&
<
He% (20)’ He % (1)’ Ul ye§ o) < C

forO< o < 1.

Proof. Throughout this proof, for the sake of simplicity of presentation, we often suppress the
dependence of u® and w® on ¢ and write w and u in place of w® and u®. We begin by embedding
(1.33)«1.37) in the following family of problems P?: find v° € H% %2 (02,) such that

v — evgy — vg fo(Uy) — 0272 F (U U+ or2f/(Uuw? =0  ingy, (22
v?(0,t) = v2(1,t) = ocw,,
v7 (+, 0) — w, = owo(X) — w, € C3°(£2) in s,

where N
we H*2(82,), (2.3
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and u satisfies

—AUgx +Uu=w  ingy, (2.9)
uO,t) =u(d,t) = u,. (2.5)

From [16] we see that if the coefficients of v in (2.2) are bounded in H % (82,), (i.e. if fo(uy),
02172/ (ux)u and oA 2 f/(ux)w? are bounded in H*2(£2,)), and if v?(-,0) € C2%(£2) and
ow, € HZ 15 (302,), there exists a unique solution v € HZ*13(Q2,) of P?. Since w €
H® % (£2;) from (2.4), we have

w(-,t) € CO%N) = u(-,t) e C2%(R) Vt>0

= ||u(a t2) - u(" tl)llCl-O‘(Q) g Cllu(.a t2) - u(a tl)”WZ,OO(Q)
SCllw(, t2) — wi, t)llL~e)

<Cltz — 12
= lulljes o Muxlljes o) <€ (26)
From (1.32) and (2.6) it follows that
Il fs(uX)HHa."—z‘(QT) <C, (2.7)

and hence there exists a unique solution v° € H2¢12(2) of P°. Setting v° =T (w, o) for all
w e H*2(2;) and al o € [0, 1], and applying the Leray—Schauder fixed point theorem [12], we
seethat solving (1.33)«(1.37) in H2t*1+3 (2. isequivalent to solving w = T (w, 1) in H* % (£2;).
In order to apply the Leray—Schauder fixed point theorem we need to prove that the mapping T is
continuous and compact and that

Tw,00=0 VYweH»2(2), (2.8)

llw=Tw,o) M VY(w,o)e H*%(2;) x [0, 1]. (2.9)

3 <
H 2 (@)

The compactness of the mapping T follows from the fact that T maps bounded setsin H %3 (82;) x
[0, 1] into bounded setsin H2t%1%2 (22, which are compactly embedded in H* 2 (£2;), [16]. Now
we prove the continuity of T. Using (1.34) and (2.6) we conclude that there exists subseguences wj
and u;j such that

11U} (o 1) = UG, Dllezae) < Cllwj (1) = w, Dllgow(a) — 0

Uj — Uu
(Ux)j — Ux

Using (1.32) and (2.10) it follows that

= } inHA%(2)  for0<p <a (2.10)

fe((Ux)j) = fe(ux)

= f(U)) = FL(Uye)

} in HA2(2,)  for 0< g <a. (2.11)
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Also cwo(X) — w, € CP($2), ow? € H¥ 2 (£2;) imply
ojwo — owo  in C2P(2), (2.12)

oj wjz — ow? in Hﬁ’g(SZT). (2.13)

Since H2t*13(2.) is compactly embedded in H* % (£2;) every subsequence vjaj of v° has a

convergent subsequence v-akjk .Let v.' besuch aconvergent subsequence with limit 2 € H %3 (2y).
Then using (2.11), (2.12) and (2.13‘) we have

9]

9]

: oj g 2,-2 o -2 2
Ilmjﬁoovjt‘ — EVjyy — vjj( fe((Ux)}) — of A fg’(ujx)vjju + ojA fs’(ux)jwj

=07 — ey — Uy fe(Ux) — oA 2 H(U0D7U+ 0 A 2 F(U)ow? =0 in2,
ﬂg (O’ t) = 56(17 t) = O Wy,
77(-,0)=0cwp(X) ing2.
Since P? admits a unique solution we conclude the sequence ng,- itself converges to v and the
continuity of the mapping is proved. To complete the proof we first note that if o = 0, thenw = 0
and hence it remains to set w = T (w, o) and prove (2.9). Following the techniques used in the
proof of Theorem 2.1 [20], and noting that f; > 0 we arrive at the following
0 = min(wg(X), Uy, w,) < Minw’ < maxw < max (wo(X), Uy, wy), (2.14)
||wa||H2+a,l+%(QT) <C Voel01),

where w’ = T(w?,0) and 0 < o < 1. Hence there exists a subsequence of w?, which for
simplicity we denote w?, such that

) i
w’ — w in H2A1*2 () aso — 1,

sw<«—uw’ =Tw, o) — T(w, 1),

Hwll ,eg . <C Vo €l0,1],
and the theorem is proved. O
LEMMA 2.1 The solution w® of (1.33)—1.37) satisfies
0 < w’(x, t) < max(wg(X), u,, wy) < C. (2.15)

U [ oo o, T w2 () < C. (2.16)

Proof. The result follows directly from the proof of Theorem 2.1. O
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3. Existence of aweak solution of the model

Throughout this section, for the sake of simplicity of presentation, we often suppress the dependence
of u® and w® on ¢ and write w and u in place of w® and u®.
We begin by choosing regularized initial data wg(X) — w, € C5°(£2), such that

w§(X) —> wo(X) strongly in LP(£2) V1< p<oo, (3.1

and

LEMMA 3.1 There exist constants C independent of ¢, such that

[Vewgll 2, < C, (33
||u‘[9|||_2(0’T;H6L(Q)) <C (34)
U He.8/2(2y) g llmpp2(2) < C, (3.9)

forsome 0< B <1.

We omit the proof of Lemma 3.1 since it follows the same techniques used in the proof of Lemma
3.1[20] and can be found in [11].

LEMMA 3.2 ThereexistsaC independent of ¢, such that

[Twil Lo 0.7:L20,1)) < C- (3.6)

Proof. Differentiating (1.33) with respect to x, multiplying the resulting equation by sgn(wy) and
integrating from x = 0to x = 1 gives

d 1 1 1
a / |wX| dX =& / u))(xx$n(wx) dX + 2] f;(UX)uXx|wX| dX
0 0 0
1
+/(; (wxx fe(Ux) + ng/(ux)uxxx)sgn(wx) dx
1 1
=¢ /(; WxxxSIN(wy) dX + 2/(; fg/(ux)uxx|wx| dx
1 1
+/0 fe (Uy) |wx |x OX + /(; £/ (Ux) wlxxxSIN(wx) dx

1
+ fo Wwh (Ug) (U 2SON(x) X,

Following the techniques used in the proof of Lemma 5.1 [20], which in particular involve using
(2.34) coupled with the boundedness of uy to deal with the term involving the third derivative of u,
using the following useful inequality

1
5\/0 wXXXSgn(wx) dX + [|wx|Ux](1) < 07
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to dea with the sfol wxxx dx term, and finaly noting from (1.32) that f/(ux) and f/(ux) are
bounded in L*°(£2;) we arrive at the following

d 1 1
at /(; lwy| dX < /(; (Jwx| fg/(ux)uxx + U)fg/(ux)(u — w)x)SgN(wx) dx (3.7)
1
+[ A2 (U w(w — u)?sgn(wy) dx
0

1 1
0 0

Using (3.5) and Gronwall’s inequality in (3.8) gives the required result. O
LEMMA 3.3 There exists a constant C independent of ¢, such that

llwtllLe,7:L20,2) < C- (3.9
The proof of Lemma 3.3 is essentially the same as the proof of Lemma 5.3 [20], with the exception
of sometermsinvolving f/(-) and f.(-) which can be bounded in L*°(£2;).

THEOREM 3.1 For every sequence {w®, uf}, of solutions of (1.33)—(1.37), there exists a

subsequence, which for simplicity of notation we also denote by {w?, u?}, which converges as
e — 0,in L1(£2;) x C(£2;) to {w, u}. We obtain

w e L0, T; BV(2)) and w € L%®(2;) N BV (£2y), (3.10)

u, ux € HAP2(2) cC(2;)  forsome0 < g < 1. (3.12)

Moreover, {w, u} is a weak solution of (1.39) and (1.40), and it satisfies the entropy inequality
(1.42).

Proof. We begin by noting that (3.10) and (3.11) are direct consequences of (2.15), (3.5), (3.6) and
(3.9). Furthermore, the following convergence results follow from (1.32), (1.38) and (3.5),

ué — u strongly in C(£2;), (3.12)
ug — Uy strongly in C(£2;), (3.13)
f.(Us) — f(uy)  stronglyin C([0, T]; L2(£2)), (3.14)
f/(us) - f'(ux)  strongly in C([0, T]; L2(£2)). (3.15)

Lastly, from (3.6) and (3.9) it follows that w® € W1(£2;) and since L* is compactly embedded in
W1 we conclude

w® —> w strongly in L1(s2;). (3.16)
To provethat {w, u} satisfies (1.39) we multiply (1.33) by ¢ € C*°(£2;) wheresupp¢ C 2 x {T}U
92 and integrate over £2;, use the convergence properties (3.12)—3.15) and follow the techniques
used in the proof of Theorem 3.1in[20], to obtain

/ w (gt — fo(Uy)ex) dx dt—i—/ woe (X, 0) dx—f-e/ w® pxx dx dt (3.17)
2 2 fo

— w(pr — f(uy)ex) dxdt +f woe (X, 0) dX. (3.18)
2+ Q
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Similarly, multiplying (1.34) by ¢ € C([0, T] : H1(£2)), integrating over £2, using the convergence
properties (3.12)—(3.15) and following the techniques used in the proof of Theorem 3.1 in [20] we
obtain

/ (Azuf(qu — (- u€)¢) dx — / (kzux¢x —(w— u)¢>) dx. (3.19)
2 2
It remainsto prove that {w, u} satisfies (1.41). To thisend, we multiply (1.33) by w® — w, to obtain

(w® — wb)wfE — (W —wy)(w* fs(uf())x —e(w® — wb)wix =0

d
= G = wy)2 — (W — wy)2 Fo(US) + 2472 (U w® (w® — wy) (W — U¥) — e(w® — wy)2, < 0.

Multiplying the above inequality by n € W-*°(£2;), n(0) = n(T) = 0, and integrating over £2;
gives

(— (W — wy)?n + (W — wy)? Fe (UM + 2721 (Ux) (w — US)Qw® (w® — wy)n) dx dt
27

—/ (rz £/ (U (w® — U®) (w® — wb)z)n) dx dt < —/ e(w® — wy)21y dx dt.
o o

Using (2.15) and (3.3) it followsthat in thelimit ase — 0 theright-hand side of the aboveinequality
converges to zero, while from (3.12), (3.13) and (3.16) we can conclude that in the limitase — 0
the left-hand side of the above inequality convergesto (1.41) and the theorem is proved. O

LEMMA 3.4 Thelimiting solution {w, u} satisfies the boundary conditions

u@O,t) =u(d,t) =u, Vvt>0, (3.20)
w(0, 1) = w, Vie &, (3.21)
w(l,t) = w, Vte S, (3.22)

where the sets § and S are defined by
S ={r >0: f(ux(, 7)) < 0} and S ={t>0: fux(, 1)) > 0}. (3.23)

We omit the proof of Lemma 3.4 as it is a straightforward generalization of part of the proof of
Theorem 5.1in[20].

4. Uniqueness of the weak solution

In Section 3 we proved the existence of a weak solution satisfying (1.27), (1.29), (1.30), (1.39),
(1.40) and (1.41). If this weak solution is unique (which we prove in this section), Theorem 3.1
implies the convergence of solutions of (1.33)—(1.37) to the weak solution of (1.25)—(1.30), i.e.

lim{w?, u®} = {w, u}.
e—0

We now prove the uniqueness of weak solutions of the limit problem (1.25)—«1.30). The main
difficulty in the proof is caused by the fact that the weak solution w is not necessarily smooth,
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so we bypass this difficulty by smoothing it appropriately. In order to do thiswefirstly extend uy to
R x [0, T] by
Ux (0, t) X <0,
Ux(X, 1) = 3 ux(x,1t) 0<x«1l,
ux(1,t) X >1

and we define the ‘extended’ characteristic X = X(t; X, f) to be the unique solution of the initial
value problem
Xt = —f(ux(X, 1)), t e R, (4.2)

X %) =% eR. (4.2)

We note that f(uy) € L0, T; C%1(£2)) N C([0, T]; C%*(2)) 0 < a < 1, foralt > 0, and
using the Picard-Lindelof Theorem [15], it follows that (4.1)—(4.2) has a unique solution. Next we
set up the coordinate transformation (X, t) < (s, t) to be the following,

s = X(0; x, 1),

Tt 43

(s, 7) < (X, 1) {

(i.e. sistheinitia value of the ‘extended’ characteristic X, which passes through (x, t)), and we
note that from (4.3) it follows that
X = X(t;s,0). (4.9

Lastly, we define Q; to be theimage of £2; inthe (s, t)-plane, we set w(s, 7) = w(X, t) and extend
w to s € R by its boundary values.

LEMMA 4.1 Thefunction w has abounded = derivative:
Wy =W f/(ux)uxx S LOO(QT)‘

Proof. Using the extended value of uy and the coordinate transformation (s,t) < (X, t) defined
above, we have

ds 9s
= _ x .
ot a(s, 1) _ xR =3 (O,X,t).
a(x,t) ax at X
Since
d aX X
e X, 1) —
Bt BX (UX)UXX( b )BX )
with
aX
—(0;x,0) =1,
ax( )
we obtain

X

X, )\ t )
et(a(s, f)> =&p [—fo f (Ux)UXX(X,I’)dr:| £0.

. t
XOX _ oo U /(0 uxx(X, r>dr} ,
0
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Since det (ggg) # 0, it follows that the coordinate transformation (x, t) <> (s, 7) is invertible
and using standard arguments it can be shown that (x,t) < (s, 7) and itsinverse (s, 7) < (X, t)

arein C.?;l(IR{ x [0, T]). For ¢ € C;°(£2) the weak formulation of (1.39) reads

f w(gpr — f(ux)px) dxdt = 0.

27

We now set ¢(S, t) = ¢ (X, t) and from (4.4) we have ¢, = ¢t — f (Ux)x, which together with the
change of variabless = s(x, t), T =t gives

/ s
T

/ W exp [— /r f/(Uy)Uyx (X, r)dr} @ dsdr =0 Vo e CF(Qy. (4.5)
Qr 0

a(x, 1)
a(s, 1)

dsdr = 0.

Thus

Since (4.5) holdsfor al ¢ € C3°(Q;) we have

9 <zb exp [— /T /(U Uyx (X, r)er =0 Y (s, 1) e Qr
at 0

= 11), == f/(uX)'lZ)UXX

and the result follows since f/(uy)wixx € L (Q5). O
THEOREM 4.1 For 2 = (0, 1), thereis at most one solution {w, u} of (1.39) and (1.40) with
w, Uxx € L2(82y),

u, uy € HAP2(@) c C(2;,)  forsome0 < B < 1.
w e L0, T; BV(£2)) N BV (£2,).

We omit the proof of Theorem 4.1 asit is a straightforward generalization of the proof of Theorem
6.1in[20].

5. Steady-state solutions

We denote the steady-state solutions of w and u by w and G, respectively.

LEMMA 5.1 Let {w, u} solve (1.39) and (1.40) foral T > 0O, with u(0,t) = u(1,t) = u, and
w(,t) =w,foralt e Sandw(l,t) = w, foradlt € §. Thenall points of the w-limit set

w(wo) = {(W, 0) : Y} st w(-, tj) — winL1(2), u(, ) — Gin HY(2) ast; — oo},

(for 1 < p < o0) are steady-state solutions in the sense that
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wf(lyx) =0 ing, (5.1)
Ay +0=w>0 ing, (5.2)
G(0) = G(1) = u,, (5.3)
W(0) = w, if f(0x(0)) <O, (5.4)
(1) = w, if f(lx(1) > 0. (5.5)

We omit the proof of Lemma5.1 asit issimilar to the proof of Lemma4.1 in [20] and can be found
in[11].

LEMMA 5.2 If wp(x) = Ofor dl x € [0, 1] and %tanh(%) < Jp, then no vorticity enters the
domain and
w(x,t) =0, Y (X, 1) € £2;. (5.6)

Proof. We can explicitly solve —120yx + 0 = 0 to obtain

U = u,cosh (;) _ ujtanh <%) sinh (%) , .7)
Uy = %sinh (;) — %tanh (%) cosh (%) . X:)

Since vorticity only enters the sample at inflow boundarieswhen v - n < 0, i.e. when |ux (0, t)| =
[ux(1,t)] > Jp, from (5.8) if |ux (0, )] = Jux(L,t)| = %tanh(%) < Jp, then no vorticity enters
the domain and (5.6) holds. |

6. Numerical discretization
In this section we derive a combined finite volume/element approximation of (1.25)—(1.30) on an
interval [0, 1] using a uniform grid, with mesh size h. We adapt the upwinding method used in [9]
where we discretized a simplified version of (1.25)—1.30) in whichv = — f (uyx) and w, = 0. We
set 2 = (0, 1), h(e RY) = 1, t" = nAt, and we define S, S2, Wh, WP and an (1, £), by
Sh = {¢ € C[0, 1] : ljn,(j+ph islinear V j € [0, — 1)},
K=1{peSh: 00 =¢D =0}
Wh=1{neL®0.1):nx) =nj, xe(j—ph (j+h). ¥je[lI-1]
n() =no, X € (0, (j — Phyand n(x) = ny, x € (1§, 1)},

WP = {n € Wh : o =ny =0},

1
ahm,é)sxzfo e OX+ (n En V. e HYO, 1),
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where
J-1
(1, &)h = (noko+na€a) +h Y nj&  Vn.& € S or Wh. (6.1)
j=1
For any n € &, withn; = n(jh), we have
J
n= mej (X,
j=0

where&j e § with&j(ih) = §;j for 0 < i, j < J. For every continuous function n on 2 we define
theinterpolation operator 7" : C(£2) — S" by 7"y € S, where z"y = 1) at every grid point. From
[7] we have the following results

In —x"nlo+hin — 7"yl <Ch? Ve HZ(), (6.2)

where C is a positive constant and

1 1
2 2
|n|o=</ nde) , |n|1=(/ |77x|2dx) ,
2 2

and dsothat for al n, £ € S,
(1, &) — (n, ©)nl < Ch?[nl1l€]1 < Chinlol& 1, (63

1
where [n]h = (1, n)§. We now define anumerical approximation of (1.25)«1.30).

1 fa+»h
o=+ f wo)dx, Ve[l Jd—1], (6.4)
hJi-Hin
1
h h [t
u)8 = — /fﬁ u)o(X) dX, wg = _f wO(X) dX’
2 0 2 l—z—lh
J
wp() = Y wlE (X) € S, (6.5)
i=0
W2(X) € Wh. (6.6)
an(ul, &) = (fl, H)n V& € S, 6.7)
= = v, ©9

where oy, — wy = Z]-J:Q L_ungj X) —w, € 3? and up —u, = ZjJ:o u?gj (X) —u, € Sﬂ Note that
(6.7) can be written exphcnly as;

W@ -’ ) =hu)—wh) Vje[lI-1] (6.9)
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where ' = %(UJ n) Adapting the semi-implicit upwinding scheme in [9] we arrive at the
following dlscretlzanon of (1.25)

At
wjn+1 — an + F ( Jn:_r%[fn]Jr + wn+l[fn]7 n+l[f 1]+ n+l[ fJn 1] ) (610)
fordl j € [1, J — 1], where fjn = f(qj”). From (1.32) we have

I <pdall, = L0 <wlal —alq,  O< flrsl,  [flr st <C, (611)

where f[r,s] = (f(s)— f(r))/(s—r)and f[r,s,t] = (f[s,t] — f[r, s])/(t —r) are, respectively,
the first and second divided differences of f. Finaly we set

wi=wj=w, Yn<O. (6.12)

From (6.9) and (6.11) we see that if (fj” - f”) 0, we have
0< (f! = fLp) < (el =y < uha=2(u] — wf) < pha=2u). (6.13)
LEMMA 6.1 Set A = max(||wﬁ||oo, Uy, wp). Thenforal h > 0and 0 < At < ﬁ , there existsa

unique sequence {wy, up}, which for uj} solves (6.7) for al n > 0 and wy, solves (6 10) forn > 1.
Also we have

0<w < max w' < A, (6.14)
j€[0,J]

0<uf < max u < A4, (6.15)
j€[0,J]

llupllz < C. (6.16)

forn > 0, where ||u||2 an(u, u) and C is a constant depending on the initial data wh and the
boundary data u, and w,.

Proof. We omit proving that if (6.14) holds for any n then there exists a unique uj} satisfying (6.15)
for that n, sinceit followsdirectly from the proof of Lemma2.2in[9]. We prove (6.14) by induction.
Firstly we rewrite (6.10) as

At At _
(1+ i - [f,-”1_>) Wit ST, ) ) =) (617)
which isasystem of equations of the form
Lulwpt™ = wh, (6.18)

where wp = (w-” Vi e[1,J—-1)T and L (up) isamatrix with diagonal elements Lj; > 1, and
off-diagonal elements Lik <O, foral j #k.Sinceljj — > ILjkl =1+ %(fj”_l - fj”), if
(fx f“)>OwehaveLJJ > kzj ILikl > 1. However, if (£, — f1) < 0, from (6.13) it
foIIowsthat since At < £, we have Atu||uf||o < 12 and thus the matrix L is strictly diagonally
dominant and thereforei nvertl ble, giving aunique solution wﬂ*l. We now prove (6.14) by induction.
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Trivialy the result holds if n = 0, now we assume the result holds for n and then prove it holds
for n + 1. Firstly we note that L is an M-matrix [21], and hence L(u[‘])*l has only non-negative
elements, thus from (6.18) it follows that

wl > 0= wltt>o0.

We now prove the second part of (6.14) by contradiction and suppose that there exists an integer
jo € [1, J — 1] such that

wtl = max w™ts max(wjo, Uy, ). (6.19)
lo je[t,d-1 !

Writing (6.17) using theindex jo gives
At
witt [1 -+ (o - fjg_l)] <wf, (6.20)

and hence if (fjg - fjgfl) < 0, then (6.14) holds. However, if (fjg - fjgfl) > 0, using (6.11) and
(6.20), we have that

n+1 rAL o n n n+1 prAt - n n n
o [1 ~Th o qiol)] S Wp = Wjo (1+ Sz Wi ~ o) ) swiee - (62D)

From (6.21) we see that if wj’:) > u?o, then we obtain a contradiction to (6.19). Thus it remains to
consider the case where
wi < ull (6.22)

jo jo”
Since uAAtA ™2 < 1,if w < ul | then (6.19) and (6.21) imply
wﬂ) > AAt(wj"O — ano) > A+ wjr:) - ano’
which contradicts ano < A. Thus (6.14) holds for n = n + 1 and by induction (6.14) holds for all
n>0.
To prove (6.16) we set x = up — u, in (6.10) and use (6.14) and (6.15) to obtain

an(up, up) = an(up, Uy) + (wp, up — Uyph < C

= |lupll3 = AZ/ |(URx|? dX + (UR, up)n = an(up, up) < C.
Q
This completes the proof. |
REMARK 6.1 For Lemma6.1 to hold we require

22 22

< . = (6.23)
pmax(||wyl[Le 2y, U,) 1A

and from here onwards we assume At satisfies (6.23).
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LEMMA 6.2 There exist constants C independent of h and At, suchthat foraln > 0
C
|f | < <3z (6.24)
|an+l qj | C
1 6.25
h <5z (6.25)
Proof. For the proof of thislemma see the proof of Lemma5.6 [9] |
LEMMA 6.3 Let0 <& < 242/u. Thenfor al At < 5, andn > 0, we have
J-1
En(Up™ = u) + (U — 54t _h (w2 + w2 ) < Enh —u),  (626)
j_
where

En(v) = 1/2||v]|2 = 1/2an(v, v).
Proof. Setting x = uf*™

— U, in (6.7), using (6.1) and noting that uy = uy = u, for al n
gives
ah(un-'rl uh’ urr:—i-l —u)= (wn+1 qu’ uR+l —Uuh
= At Z(w,”:ll[ 4+ w] TG~ uy)
- Z(wmrl[ filqle + w”“ﬁcn 1]7)(an+1 — Uy)
j=
= At Z(w;‘jll e+ w W —utfh
= At Z(w?ill[ £+ w W] — )
+At Z(w}‘jll [+ w ™ MM — i
—At Z(wjnill[ £ + w MW — ).
Setting ||[|2 = an(u — u,, U — u,) and rearranging gives
||un+l

13+ Naptt — apii (6.27)

< [lapl13 — 2hAt Z(w[‘ﬁ[ "4 + w M gl
i=
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AzAt
Z(wnill+wn+l)((un+l n+1) ( I u?+1))2

hsAt
Z( M2 4w E2). (6.28)

Noting that f; > 0 = g; > 0and f; <0 = ¢j < 0, from (6.28) we have

napt2 4+ o+t — anp2
< laf)2 - 2hAtZ(wI”jll 4 laM s + w0

AzAt N+l o ondlyontl  ntl NN 2
Z( wii +wthH M —uth — Wl —uf, )

heAt
Z< TS + ] )
) 2hAt =2
< 1I0Rlla = == 2 QoL + w1
j=0
Z(w,“ill +uwlthH (Ut - a1 —uf )2

hsAt
" S G )

Since
523-1

J
||aR1I13 = Z«u”“—u”“)—(u ul, )2+ > ha! — uy)? (6:29)
j=0
it follows that

2 J-1
a2 + - hAtY @2+ w2
j=0

2, [ 2wttt g+l ghy 2
< |Iuh||a+(% |G — aRlls.

Taking ¢ and At such that (— — )\2) > 0and (ZA% — 1) < 0givesthe reguired result. O
We omit the proof of the following lemma asit is essentially the same as the proof of Lemma

5.5in[9] with qjn replaced by fjn and can be found in [11].

LEMMA 6.4 There exists a constant C independent of h and At, such that

N
Z —||u“+1— ulj2 < cC. (6.30)
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LEMMA 6.5 Set A* > A to beaconstant. Then for all At < min(f A ) andal n > Owe
have

[BplTvioL] = Z|w,+l < Ci(ldplrvio) + COT* + ua™d(n+ HAt),  (631)

where
Cl — e(n+1)A*At.

Proof. From (6.10) weseethatforj=1,...,J -1

At
wf =+ = (W + w U = T — )
At
=wl+ ((wjnill —wHE A+ @ —w D ] )
At
~|—?wj”+1(fj” — ). (6.32)
Setting gj” = wj”Jrl - wj” givesthefollowingfor j =1,...,J -2

At
6=+ T (6T el + w (g — ) + €T — gL )
At At

n+1 n_ ¢n
v (=) -

n+1[ f 1]_

At At At
= <1+F[fln]+ [fn] > n+1_;§l Jnj»ll[f 1]+ n+1[fn 1]—

At
"‘_(wjn+1 w (fihy = )

At
W w RN =260 £ ). (6.33)

Using the divided difference notation of (6.11) we see that
fh—2f"+ 2 = flal 1, o'l@ — g — flal g 40@ —ap

=@ — g (fla 4. o1~ flq], a 4D
+fla’, g 41@ — 29" +ap)

= (an+1 - an) f [qj'n+1» an’ an—l] (an+1 - an_l)
+fla g 41@ — 29" +ap)

=h%\~ 4(U]+1 Jn+1)(u]n+1 - wjn+1 + (U? - w?)) f [qj'n+1» an’ an_1]
+hATA(Ry g —u) — ]y —wh) fla, gl 4]

=h* 4w, - j+1)2 flafy. o, o]
+h2)¥_4(UJ+1 jn+1)(ujn - wjn) f [an+l’ an7 an,l]
+h?2 2P gl o_g] — ha2EM f [, ). (6.34)
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Using (6.34) in (6.33) givesthefollowingfor j =1,...,J — 2,

At At At
<1+ F[fj”]_,_ - ?[fjn]— - F(fjrli-l - fin)) Ejn—i_l
= (- A2 [gl gPDE" + J”fll[f Ll
_at

h n+l[fn1] +Atk_2hwn+l nf[qJ q] ]_]

+At)»_4hwn+1(uj+1 wil, D —wh flaly 4, o’ 4]
+Atha Ml ) — wl' 2 a9l ol ]

From Lemma 6.1 and (6.11) we see that al the coefficients of & in the above equation are positive
and hencefor j =1, ..., J — 2we have

At At At
<l+ -4 - _[fjn]f - F(fjrli-l - fjn)) |§jn+l|
|€J | + _|%.Jn+l|[ f1+1]+ _ I’H—l'[f ] + Athk72WF+l|an| f [anv qul_l]

+Ath)»_4<(uj+1 jn+1) + |(Uj+1 - le)(an - wjn)|>| f [an+1» an’ an_1]|~

Summing the above inequality from j = 1to J — 2, using Lemma6.1 and (6.11), gives

J-2 J-2 At
(L= A8y <Y N+ D (Ié,—"flll[f Lol — 1R ] )
. £

j=1 j=1 i=

At J— J—2
2 (U4 = 1) + o+ uaat Y oh
J-2 J-2

=Y g+ CAT FurHALY
j=1 j=1

At
+ = (165705 ad s — 1677 )
+2 (IE3a — g ). (635
Using (6.12) and (6.32) we have
ot =gf+ T (S0P - )+ 8,
At
§n+l 55171_ . ( n+1[f 1]++wn+1(f .|:51 2) +§.n+l[f 2]_).
and from (6.11) it follows that

(1AMWWIw+—WWWh+HWWW7

+Cur 2 Atlwi T w] — ul)|
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(1- AADET < |sJ”_l|— ”+1|[fJ 2]_— [ S

h
Jr(:m—zAnw”“(wJ 1= Ul )l

The above definitions of 51| and |£]77| coupled with (6.35) and the fact that At < $=2, we
obtain

& < ( 5N+ COT 4 pur” )At)
) 1- A4t \ =

j=0

J-1
< (14 A*At) (Z &M +Ct + ;M_Z)At> ,

j=0
J-1 J-1
= Y <@+ AT a1 Y gl C Z(l + A*At)l At
j=0 j=0 j=0
J-1
<@+ A*AD™EY EY + (n+ DA+ A*AY™COT 4 P At
j=0

J-1

j=0 j=0
and the result follows. O

LEMMA 6.6 There exists aconstant C independent of h and At, such that
ptt = dfllLaoL, = Z hlw™ —wl| <CO™* +pra™?)at  vn>0, (6.36)

gt -l <Cat  Vje[0,J-1, n>0. (6.37)

Proof. We omit the proof of (6.36) asit is a straightforward generalization of the proof of Lemma
5.8in[9]. To prove (6.37) weset & = un+l — up in(6.7) to obtain

n+1 n+1 n ~n+1 ~n n+1 n
an(up™ —up, uptt —up) = @p Tt — @, uptt — upn

noting that in one dimension and || - [|oo < C|| - || 41, we have

n+1 ~ n+l

A 1
|lup — Wil llUp ™™ — URllLes(2)
1 ~ A
hTt — upllLee) < Clloy aptt — Wyl 1) (6.38)

n+1

_uh”a\”
= [luy

Replacing qJ with g qjn in the proof of Lemma5.6 in [9] we obtain

J-1 k
J(qn+l an) - _ Z Z h(uin-i-l _ uin _ win-i-l + wln)

k=j+1i=]11

=

j
+ Z hM —ul — w4 wh)
O0i=k+1

x
I
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J J
= gt =gl <2)_hutt—ul|+ 2 Mt -], (6.39)
i=1 i=1
Using (6.36), (6.38) and (6.39) gives the required result. O

Before we prove the main result of this section we introduce some notation and two useful
lemmas.
Let g" € X, for afunction space X where g" might be a finite element function. We define,

gat(t) :=g" t € [nAt, (n+ 1) At), (6.40)
gL ® =g"  te(nat, (n+DAt]. (6.41)

THEOREM 6.1 There exists functions {w,u} e C([0, T]; L1(£2)) N L=, T; BV(R2)) x
C([0, T]; H1(£2)) and subsequences such that

Un.at — U strongly in L2([0, T]; H(£2)), (6.42)
f((Un.at)x) — f(Ux)  strongly in L2([0, T]; L2(2)), (6.43)
f/((un.a)x) = f'(ux)  strongly in L*([0, T]: L%(£2)). (6.44)

Wh, At (1) = w(t) weakly in L?(£2,), (6.45)

Whoat = w strongly in L1(£2,), (6.46)

where in, at (t) —w, = Wh—w, € WP and up_at(t) —u, = ul —u, € S foral t € [nAt, (n+1)At)
and {w, u} isthe unique solution of (1.39), (1.40) and (1.41).

Proof. Using (6.11), (6.14), (6.16), (6.30) and (6.36) and applying the techniques used in the
proof of Lemma 6.1 [9] we obtain (6.42)—(6.46). Furthermore, proving that {w, u} satisfies (1.39)
and (1.40) follows using a straightforward generalization of the proof of Theorem 6.1 in [9]. We
now prove that {w, u} satisfies the entropy inequality (1.41). To this end we note that for any
¢ € C%°(£2;), the mesh functions ¢n_at (t) and 8t (¢n, at) (t) defined on [0, T) by

dn.at () =7 (@ (nAL)) = ¢, Yt e [nAt, (n+ 1)At)
St(pha)) = (T — ¢f)/At, Vit e[nAt, (n+1)At)

have the approximation properties

t=naAt, #M¢t) - ¢(t) stronglyin H§(Q)
bhoat = ¢ strongly in L2(0, T; Hi(£2)) (6.47)
St(¢h.at) = ¢ strongly in L2(0, T; Hg (£2)).

Rewriting (6.10) gives

1 1 1 H
h! — w) = —At (wj!’jil £ — Wity fj“_l) Vielld-1, (6.48)

where

_ j+1
jii+1 whtt if fM<o0.

n+1 ; n
hal { w if fj >0,
J
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Multiplying (6.48) by (w”Jrl — w,), noting that 2(a — b)a = (a — b)? 4 a? — b? and applying some
algebraic manipulations, g|vesthefollovv|ng foral j e [1,J —1]

h (]t = w)? = @l = w)?) < @ = w2 + @] = )2
—@t = w)?[ 4] — @ — w4
+2atw @ —w) (" = 1)
— At —w)? (1 = £ ).

Noting that le -” = f[qj“+1, an](an+1 - qj”), multiplying the above inequality by njf‘ (where
n = ni(NAt) and n € C(&2y), with n§ # 0,7 # 0,n? = »'~* = Ofordl j € [0, J]) and
summing from j = 1to J — 1 gives

J-1
Y h(@ = wy)— ] — w,)?)n!
j=1

< Atz(mpﬁ—wb) [ = @t = w)?[671-) (o =)

At (5 = w154 — 5 = w)[F4]-) o5

— At ((wn+1 _ wb)Z[ f0]+ _ (wn+1 _ wb)Z[ f(?]—) 778

-1
+2hAt Z(u i —w)n? faf', g 4] (6.49)
j=1
J-1
—haAt Y "l — wh ™ — w,)?nf fal', g 4]. (6.50)
j=1

Since wj = w'} = w, using some simple algebraic manipulations, and noting that wy, up and f.!
are bounded in L*°(£2), we have

J-1
> h ((w,-”+1 — w,)? —(w] - wb)2> )
i=

-1
((w,”ill — w2+ @ = w)?) 10N = )

—
t_.

A

g_
2

I
o

( wii —wy)? — ] —w)A (M4 — [f,-”lf) o =y

N||>
||M"

J—
+Mt2(2w"+l<w”+1 wy) — (Wi —wy)?) W — wh f[a", g 4]0
i=

_at
Z((w,"ill —wy)? + W] —w)?) @ — )
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J-1
+At Y " hw i —wy) — @] — w)?) W] — wf) fa, g 410
j=1

At J-1
+5 D@ = w (T + w)) = 20 (T = [T 0] — )
j=0

J-1
<, 0((wj”ill —wy)? + W]t —w)?) @ — )
=
J-1
+AtY - h@w ™t —w) — @] — w)?) ] —w]) flaf', of_yln)
j=1

J-1
+CAt Z |wjnill - wjn||17]-n - njn+1|.
=0
Since f[gj, gj—1] = (f(qj) — f(Qj-1))/(qj — gj—1) We set
1, h
f[an’ an_1] = f/(an) + > f /(5)(an_1 — an) = f/(an) + 5 f//(f)(wjn - an),

where§ € (anfl, qj”), and from the boundedness of f” we conclude that

J-1
h (o]t w)? =l = w)?) o
=
1
< /0 = )2 £ (U0 ()

+ (1) Wh = wh @l it = w) — (@i = w)?), 1)

J-1
—CAt Y " hw @Mt — wy) — @ — wy)? | — wf)?
j=1

J-1
n+1 ny..Nn n
+Cat X(:) s — willn = nfly4l.
J:

Summing the above inequality fromn = Oton = N — 1 and noting that n? = 5 = 0 for all
j €0, J] and that |r;j”Jrl - nj”| < Ch (since n € C*®(£2;)) we have

]
- f (wi s O B an)
0

T 1
<- /O /O (Wi 41 © — w2 (Un s0x (D) Gl ax(D) ot

.
+2 /O (F/(Un a0x )i 4 O 40O = W) Un s ®) = wh, 4 ©), 702 ®),
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.
- /(; (f/((Uh,At)x(t))(wﬁAt(t) — wy)2(Un, at (1) — wh At (1)), 7, at (t))h dt

N-1J-1

+Ch+Chat > > " jwlft — wn! — 4. (6.51)
n=0 j=1

Noting that n € C*°(£2,) it follows that nn 4t and ’7;1, At» Stisfy the convergence properties (6.47),
thus letting h and At tend to zero in (6.51) and using the strong convergence propertiesof f (Un_at),
f/(uh,At); Wh, At, h, At @d 8t at, (6.42), (6.46) and (6.47), we obtain (1.41). Thus {w, u} satisfies
(1.41) and from this, [20], we can conclude that w also satisfies w = w, on al inflow boundary
sections and hence {w, u} isthe unique solution of (1.39), (1.40) and (1.41). It also follows that the
whole sequences un, 4t and wn, at converge. O

7. Steady-state solutions of the discretization

Throughout this section we denote the steady-state solutions of wn at and un at by wn and G,
respectively.

LEMMA 7.1 All points {tn, Gn} € L>®(£2) x H1(£2) of the w-limit set:
w(wd) = {(ih, Gn) € W x Sy : 3{ni) St wpk — dn, Up — {h asng — oo},

are steady-state solutions which satisfy

ol 12 +w[fi12=0 Vjel0oJ-1], (7.1)
226 — Gj—1) = Tj — VijellJd-1], (7.2)

and
lo =10y =u,, (7.3)

wheredj = U1 and " = £(q)).

Proof. From Lemma 6.1 it follows that there exist functions {wn, Gn} and a sequence ni, such that
asng — oo
wp — wp and  upt — 0, (7.4)

and hencea)(wﬁ) is hon-empty. Summing (6.26) fromn = 0to N — 1 we have
N-1 J-1
En(u = U) + (Ui = 5) > Aty (wf T3 + w ™[ 12) < Enuf - u),
n=0 j:O

Since uy isthe interpolant of u® e H1(£2) and the discrete L2-norm is equivalent to the L2-norm,
it follows that
N-1 J-1

Yoaty (wj”jll[ 12 + wMy fj”]z,) <C. (7.5)

n=0 j=0
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Since (7.5) holdsfor al N > 0 it follows that

lim (w12 + w1 112) =0, (7.6)

Nkg— 00 j+1

and from (6.10) and (7.6) we can conclude that

i e+l _ Nk _ =,
n;!ﬂ;noo Y - n;!u;noo Wi = Wi (7.7)
Since (6.9) and (6.12) hold for al n > 0, from (7.7) we can conclude that {iwn, G} is asteady-state
solution satisfying (7.1)—(7.3). O

8. Numerical computations

In this section we display some one- and two-dimensional computations obtained using the
numerical scheme (6.7)—«6.12) with f (r) := sgn (r)[|r | — Jp]+, and an equivalent two-dimensional
scheme for auniform right-angled triangular mesh. We note that although this choice of f coincides
with the pinning function defined in [4], it does not satisfy (6.11). However, the numerical results
produced using this value of f are consistent with results obtained using ‘ smoother’ versions of f.
For the one-dimensional results we set 2 = (0, 1) and h = 0.01, while for the two-dimensional
results we set 2 = (0,1) x (0.1) and h = 0.01, with At satisfying (6.23) in both cases. We
begin with a brief description of the two-dimensional scheme followed by an introduction to the
computational results displayed.

Two-dimensional numerical scheme

We now define a numerical approximation of the two-dimensional mode! (1.15)—(1.19), with J, =
Jnand w(x,t) = w, for al (x,t) € 9£2;. We discretize (1.16) and (1.18) using a standard finite
element approximation,

an(Ul, )=l h VxeS, Vn=0, (8.1)

u—u,es, vn=>0, (8.2)

and we discretize (1.15) using a semi-implicit upwinding finite volume scheme [14]. To implement
the finite volume scheme we first create a dual mesh by perpendicularly bisecting each edge of
our triangulation, giving rise to dual cells denoted by V; associated to each node x; of the original
triangulation. To approximate (1.15) we integrate it over each interior dual cell Vj = Vj1 U Vj2 U
Vj3UVj4 U Vjs5U Vjs (seeFig. 1), to obtain

3
/wtdx=/ V-(wV)dX:/ wv~ndS:—/ wi(vu) X ds, 83)
\/ Vi v, 3V an

Substituting wn, € Wh and up € §, for w and u in (8.3) we have

d
/ (wp)r dX = —/ wh(f(|Vuh|)% ds. 8.4)
Vj V] n
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k4

k3 k2

Fic. 1. Dua mesh.

Setting

A=0Vj1 N0V, B =9dVj2 N dVii, C=0Vj2NoVie,
D =0Vj3NoVke, E =0Vj3 N dVks, F =0VjaNoVs,
G =0Vja N Vs, H = 0Vjs N 9 Vka, I =0Vj5N dVgs,
J =09Vjs N dVks, K = 9dVjg N 9Vie, L =0Vj1 N 0Vie,

(8.5)

where Vj1, Vj, etc are defined in Fig. 1, and denoting the lengths of A throughto L, by A’ through
to L’, and the length of the edge joining nodes j and k by hjkx we have

Jare G dS= (A + B)(up, — u)/hjk, Jeip fndS=(C'+D)(up, - u)/ ik,
Err gndS=(E'+ F)(Ups —uM/hjk,  [o n 57 dS=(G' + H)(up, —uM/hjk, (86)
Jivs o it dS=(I"+ J')(ugs — un)/th» Jean au dS = (K" + A) (ugg — u)/ hjk.

We approximate fv wt dx with a time difference by ¢ (w”Jrl n) and we use an upwinding

scheme to apprOX|mate w in the right-hand side of (8.4), smce f(|Vu|) Oforal x € £2 we
set our approximate value of w to depend on the sign of on each section of 3Vj; yielding the
following for all n > 1 and all interior nodes |

m; (w] ™ —w) /At =
(FCADA + (BB (wpf [upy — uM]y + wup; —uM]-)/hik
+(F(C)C' + f(Dj) D) (wiz [u, — uM]+ +w”+1[uk2—u“)] )/ hjk
H(F(EDE + F(FDF) (wid ul; — ”>]++w”+1[uk3— uh] )/ hjk
+(F(G)G' + f(H)H)wpg ug, —udly + w”“[uk4 — u")] )/ hijk
+(EAP + (I )(w’k‘g-,”[ukg,—u”>]++w”+ [ups — uM]-)/ hi
+(FKPK + f(ADA) (wpd Hups — uM] + w”+1[uk6 —uM]-)/ hjk,
where f(Aj) = f(|Vun|) evaluated on the edge A, f(Bj) = f(|Vun|) evaluated on the edge B,

€etc.
We set w = w, foral n > 1 and all boundary nodes j.
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One-dimensional computations

The one-dimensional results are displayed in Figs 2-9, in which plots of wp(t) (bold line) and up (t)
(dashed line) are displayed together on one plot, at various timest. Figures 2-9 can be divided up
into four sets, thefirst set, Figs 2 and 3, show the evolution of wy, and uy, from some given initial data
(top left-hand subplots) to their steady states wy and Gy, (bottom right-hand subplots). The second
set of results, Figs 4 and 5, each contain six subplots showing the steady states wy, and Gy, obtained
using the sameinitial data but different valuesof J, = J,. Thetop left-hand subplotsin Figs4 and 5
show wp, and Gy obtained by taking Jp = Jn sufficiently large so that all the vorticity is pinned and
no vorticity enters the domain, thus in fact these top left-hand subplots are plots of the initial data
from which the remaining five steady states have evolved. At the top of each subplot are the values
of Jp and J, that were used and the time taken for the steady state to be reached. In Figs 2-5 we
set A = 0.1, whilein Figs 6 and 7 we display steady-state solutions obtained using varying values
of 1. The top left-hand subplot shows the initial data wp(0) and u,(0) while the three remaining
plots show steady states obtained from this data using the same values of J, = Jn, U, and w, but
different values of A.

The fourth set of figures, Figs 8 and 9, show the following results; the top left-hand subplot
displays the steady-state solution, obtained using no initial vorticity and the value of u, displayed
above the subplot, the top middle subpl ot depicts the steady-state sol ution obtained using the steady-
state solution of the previous subplot as initial data and a different value of u,. Similarly, the
remaining subplots (with the exception of the bottom right-hand subplot) are steady-state solutions
obtained using varying u,’s and the subplot on their left (or on the subplot on the end of the
row above) as initial data. The bottom right-hand subplot displays the results of the previous four
subplots together in one subplot.

Two-dimensional computations

The two-dimensional results, Figs 10-17, are displayed in much the same format as the first four
one-dimensional figures, except that this time we display contour plots of wy and up, in separate
figures which we group together on the same page. The first four two-dimensiona figures, Figs 10—
13, show the evolution of initial datato their steady state, while the remaining figures, Figs 14-17,
show the steady-state solutions wp and 0y obtained using various values of J, = Jyn. In al the
two-dimensional results we havetaken A = 0.1.

Discussion of the numerical results

Figures 2, 4, 10, 11, 14 and 15 display results obtained for superconducting samples in which flux
pinning of vorticity occurs, but no vorticity is nucleated at the boundary (i.e. samples in which J,
is very large). From these figures we see that the minimum vaue of the magnitude of the current
J = |ux| (whichisin fact J = Q) occurs at the centre of the initial blocks of vorticity and as
a result the vorticity remains pinned to this site throughout the computation, while the vorticity
situated away from the centre of the block spreads out either side of the block. Clearly the greater
the value of the critical pinning current J,, the less the vorticity is free to move and the less spread
out the block becomes.

Figures 3, 5, 12, 13, 16 and 17 display results obtained for superconducting samples initially
containing no flux lines. Vorticity enters by nucleation at the boundary and we take the critical
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nucleation current J, to be equal to the critical pinning current Jp. From these figures we see that
the vorticity enters the domain at the boundary and then spreads towards the centre of the domain.
Furthermore, the smaller the value of J, = Jp used, the more vorticity enters the domain and
the further to the centre of the domain it spreads. From Figs 12 and 16 we see that the flux lines
are constricted along the diagonals of the rectangular cross-section, this effect is due to the finite
penetration depth A.

In Figs 6 and 7 we see the effects of varying values of A. In particular, we note two things,
firstly, the absolute value of the gradient of the magnetic field, |ux| = J increases and secondly, the
difference between the vorticity and the magnetic field within the sample decreases. In Fig. 6 we see
the effects that occur when the value of J isincreased in samples in which no vorticity is nucleated
at the boundary, but in which there are pinning sites (i.e. samples in which the nucleation current
Jn is very large); there become more places in which J exceed the critical pinning current J, and
as aresult, fewer places where the vorticity is pinned, resulting in the vorticity spreading out more
in the domain. Similarly, in Fig. 7 we see the effects that occur when the value of J isincreased in
samples in which vorticity is nucleated at the boundary and then pinned in the domain; eventually
J exceeds the critical nucleation current J,, at the boundary and enters the domain, where at certain
placesit is pinned.

Figures 8 and 9 are presented to enable comparisons between solutions of Bean’s model and the
mean field model with A small. Comparing the results in Figs 8 and 9 to the critical state Bean's
model solutions described for example in [3] we see that solutions of the two models compare
favourably. We note that for an increasing applied magnetic field at the boundary, the Bean magnetic
field or the vorticity, satisfies

u = max(u, — Jpdist (x, 3£2), 0).

9. Conclusion

In this paper we give a precise formulation of avortex density model incorporating flux pinning and
vortex nucleation at the boundary. We note that the nucleation condition (1.12) was only postulated
by Chapman in [4] asanatural choice and was not derived from say the Ginzburg—L andau equations.
We show that the problem has a unique solution in one space dimension and we derive a numerical
scheme which we show to be convergent. We present some numerical simulations obtained using
this scheme with non-zero A and a non-extreme pinning function f, whereas numerical studiesin
the physicsliterature are related to non-linear diffusion equations (i.e. .. = 0) or the classical Bean's
model.

This work may be regarded as one of the initia steps in the rigorous mathematical study of
vortex density models. Further work in this area could include investigating some of the following;

o the well posedness of the free boundary problem for the motion of aline vortex

o the convergence of the Ginzburg—L andau equations to the aforementioned free boundary line
vortex problem

e rigorous mathematical analysis of the well posedness of vortex density models in three
dimensions

e convergence of the averaging procedure for the motion of line vortices to vortex density
models
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e various asymptotic limits for the vortex density models giving a chain that rigorously links
Bean’s model to the Ginzburg-L andau equations, for example, in cylindrical geometries with
parallel or transverse applied magnetic field.

Finaly, a Bean's model suitable for three dimensions might be obtained via a limit of a suitable
vortex density model in three dimensions.
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