Interfaces and Free Boundaries 2, (2000) 21-72

A free boundary problem involving a cusp: breakthrough of salt water
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In this paper we study a two-phase free boundary problem describing the stationary flow of fresh
and salt water in a porous medium, when both fluids are drawn into a well. For given discharges at
the well (Q¢ for fresh water ands for salt water) we formulate the problem in terms of the stream
function in an axial symmetric flow domain " (n = 2, 3). We prove the existence of a continuous
free boundary which ends up in the well, located on the central axis. Moreover, we show that the free
boundary has a tangent at the well and approaches iCih sense. Using the method of separation

of variables we also give a result concerning the asymptotic behaviour of the free boundary at the
well. For a given total discharg® := Qs + Qs) we consider the vanishin@s limit. We show that

a free boundary arises with a cusp at the central axis, having a positive distance from the well. This
work is a continuation of [5, 6].

Keywords: Porous media flow; free boundary problem.

1. Introduction

In two previous papers [5, 6], we studied a free boundary problem that results from a model
describing the withdrawal of fluid from a reservoir. In that model we considered the stationary flow
of two incompressible fluids through a homogeneous and isotropic porous medium (the reservoir).
The fluids have constant but different densities and are assumed to be separated by an abrupt
transition,an interface. In the reservoir one or more wells are present to recover one of the fluids.
Such models are relevant, for instance, when designing freshwater reservoirs in coastal regions.
Then fresh water overlays salt water from the sea.

When we think of a horizontal interface in the absence of the wells, we will observe an upconed
interface after applying the wells to the fluid on top, see Fig. 1, where a reservoir with only one well
is shown.

Assuming only horizontal flow along the vertical boundaries of the reservoir, with a fixed and
prescribed position of the interfaceg], a stationary flow and a stationary interface may result for
which the fluid below is stagnant. The fluid on top is drawn into the wells. This case is studied in
detail in [5]. It leads to an elliptic free boundary problem involving a param@texhich is related
to the withdrawal rate or discharge of the wells. It was shown that a criticalQate> 0 exists
such that forQ < Q¢ the interface can be represented by an analytic function of the horizontal
coordinates. Moreover, the height of the interface increases whenever the rate incre&@3es. At
Qcr acusp develops in the interface, being still at a positive distance from the well, see Fig. 2. These
results were proven for flows iR", n > 2.
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FIG. 1. Smooth upconed interface, Q < Qcr.
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FIG. 2. Interface with cusp, Q = Qcr -

In the second work [6], we analysed in detail the local behaviour near the cusp. This was
performed for the two-dimensional case (n = 2) only. Applying our local resultsto a configuration
with one well, asin Fig. 2, we obtain for points (X, z) on the interface (x horizontal, z vertical) near

the cusp (Xo, 20)
. [X — Xol
lemxo (zo — 2)3/2 =C
for some constant C > O.

Keeping the reservoir dimensions (H and R) and all physical parameters fixed, the value of the
critical rate Q¢ only depends on h — ug, where h denotes the distance between the well and the
bottom of the reservoir. We conjecture that Q¢ = Qgr (h — Ug) is continuous and strictly increasing
with Q¢ (0) = 0.

Instead of considering the critical cusp case as the limit of subcritical cases, all having smooth
interfaces with stagnant salt water bel ow, we proposein this paper adifferent stategy. In this strategy
we let the salt water move as well and we characterize the cusp case as the limit of vanishing flow
in the saltwater region.

Thus we first need to address the problem of what happens when the salt water also moves
towards the well. We expect afluid distribution asin Fig. 4.

The main result of this paper is that there are stationary solutions of this type. We study these



A FREE BOUNDARY PROBLEM INVOLVING A CUSP 23

QCI‘

h—UO

0

FIG. 3. Sketch of the behaviour of Qcr; the shape of the curve is unknown.
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FiG. 4. Salt water moves towards the well.

solutions for axial symmetric flows (n = 2, 3), with only one well on the central axis. This alows
usto formulate the problem in terms of a stream function, asin [2] or [4].

In Section 2 we present the weak formul ation for the flow problem in abounded, axial symmetric
reservoir of constant thickness. Now the formulation involves two parameters. Qs (outflow of salt
water at the well) and Q¢ (outflow of fresh water at the well), or rather Qs and Q := Qs + Qs
(total outflow at the well). As aresult of this formulation we are able to prove that a weak solution
exists (Section 3). In Section 4 we show that the interface is a continuous curve in the z-direction.
Onthe axisit ends up in the well W and on the lateral boundary in awell-defined point (R, us).

In Sections 5 and 6 we consider the free boundary near the well. First, we show in Section 5 that
the free boundary has atangent at W and approachesit in a C-sense. The tangent direction is given
by the angle

ZM forn=2,
2 Qs+ Qf
Wy =
: Qs—Qf
acsin ————  forn=3,
Qs+ Qs

with respect to the horizontal plane. Note that w, only depends on the discharge at the well and
does not involve density (gravity) effects. The asympotic behaviour at W is studied in Section 6.



24 H. W. ALT AND C. J. VAN DUIJN

Introducing polar coordinates and writing, for free boundary points (r, 2),
r+i@z—h)=ete®,

we give by means of the method of separation of variables an estimate for the rate of convergence
(see Theorem 6.7)
w(S) = wy 8SS | —00.

Concerning the vanishing Qs limit we only have a partial result. In Section 7 we show that if Q
is sufficiently small, depending only on the reservoir dimensions and the position of the well, then
Qs \\ Oresultsin aninterface with acusp at the origin, having a positive distance from thewell, and
with stagnant fluid below it. For larger values of Q we have no precise mathematical results when
taking this limit. However, we conjecture the following behaviour: if Q < Q¢ (h), see Fig. 3, then
Qs \\ O resultsin a decreasing sequence of interfaces, converging to a cusped interface satisfying
Qcr (h —ug) = Q, whereug = QIir\rj0 Us. Only for Q < Q¢ (h) isthisrigorously demonstrated.

If Q > Q¢ (h), then Qs \, 0 results in a decreasing sequence of interfaces converging to a
cusped interface which partly coincides with the horizontal bottom of the reservoir, see Fig. 5.
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FIG. 5. Conjectured interface for Q > Qg (h).

In the two-dimensional setting such interfaces have been constructed explicitly using hodograph
techniques, for example, see [12].

2. Formulation of the problem

L et the reservoir occupy the bounded, axial-symmetric region
Q2= {(xl,...,xn): X244+ Xx2 <R, 0< Xy < H},

with n = 2, 3 describing the physical cases. It is saturated by either fresh water or salt water, which
are macroscopically separated by an interface S. We a so write

Q2 = ¢ USU s,

where 25 and £2s denote the regions filled up by the fresh and salt groundwater, see Fig. 6.
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FIG.6. Axial symmetric reservoir.

At the central axis, awell W is located at a distance h € ]0, H[ above the horizontal plane
{xn = 0}. We will study the case where both fresh and salt water are being extracted from the
reservoir through W. Let Q; > 0 denote the discharge of fresh water and Qs > 0 the discharge
of sat water. Then Q := Qs + Qg is the total production rate of fluid from the reservoir. Each
fluid has a constant specific weight y;, with 0 < y5 < ys < oo and the fluid—medium interaction is
characterized by a constant mobility A > 0. The model is described by Darcy’s law

g+Ar(gradp+ye) =0

and the fluid balance equation
divg = —Q dw

in 2, wherey =y in 2 and y = ys in 2s. In these equations, g denotes the specific discharge,
p the pressure, e, the unit vector in the positive x,-direction (against the direction of gravity) and
Sw the Dirac distribution at the point W. Along the upper and lower boundary of £2 we require a
no-flow condition, expressed by

g-e,=0 on {x, =0} U {xy,=H}.
Along the cylindrical, lateral boundary we assume horizontal flow, i.e.
gisnormal at {x{ +--- + xZ_; = R?}.

Because of the cylindrical form of the reservoir and the central location of the well, we expect axial
symmetry of the unknowns. Thus introducing

r=xX+.--+x2, ad z=X,

we consider p, q and y to be functions of these variables. We obtain in the two-dimensional domain
2={r,2:0<r <R, 0<z<H}

Darcy’slaw again
q+Ar(Vp+ye) =0, 2.1
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1
wherenow q = gy & +0z€&z, Withg = r_(xl’ ..., X%Xn—1,0)ande, = (0,...,0,1),and V = (5, 9).
Thefluid balance equation in £2 becomes

1
rn-2 o (r n_qu) + 0,0, = 0.

The latter equation suggests the introduction of a stream function ¢ : £2 — R satisfying

q=<_rni_2 321/f»rni_23r1/f)~ (2.2
At thispoint wefirst introduce dimensionlessvariables. Let I' = A(ys—yi). Thenwenormalize
Y i=v/("'H"?); Q, Qs and Qf similar
Y= —v0)/(vs—vt)

r=r/H;z H, Rand h similar.

An equation for ¢ results by taking the two-dimensional curl of Darcy’s law (2.1) and by
substituting (2.2) into the result, see also [2] or [4]. Thisyields

1 .
V'<rn2 Vw+ye(>=0 in £, (2.3
with
0 in £4,
y:
1 in £,

where £2; and $2s now denote the subregions of 2 filled up by fresh and salt water, see Fig. 7.

1 7/):Q}

Fi1G. 7. Boundary conditions for .

Because the top and bottom of the reservoir areimpervious, the stream function must be constant
there. The same is true on the symmetry axis, except, of course, at the location (0O, h) of the well,
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wherefluid is being extracted from the reservoir. There the stream function exhibitsajump Q. With
reference to Fig. 7 we take
v =0 dong AOW

and
v =Q adong BCW.

The assumption of only horizontal flow along the lateral boundary requires
oy =0 aong AB.

For future reference, we denote the boundary of 2 by 92, the part AOCB by dp £2 and the part
AB by an £2. Because the interface is stationary, v must be constant there as well. To ensure that
the prescribed saltwater discharge Qs is being extracted from the reservoir we take

¥ = Qs aong the fresh—salt interface.
Now considering (2.3) in £2¢ and £2s, we expect to find, by the strong maximum principle,
O<y¢y <Qs in £

and
Qs<¥ <Q in £5.

Therefore we write
y=1-HW —-Qs) in £,

where H (-) denotes the Heaviside graph
1 fors >0,
H(s) =13 [0,1] fors=0,
0 fors < 0.

We expect certain smoothness (at least Lipschitz continuity) away from the location of the well. To
capture the singular behaviour of y there, we consider the function o which correspondstoy =0
ing2:i.e itsaisfies

1 .
V- (rnZ V¢0> =0 in (2.4)
and the y-boundary conditions on 92.

LEMMA 2.1 There exists exactly one such v, smooth (at least C*) away from W, with 9,y > 0
in £2. Near W it satisfies
Yo = VY« + smooth terms,

9(Earctanz_hjtl> for n=2,
2\« r

Q z—h
2 ((r2+ (z—h)2)1/2 +1> for n= 3.

where

U (r, 2) =
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Proof. We give the proof only for n = 3. It uses the pressure formulation in the three-dimensional
domain £2. Let g be the weak solution of the problem

Afo=2nQsw ing2,
9;00=0 on top and bottom of £2,

fo =0 on lateral side of £2.

By standard elliptic theory, e.g. see[9], there exists aunique pg which is smooth outside W. Clearly
Po is axially symmetric. Therefore, writing x = (X1, X2, X3),

Po(X) = po(r,z), with(r,2z) € 2.
The function pg is smooth inside 2 where it satisfies the equation

8!’ (r ar pO) + BZ(I’ 32 po) = 0

Since £2 is simply connected, this implies the existence of a unique (up to an additive constant)
function yg : 2\W — R which satisfies

1 1
9zpo = —r—ar Yo and 3 po= Fazl//0~ (2.5

One easily verifies that Yo solves (2.4) in £2, that ¥ is piecewise constant on dp §2 (except at W)
and that oy o = 0 on dn £2. To show that g jumps with Q at W we integrate the three-dimensional
equation for Pg over a small cylindrical neighbourhood of W. For ¢, 8 > 0 and sufficiently small,
let

Ct = {X:(Xl,Xz,Xs)Z X2 +x% <&, |x3— h| <5}.

Then

2rQ= [ gradpo-v
aCe
h+3§
=27T/83r Po(e, 2)dz + / {0zPo(X1, X2, 8) — 3z Po(X1, X2, —8)} dxq dXo.

h—§
{ /x§+x§<s}

In thefirst integral we replace the integrand by d,v0(e, 2).
Then for § fixed and ¢ \, O we find

Q = v0(0,h +8) — ¥o(0, h —9),

which shows that o indeed satisfies the correct jump condition at W. The proof concerning the
z-monotonicity of g in £2 follows as a specia case of the proof of Proposition 3.4. (i.e. without
gravity). It will therefore not be given here.
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The asymptotic expressions follow from the observation that near W, pg can be written as
Po(X) = —27Q F(x — W) + smooth terms,

where F isthe fundamental solution of —A with respect to the origin. Consequently, near W,

N Q x—-W
== h
grad Po(x) = - X WP + smooth terms
or o
Vpo(r,z) = 27+ Z—h2? (re + (z—h)e;) + smooth terms.

Finally, we use relations (2.5) and obtain
Vo = ¥ + smooth terms near W,
with ¢, asinthe assertion. O
Using ¥o we introduce the following weak formulation. Let
V= {; € HY2(Q): ¢ = 0indp2 andr 7" V¢ € LZ(Q;RZ)}.

Findy € Yo+ V, y € Lo(2) and yn € L®(dn$2) such that

1
/W'{rn_z V(w—wo)+ya}= f YN (%)
2

oN §2

foral¢ e V,and
{yel—H(w—Qs) in £,
(xx)

yN€1l—H@ — Qs) in onS2.

ReEMARK. If the value of y would exist at dn £2, and coincide with yy, then the weak formulation
(at least formally) implies oy (¥ — o) = 0 a dn£2. Since oo = 0 along dn$2, this gives the
desired boundary condition for .

3. Existence of weak solution

LEMMA 3.1 Thereexistsat least one weak solution {/, y, yn 1.

Proof. In the equation for ¥ we introduce an e-regularization with respect to y and, based on the
function v in Section 2, an e-regularization with respect to the term 1/r"=2 in the differential
equation, the Dirichlet condition on the axis, and due to the special construction below also with
respect to the domain.
The perturbed domain is
2::=]0,R—¢[ x 10, 1]

and the perturbed function
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is defined by the shift i
Yo (r,2) = Yo +e,2) for(r,2) e $2,.

Each function g . isasmooth solution of the perturbed equation

1 .
v(WV‘[/O’g):O n ‘Qé‘

and satisfies the boundary conditions, see Fig. 8,
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FiG. 8. Shifted domain £2;.
Yo.e =0 on OA,, Yor.=Q on B.C
BC.{ &vo =0 on AB;
Yo, = Yo(e,-) on OC,

where yo(e, -) satisfies: yo(e, 0) = 0, Yo(e, 1) = Q, 9z¢o(e, -) > 0and Yo(e, 2) — Yo(0, 2) as
&\ 0 pointwisefor z # h (with y9(0, -) = 0 on OW and ¢¢(0, -) = Q on WC), seeLemma 2.1.
Next weturn to the e-regularization for 1, which we define through the problems (for any small
e > 0)
1
Vi [——sV 1-H — =0 in @
o ((r o2 VY- H Qs)>a) in £,
Y satisfies BC,,

where H, isasmooth monotone approximation of the Heaviside graph. Asfor instancein [1] or [7],
Problem P, has a unique smooth solution .. We first show that Problem P, satisfies a comparison
principle. |

PrROPOSITION 3.2 Let v and v be two solutions of the .-equation satisfying y1 < 2 on
ap 2. and oy (Y1 — ¥2) = 00on dNS2.. Then

Y1 < Y2 in £2,.
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Proof. The proof isamodification of the proof of [11: Theorem 1]. There he tests the equation for
the difference 1 — 2 with the function (for § > 0)

g:HLw withw = (Y1 — 2 — 6)4.

Following this procedure we arrive at the identity

1 Vw|? 9
3/ [Vl +6/(H2—H1) e

r + )2 (8§ +w)? (8 + w)?
{Y1—v228} {Y1—v2268}
w
Hi— H =0,
+ / (H1 2) St w

{Yy1—v228}N{r=R—e¢}

where we used the notation H; = H. (i — Qs). Thefirst and second term are asin [11] and can be
treated similarly. The third term is non-negative, by the monotonicity of H,, and can therefore be
disregarded from the estimates. Proceeding asin [11] resultsin ¥1 < ¥2in £2. |

COROLLARY 3.3 0< ¥, < Qing2,.
Proof. Since constants satisfy the equation, these inequalities follow from BC,. |
Returning to the existence proof we introduce the difference
Ve 1= Ye — Yo IN 2,

which satisfies the equation, with h, := H.(ve + Y0, — Qs),

1 .

and the homogeneous boundary conditions
Velope, =0 and  drvglyye, =0.
Multiplying the equation by v, and integrating over £2. gives
! 2 h h
mwvd =— [ (A—hg)drve + (1 —he)ve.
2 2 {r=R—¢}

Absorbing the first term in the right-hand side and using Corrollary 3.3. for the second term, we

obtain the uniform estimate 1
2
2

Introducing the characteristic function of the set £2,., we deduce

\%
Xa. Y __isuniformly bounded in L2(R2; R?),
(r+ez1
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Xa, Ve isuniformly bounded in L™ (R?).

Consequently, there exist functions v* € L2(£2; R?) and v € L2(£2) such that for a sequence

e\ 0
Vo,

Xﬂgiﬂ_l
(r+e2
Xa.Ve = Xov Weak star in L% (R?).
Sincethen xq, Vv, — x,r 2~ tv* weakly in L2(R2; R?), it follows that v € H12(2) with

— xo v* weakly in L2(R?; R?),

Vu=ra2"1y* ae. in .
Therefore v, — v weakly in HL2(£2) and thus for a subsequence
Ve = U ae ins2.
Since also Y. — v localy uniformly in 2\W, there exists y € L°°(£2) such that
Xa. He (Ve + Y0 — Qs) —> 7
weak star in L°(R?) withy € H(v + ¥ — Qs), and pn € L (dn $2) such that
He(ve + Y0 — Qs)(R—¢,-) —> PN(R, )

weak star in L°°(]0, 1]) with pn € H(v + ¥o — Qs).
Finally, we test the v.-equation with ¢ € V. Thisgives

v Vo,

/ A S <X97v) +/3r§XQS(1— He (v + V0. — Q)
r+ez7t r+ez?

R2 R2

= [ e M+ o - Qa.
{r=R—¢}
We now have all ingredients to pass to the limit for ¢ N\ 0, which gives the weak equation (x) for
Y = v+ Yo. O
Crucial for the existence of afree boundary isthe inequality.

PROPOSITION 3.4 9,y > 0in sense of distributions.
Proof. For § > 0, sufficiently small, we define the domain
22 =10,R—¢[ x5, 1]
and the translated function
Wi, 2) = Ye(r,z—8) for (r,2) e 2%
Using the properties of BC, and Corrollary 3.3 we have
Y <Y ondpRd and a (Yl — ) =0 on N2l

Since v} satisfiesthe . -equation aswell, the comparison principle gives ¥ < . in £2%. From
thisinequality 9,y > 0in £2, isimmediate. Letting ¢ \, 0 completes the proof. |
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For later use we show continuity properties of the solution .
THEOREM 3.5 v isHolder continuousin £2\W.

Proof. The Holder continuity away from the axis follows from standard techniques. Since yn
depends only on the z-variable, the weak equation for v can be written as

/ Vi - (rnileﬁ + (- J/N)er> =0
o’
foral ¢ € V,with¢(r,z) = 0Ofor small r. If
¢=n’(y —m) with meR, n e CPR?
is such atest function, we derive that

2 2
U 2, 1Vnl
/ ) |wf|2<C/(n2r” “+ <1/f—m>2>~
2

2

In particular, if Xo = (ro, Zo) € £2 withrg > § (8 > 0, fixed) andif ro — 2p > 8, let n be astandard
cut-off function satisfying n(x) = 1 for |x — Xp| < p and n(x) = 0 for |x — Xg| = 2p. In the three

cases. .
1) BZp(XO)C‘Qv m= f v
£2NBg, (X)\ B, (X0)

(i) ro=R, [z0—2p,20+ 2p] C [0, 1], masin (i);

(iti) zg=10 (or1), 20 <1, m=0(or Q);

we can apply the above inequality. Using Poincaré€'s inequality for ¢ — mon §2 N By, (X0)\ B, (Xo)
we obtain an estimate

VR <Cs | o2+ / vy 2
£2NB, (Xo) £2NB2,(X0)\ By (X0)

From this we deduce for given § > 0 (asabove) and ¢ > 0

V|2 < Csep?®
QﬂBp(xo)

for al xg = (rg, Xo) € 2 and p > O withrg — 2p > 8. Then by the Morrey lemma, see [9], the
Holder continuity of ¢ away from the axis and with any Holder exponent follows.

For n = 2, the same procedure applies at the axis outside the well. To obtaintheresult forn > 3
we switch to the pressure formulation of the problem. In the proof of Lemma 2.1, the function g
has been defined by pg. Here we want to define the pressure p by the stream function + , which
locally in £2 isaweak solution of

1
V'<rn—_zvdf+7/e():07
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where the vector field under the divergenceisin '—|20c(9§ RR?). Since £2 is simply connected, there

exists (up to an additive constant) a unique function p € Hlt*cz(.Q) with

1 1
3zp=_<rn_23r¢+)/>’ 3rp:mazw-
Further, since 9, 9,y = 9,0, ¥ in distributional sense, p isaweak solution of

3 (1" 28 p) + 9,(r"2(3,p + y)) = 0.

Now consider the corresponding quantities on the n-dimensional domain £2, e.g.
P(X1, ..., %Xn) = P(r, Xn) Withr = /xZ+ ... +x2 .

It follows that for £ € C3°(2), with £ (x) = O for small r,

/ Vf-(Vﬁﬂ?exn):/r”’z V¢ (Vp+ye) =0,
& Q
where

((r,2) = / Ere, DdH L (E).

Moreover, since ¥ — o € V, it follows from (2.5) that r2="|Vy |2 € L1(£2\B:(W)). Thisimplies
that r"=2|v p|? e L1(£2\B:(W)); that is, [VP| € L2(£2\{r = 0}\ B¢(W)).

Since the axis {r = 0} is a removable singularity for H12-spaces, it follows that p e
HE2(2\W) and [ Vi - (VP + jex,) = 0 foral I e C5°(£2\W). We then can apply the above

2
technique to obtain

f IVpI? < Co"—*
B, (x)

locally in £2\W. Covering (n — 2)-dimensional rings by balls this gives
ro n—2
/ rn—ZIVp|2 < C <l+ (_) )pn—é‘
£2NB,(X0) P
for balls B, (xg) away from the well and xg = (ro, zo).
Since
2V < 20"V plP + 1),

we obtain the estimate

1 _
VYR < Co*

£2NB, (Xo)

Again, the Morrey lemmaimplies the Holder continuity, at the axis and away from the well. O



A FREE BOUNDARY PROBLEM INVOLVING A CUSP 35

THEOREM 3.6  isLipschitz continuouslocallyin 2 U{(R, 2); 0 < z < 1}.

Proof. We follow the proof of Lipschitz continuity in [3; see dso 4: Theorem 3.8]. To include the
boundary d\ £2 we reflect i by

Y,z =v2R—-r,z20 forR<r <2R.

Setting

r2-n forr <R, y(r.2) forr <R
ar, 2 .= B(r,z) =

2R-=1)2" forr > R, —y(2R—-r,2) forr >R

we see that equation (x) in Section 2 becomes

/ Vi-(@vy + pe&) = / ¢ 2yN (CRY)

D IN 2

for test functions ¢ with supportin D := {(r,z); 0<r < 2R, 0 < z < 1}. Notethat aislocally
Lipschitz continuousin D.
First we derive amonotonicity formula. Let

0(0) = 01(0) - 92(0),  @i(p) = ][ alvui 2
Bp

where B, = B, (Xp) with ¢ (xg) = Qs, and w1 = max(y — Qs, 0) , w2 = min(y¥ — Qs, 0). We
claim that
¢' > 2Ly,

where L isthelocal Lipschitz constant of a. To prove this replace ¢ by ¢w; and obtain

/V(C wi)'ani=2/<§wiJ/N—/ or (¢ wi)B

D NG D

=Ci{2/§wi— / or (¢ wi) + / o (C wi)} =0,

N £2 DN$2 D\$2
wherec; = 0, ¢z = 1and (xx) in Section 2 has been used. Letting & — xp, in an appropriate way,

we derive that for aimost all p
/ ajv wi|2= /awi 9, wj.

B, 3B,

Since 4 ()
0'(P)+ 0(p) = . wr / alv wil?,
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we only have to consider the case ¢(p) > 0. Then

1
[ a ('ap wi|? + ‘;39wi

(,0/(,0) 9B,
P +4=p)
@(p) : [ awi 9, wi
9B,

2)
([ aldp wil®H¥?
3B,
P20 a2 WS
I

3B,
where 2
infa J 190 wil
B B
Cp = — and § = —~ 5
supa S lwil
B, 9B,

Since (see[3]) /St + /S2 > 2, we obtain

@' (p)
(p)

4
Z —;(@— 1).

Sincec, > 1 — Lp, the assertion follows.

Next we derive a mean value estimate. Let again B, = B,(Xg) With ¥/ (Xg) = Qs, Gx Green's
function for the negative Laplacian with pole x € B,, and Py the corresponding Poisson function.
Then, settingu = ¥ — Qs,

u(x)—/ Py u :/VGX-VW,

9B, B,

where the right-hand side is well defined by the L2-gradient estimate in the previous proof. Using
identity (3.1) with ¢ = Gy, it becomes

=_i / VGX-(a—a(x))Ver/VGx'ﬂe( + f Gx2yn

a(x)
B, B, B,NaN 2

Therefore we obtain for x € B, /2

u(x)—/qu <C /|vw|+/|vex|+ / Gl
9B, B, B, B, NN 2

<Cp <||VW||L2(B,J) + 1)

< Cp.
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/u < Cp.

9B,

For x = Xxg thisgives

Together with the monotonicity formulait follows asin [ACF2: Lemma5.2] that

/ [ul < Cp.

3B,
Then the above estimate for x € B2 implies
[UullLee(B,,2) < Cp.

Finally, we use the fact that V - aVy = 0in 2 N {yy # Qs} with smooth coefficient a. Let
X € 2N {y # Qs} near the free boundary, p := dist (X, { = Qs}) andxg € 3B, (X) N{y = Qs}.
Then by the eliptic C1-%-estimate

1
Vi1 < C ][W—QSL

By (X)

where the interior estimate was used if B,/2(x) C 2. Otherwise one has to apply the boundary
estimate with homogeneous Neumann data. Since B, (x) C Bj/2(Xo) with 6 = 4p, we obtain by
the above L *°-estimate

IV (x)| < C.

4. Freeboundary

The continuity and z-monotonicity of the solution v in Section 3 imply that in £2, the boundary
of {¢y > Qg} isthe graph in the z-direction of an upper semicontinuous function, similarly the
boundary of {y < Qs} is the graph of alower semicontinuous function. We prove that the two
functions coincide, i.e. amushy region does not occur.

This essentially follows from the following

NON-OSCILLATION LEMMA 4.1 Supposein £2 there are four vertical lines
G ={(,2;21 <2< 2}, i=1...,4

withz1 < 2o, r1 < rp < r3 < rg, such that ¢ — Qs has no zeros on these lines and changes sign
on successive lines, for instance asin Fig. 9.
Then

2L
-1 < 2 (ra —ra),
1
where L isthe Lipschitz constant of ¢ on the rectangle enclosing the four lines.
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z
Y2y R
/ < > S ¢<QS > 3
4] 14 g £y
p4 r
T Ta T3 T4

FIG. 9. Sign change of ¥ — Qs 0N successive lines.

Proof. We use the following. In the open set {y # Qs}, the stream function solves the analytic

elliptic equation
1 1
Or (rn—_zar‘/’> + 02 (rn—_zaﬂ”> =0

It followsthat at each point (r, z) € £2 withy(r, z) # Qs, either Vi (r,2) # OQorthat Vi (r,z) =0
and thelevel set {y = ¥ (r, 2)} near (r, z) consists of an even number of smooth lines;

either or

Vi(r,z) #0

1) = const

In particular, points with the latter property areisolated. By an arbitrary small perturbation of z;, z,
we can assume that
Vi(r,z) 20 for ri <r <ry4, Z=2z10r 2.

For definiteness, let us assumethat v < Qs on £1. Consider the rectangle
Ri:=[r1,rs] x [z1, Z2].
Choose &1 withry < & < r3 sothat

Y(1,z1)= sup ¥(r,z1) > Qs.

ri<r<rs
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Since 3,y > 0by Lemma 3.4 and Vi (£1, 1) # 0 by the choice of z4, it follows that Vi (&1, 1)
points upwards, i.e. 3;v (&1, z1) > 0. We thus can construct in Ry acurve s — o1(S), with1(0) =
(1, 1), so that

Vi (01(9))
[V (o1(8))]

and so that o3 is Lipschitz continuous. By the properties of 4 on Ry it follows that the curve
reaches apoint (¢1, z2) = 01(S1) on dRy, asin Fig. 10.

oq(s) = whenever Vi (a1(s)) # 0,

Zgm—==

curve o

b e —

N3

A==== *

1 51 3

FI1G. 10. Construction of the curve oy in Ry.

Similarly, let
Ro :=[ra2, ra] x [z1, 22]

and choose &, with max(ro, &1) < & < ra, so that

V&2, 22) = inf Y(r,z2) < Qs.

max(ra,61) <r<rq

Asabove, Vi (&2, o) pointsupwards, so that thereexistsacurves — o2(S) in Ry, witha2(0) =
(&2, 22), so that

_ Vi (0209)

[V (02(2))]

As before, this curve reaches apoint (&2, z1) = 02(Sp) on 9 Ro.
Sincey > Qsonoyand ¥ < Qs onoy it followsthat &, > &;. Let R bethe region bounded by
o1, o2 and the horizontal segments {(r, z1) : €1 <r < &} and {(r, z2) : &1 < r < &), seeFig. 11
Theideaisnow to integrate Ay over R and to use on the one hand Gauss' theorem and on the
other hand the differential equation. To make this precise, we have to use the weak equation for
with test function

05(s) = whenever Vi (o2(s)) # 0.

£(r, 2) = n(2d,(r, 2), p >0 small,
where

d,(r, z) = min (1, % dist ((r, 2), 8R)> ,
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& &2

011¢>@.

& &2

FIG. 11. Construction of the region R.

and where n isacut-off function n € C5°(Jz1, z2[) with0 < n < 1. Then

1
/ rn—,ZV{-W=—/ Ve-(ver)

R R

=—/ ny o do.

R

For small p we have ord, # 0 only near o2, where y = 1, and near o1, where y = 0. Hence the
right-hand side integral becomes

22

—/ n(2) / d dy(r,2)dr | dz

n {r;(r,2eRNB,(02)}

22

=/ n(z) dz.

AN

Thus

Z

1
/n(z)dz=/rn—_2dpazn azw+/ rnL_ZVdp.vw.

z R R

The last integral tendsto 0 as p — 0, since Vy is tangentia on o1, o2 by construction of these
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curves. Hence we obtain

22

1
[nadz < [ pmio)

21

L(rg—

R
L ri) 7
1
< rn—72/|3277| < T /|3ZU(Z)|dZ-
1 R 1 2

Now choosing n asin Fig. 12 and letting £ N\ O we obtain the assertion. O
n(2)

| -+
1 |
| [
| i
! |
! |

! L

T T LI T z
21 & g 22

FiG. 12. Properties of the test function 7.

Next we show

PrROPOSITION 4.2 A free boundary cannot contain isolated vertical segments: i.e. a situation as
below cannot occur.

Y > Qs P < Qs

FIG. 13. Isolated vertical segment.

Proof. See dso [4]. It follows that 3,y = O in distributional sense in a neighbourhood U of the
segment. For small § > 0, consider the function v(r, 2) := ¥ (r,z+ 8) — ¥ (r,2). Thenv > 0 by
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Proposition 3.4, v = 0 on the segment, and v is a continuous solution of V - (r2=" Vv) = 0in U.
By dlliptic regularity theory v is smooth, and therefore v = 0 by the strong maximum principle. We
conclude that ¥ (r, z) = ¢(r) in U with a continuous function ¢ different from Qs away from the
segment. This argument extends to small vertical strips, on the left of the segment reaching the top
of £2 and on the right of the segment reaching the bottom of £2. This yields a contradiction to the
Dirichlet data. |

Next we show that a mushy region (if it exists) increasesto the left.
LEMMA 4.3 Supposethereexistrg € 10, R[ and z1, 2 € ]0, 1], with z; < 2, such that
>Qs forzz<z<l1
Y(ro,2)y =Qs for z1<z<2
< Qs for 0<z<nz.

Then
¥ = Qs in ]0,rg] x [21, 22].

Proof. Consider two points T = (rg, z1) and B = (ro, zg) with z1 < zg < z1 < 2, and two
sequences (Xp)neN, (Xn)neny With Xn = (rn, Zn), h < fg, Xn — T asn — oo and X =
(Fn, Zn), Fn <ro, Xy — Basn — oo, seeFig. 14. Now assumethat v (Xn) < Qs and ¥ (X,) > Qs
for largen. O

| ¢<Qs

—

FIG. 14. Sequences (Xn)nen @ad (Xn)neN-

Then in view of the non-oscillation result, these sequences cannot exist simultaneoudly.
Therefore we have to deal with one of the following two cases.

Casel. ¥ > Qs inaleft neighbourhood N of T.
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N -
SN
' o7
|
> Q,
\\
T .H T/J :Qs
Y :Qs //”’
/ :
\ P <Q¢B
A\ 1
N |
N7~}
top case bottom case

FIG. 15. Two possible cases.

Case 2. < Qs inaleft neighbourhood N of B.
In the first case we assert

CLamM 4.4 ¢ = QsinL :=NNJO,ro] x [zB, ZT].

Proof. Suppose the assertion is not true. Then there exists a point X € L, where ¢(X) > Qs.
The Holder continuity of ¢ implies the existence of a neighbourhood M where v > Qs and

consequently y = 0, see Fig. 16.

i
|
.+T

P> Qs

L
v =0 } \\%\‘«@:@
M S

wzQs

FiG. 16. Construction of sets.

Next, consider the set C C L shown as the shaded region in Fig. 16. Since v > Qs in C we
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have
V. "Vy) >0 andthus 9y <O inC,
by the differential equation for ¢. Usingy > 0in22 andy = 0in M, wefindy = 0,V -
(r¥="Vy) = 0 and, by the strong maximum principle, > QsinC.
Next we choose points P # P asin Fig. 17. By the non-oscillation result (argue as for cases
1, 2 above, but now from the right instead of the left) we have either v+ > Qs in asmall horizontal
strip to the right of the point P, or ¢ < Qs inasmall horizontal strip to the right of P.

NN

™
¢:Qs

r=Ty

FiG. 17. Possible situation near P.

First consider ¥/ > Qs in aright neighbourhood of P. Thisimpliesagain V - (r2-"Vy) > 0
and 8y < 0in the shaded area of Fig. 17. Sincey = 0inC,wehavey =0,V - (r2"Vy) = 0
and thus ¢ > Qs in the shaded area. In particular, v (P) > Qs which gives a contradiction.

Finally, consider the case v < Qs, ¥ # Qs, in every small right neighbourhood of P. If
X' = (r’,Z) isapoint in such a neighbourhood with v (x’) < Qs then, using similar arguments
as before, v < Qs in the shaded region of Fig. 18. In particular, ¢ (r’, Z) < Qs forr > r’. Since
9z > 0, thisimplies ¥ < Qs and y = 1intheregion with upper left corner x’, see again Fig. 18.

, wSQS*¢¢Q5
pl 2
P>Qs Y \\X\‘A\RY\—\\\X
V=0 %K\i&& —
wZQs/

FiG. 18. Construction in aright neighbourhood.
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By assumption, there exists a sequence (x), = (r};, Z,))neny With X, — P asn — oo, rp > rg
and ¥ (x;) < Qs. Asaconsequence of Fig. 18, we therefore arrive at the following situation which

isacontradiction to Proposition 4.2. This concludes the proof of the claim. O
P
Y < Qs
¥ > Q, 1
8
v=0
/
¢ = Qs

We continue with the proof of Lemma 4.3 using Claim 4.4. Assuming the top case of Fig. 15,
we find ¥ = Qs in L and, using 9,3» > 0, ¥ < Qs below L. Thus the top case implies the
bottom case. Conversely, starting from the bottom case of Fig. 15, wefind v = Qs in an upper left
neighbourhood of B (repeat proof of Claim 4.4 with reversed signs). Using again the z-monotonicity
of ¥ we observe that the bottom case implies the top case. Therefore both cases are always true.
Thus, by Claim 4.4, we are left with v = Qs in L, and similarly v = Qs in some left upper
neighbourhood of B. Thisgives ¥ = Qs to the left of the segment BT, which provesthe lemma. O

With these preparations we can prove

THEOREM 4.5 The free boundary £2 N {y» = Qs} isthe graph in the z-direction of a continuous
function g : ]0, R[— R. Moreover,

hzmgg(r) and us:=rI|/ngzg(r)e]0,1[

exists.

Proof. From the continuity of v in Lemma 3.5 it follows that the free boundary stays away from
the lower and upper boundary of 2. Therefore, if the free boundary is not a continuous graph, a
vertical segment as in Lemma 4.3 exists. However, then we conclude that ¢+ = Qs to the left, and
therefore ¢ cannot attain its boundary values on {r = 0}, which are either 0 or Q. Hence g exists
and by the continuity of Theorem 3.5 weinfer that g(r) — h asr \ 0. The last statement follows
from the Non-Oscillation Lemma 4.1, taking into account that v is Lipschitz continuous up to the
right boundary of 2 (Theorem 3.6.). |

REMARK 4.6 Theorem 4.5 impliesthat y = x{z<g(r); ad yN = X{z<us}- Moreover, we find for
fixedz € ]0,us [U] us, 1 [

lim = .

rI/RV(f, 2) = yn(2)

Asaconseguence,  satisfies the Neumann condition on dy £2, away from the free boundary point.
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5. Freeboundary near well

It follows from Theorem 4.5 that the free boundary approaches W as a continuous curve. In this
section we prove that the free boundary has atangent at W and that it approaches W in a C1-sense.

We use polar coordinates. .
r+i(z—h) =pe? (5.1)

and consider a small neighbourhood
Dy i={(r,2) € 2; 1%+ (z—h)? < pd}.

The function v, defined in Lemma 2.1 plays an important role in this section as well asin Section
6. It hastheform

Vi(r, 2) = %(w*(f, 2)+1)
with
39 forn =2,
@1, 2) = 9+(0) =
sng forn=3,
implying that v, is constant on rays starting at W. We therefore set

V() = %(@(e) +1).
As 1o, the function v, satisfies
B (r2"3r ¥y) + 0,2 "0, ) = 0.

Hence, the local weak equation of v near W can be written as

/ Ve (VO — ¥h) +ve) =0 (5.2)
Do

forall ¢ € C3°(Dpy)-

DEFINITION 5.1 Definea)*,with—% < wy < z, by

2
IZ*(a)*) = Qs-
Thus ¢, = Qs ontheray in the direction €« \We have
~ . Qs - Qf
«(Wx) = =
5 (wy) Qre Qs + O

that is .
5 Qrd forn =2,
Wy =

arcsinQ;g forn=3.
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We shall need the following.

COMPARISON LEMMA 5.2 Let D C £2 be open and connected, and let ¢ € Cl%Cl(D), y =
1— H(® — Qs) be aweak solution of

V-r?>"Vy +ye)=0inD.
Further, let ¢ € C&é(D), B =1— H(p — Qs) beasmooth strict supersolution in the sense that
V- (r*"Vg) =0inD N {g # Qs},
D N {p = Qs} isa C?-curve,

[v-(r*"Ve+ Be)] <0on DNy < Qs}.
Theny < ¢ in D impliesy < ¢ in D.

Note. The corresponding version for strict subsolutions also holds.

Proof. Let xo = (rg, Zo) € D with ¢¥(Xg) = ¢(Xp). If ¥ (Xg) > Qs, then the strong maximum
principle implies that ¢+ = ¢ in the connected component of {yy > Qs} containing Xg. The same
argument appliesif 1 (xg) < Qs. Thusit remainsto exclude the casethat v (xg) = Qs. We consider
the blow-up at Xo. Since ¢ has a C? free boundary, the functions

@s(X) 1= %(@(Xo +8%) — ¢(X0))
converge to a piecewise linear function ¢g, and {¢g = 0} isaline through the origin. Moreover,
[v- 0§ "Veo+ o)l <0
onthisline, where 8o = 1 — H(¢g). Similarly
W5 — Yo weakly in Hige (R%),
ys — yo weak star in Ll"gc(IRz),
where g is globally Lipschitz continuous with 1(0) = 0 and
Vg Vyo+ye)=0 in R
Furthermore, asin [4: Lemma 3.10],
Vs — Vo strongly in L2 (R?).

Following again [4: Lemma 3.10] and using the monotonicity formula derived in the proof of
Theorem 3.6, we arrive at the following two cases.

(i) o is a piecewise linear two-phase solution. Then {yp = 0} = {go = 0}. Since Yo <
wo, Yo satisfies the free boundary condition, and ¢g the strict free boundary condition for a
supersolution, we end up with a contradiction.
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(ii) ¥ hasasign. Since Yo < ¢o and {gg < 0} is hon-empty, Yo < 0 is aone-phase solution.
Further, min(go, 0) is astrict one-phase supersolution at its free boundary. Then we apply the
bump argument [see 4: proof of Lemma 5.2] to derive a contradiction.

O

The next statement implies, that the free boundary has the unique tangent direction €%+ at the
well.

LEMMA 5.3 For small p > Othereexiste, > Owithe, — Oasp — 0 sothat
w*—8p<¢<lﬂ*+ep in Dp.

Proof. Lete # 0besmall, —% <wg < % and define

U4 (6)

&+ (Qs—¢) for - X <0<
~ - BN X We,
B Y (we) ° 2 ’
@) = ~
Q — ¥(0) T
Qte— — 7 (Q+e—Qs forw, <6< =.
Q — Vs (we) ) ’ 2
Q+ed - o~
Q ______________
l
l
i
Qst———--A~- :
|
|
|
£ - |
o—*% e 0
-3 W W 3
FIG.19. ¥ forn =2and e > O.
Then
§5/(w8 -0 (2) ¢/(we +0)
if and only if

V(@) (S) Pul@s) — e
For small |¢| > Othisissatisfied if v, = w, — ag, witha > 1/, (ws) > 0. We define

o(r,2) := ¢(0) with6 asin (5.1).
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Then on the free boundary of ¢
[v-12"Ve] (1.2 =15 160) > —o0 (+00),

as(r,z) € 3 {¢ < Qs} — W. Itfollowsthat ¢ isasmooth strict super-(sub-) solutionin D, inthe
sense of Lemma5.2, if p, issmall enough. Moreover, if |¢| is small enough, then 3,9 > 0.

In order to compare ¥ with ¢ we usethefact that V(¢ — v,) € LZ(DPD). Then by the Courant
Lemma[C], there is a countable sequence p — O with
0sc ](1/7 —¥.)(p. ) = 0.

3.3
Since ¥(p, —%) = 0= (%), wecan choose p < p SO that
W — Y < le| 0N 2 N3D,.
Thenonthisset ¥ () ¥ + ¢ (é) ¢ and therefore
v (S)e on ID,\W.

To apply Lemma 5.2, let ;s(r, 2) := ¢(r,z+ 8) for § > 0 (< 0). Obviously (é) @s in Dp for
large |§]. Here we take the value Q for ¢ at W and ¢ for 5 at W — de; (0 for ¢ and Q + ¢ for ¢s).
Choose |§] minimal with this property. Assume |5| > 0. Then ¢ () ¢s in D, by Lemma5.2. Since
929 > Owestill have ¥ () @5 on 9D, which contradicts the minimality of |5]. Thus |5] = 0 and
consequently

¥ S ¢ S v+ CeinD,.

(]
For later use we introduce the scaling
Yo (X) == (W4 p(x —W)) forx=(r,z) near W,
the same for y,. Equation (5.2) then becomes
[ Ve v, -+ M e = 0 5.3
Do/
for ¢ € C3°(Dyy/p)- Let R > 0 be afixed large number and p <« po/R.
From Lemma5.3 weinfer
[¥p — ¥« <&, >0 asp— 0inDg, (5.9
{wszs}ﬁDRC{W+sé9; s> 0, |9—a)*|<%}. (5.5)

PROPOSITION 5.4 For o > 0 consider theregion
7 :={(r2) =W+s€’ e Dr; s>0,10 —wi >0}

Then for small p
|V(Wp - 1ﬁ*)| < C(O’, R)é‘p in G‘E{.



50 H. W. ALT AND C. J. VAN DUIJN

Proof. For small p we have V - (r>="V(y, — ¢,)) = 01in Gg/RZ. Then elliptic C1~“—0stimateas

together with (5.4) give the result.

The goal isto prove that V (¥, — v) is smal up to the free boundary of v,. We can prove at
|east the following:

LEMMA 5.5 Let R>» 1landt > 0 befixed. Then there exists « > 0 with the following property

for small p : for balls A A
B C DrN{Y, (S) Qs}s diam B > 2,

RedBN{Y,=Qsh,  K—-W[>2

we have

FiG. 20. Cone property.

Viy,(X+se-e=>«k

for |s| < land|e| = 1withe-D > t (resp. e- (—V > 1)), where b is the outer normal to 9B at X.

Proof. It follows from (5.5) that for some oo > 0 and for small p, for all B asin the statement
B:i={xeB; (x—%)-d<—-1) cGR.

Consider the case B (¥, < Qs}. Then, by (5.4), for small p

Iﬂp<¢*+8p<&*(w*—00)+8pSQS—SO in év
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for some§p > 0. Sincey, < Qsand V - (r2—”V1pp) = 0in B, it follows from elliptic theory that
¥p(X) < Qs — ko dist (x,3B),  x € B, (5.6)

for some kg > 0 being independant of o and B.

Now let « > 0. Assume the assertion fails. Thus, consider a sequence p — 0and B,, %,, ¥, as
in the statement and points

X, =R, +S) €, ISp| < 1, (5.7)
lepl =1, & -1y >, (5.8)

such that
pr(xp) - € < K. (5.9

The properties of Bp together with (5.4), (5.5) imply that for a subsequence p — 0

Rp = X = (M, Z4) = s.€® withs, > 0, (5.10)
Dy — ve=i€®, (5.11)

Weclaimthat § := |[x, — X,| — 0asp — 0. If not, it follows from (5.11), (5.8) and (5.5) that for
asubsequence p — 0, X, € G{ for some o > 0. Then Proposition 5.4 implies, if s, — s and
e, —easp—0,

Vi,(X,) - € = Vi(X,) - €, — C(o, R)g,

— VY. (Xs +5€) - e

Since V. (X,) is proportional to vx, the infimum «q for all such values of s and e with |s| <
1, |e| =1, e-v, > tispositive. Thuswe derive acontradiction if x < «;.
We first consider the case x,, € B,, that is's, < 0. We perform the blow-up with respect to the
distances § = |x, — X,| = S, |, that is we consider
1 o o
ps(X) = 3 (Yo = PR 4+ 6X) — (Yp — ¥ (X)) -
The regularity results obtained in Theorems 3.5 and 3.6 apply in a neighbourhood of x,, uniformly
in p, tothesolutions ¥, of (5.3). Thereforethe functions ¢; are Lipschitz continuousin any bounded
domain, uniformly in . We conclude from (5.3) (as in the proof of Lemma5.2) that 95 — ¢ in
Hlt’cz(]Rz) for asubsequence § — 0, andthat V - (r2~" Vo) = 0; that is, ¢ is harmonic. Moreover,
¢ isglabally Lipschitz continuous and ¢ (0) = 0. Then it follows from Liouville'stheorem that ¢ is
linear; that is,
¢(X) = a-xwitha € R? (5.12)

For points X, + 8x € B, we have, using (5.6),

s (X) < —xo dist (R, 4 8x, 9B))

>l

(1//*()2,0 + 3X) - I/f>s<()’zp))
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which, as p — 0, resultsin lower case,
©(X) < ko X v — Ve (%) - X forx-v, < 0.
Since Vi, (X4) = B v, for some g > 0, we seethat (5.9) impliesa = o v, with
o = kg — B.

Next we consider a subsequence for which
1 o
g(xp —X,) =—€, > —€

withe- v, > t > 0and we use (5.9). By (5.5), the free boundary corresponding to ¢; converges
to {x - v, = 0}. It follows from elliptic theory that 95 — ¢ smoothly near —e. In particular,
Vs(—€,) = Ve(—e) = a v,. Using assumption (5.9) we obtain

Vos(—€,) € =V —¥)(Xp) - €
<Kk = Vir(Xp) - €

—>Kk—Bv,-e€

and find
Kz @+ Bvs-ezt(a+p) =7 Ko,
acontradiction if « < t k.
Next we consider the case s, > 0, where we assume that v, (X,) # Qs. Again consider the
blow-up with respect to § = |x, —X,| = s,. Asbefore, ¢(X) = ax- v, witha > ko— . Lete > 0.
Thenfor X - v, > ¢ we have

1 1
g(xﬁp(f(p +0X) = Qs) = ¢s(X) + 3 (Ws(Rp + 8%) = Yx(Xp))

= (@ +B)X-ve > k0-& >0,

locally uniformly in x. Choosing ¢ < e - v, this says that the free boundary corresponding to ¢s
stays away from e, in particular v, (x,) > Qs for small p. We then derive a contradiction as before.
Note that a posteriori this provesthat v,(X, +se,) > Qsforal 0 <s < 1. O

We are now in a position to prove the following.

THEOREM 5.6 Let e be any direction different from &€ ®+. Then for small p the free boundary in
£2 N B,(W) isagraphindirectione.

Proof. Consider the situation for the scaled functions v,. Choose two balls B1, B asin Lemma
55and W = (0,h) # W, so that aregion G asin Fig. 21 is well defined. For definiteness we
assumethat By, B, C (¥, < Qs} and that h < h. '

Note, see the previous proof, that b1, V2 areclosetoi € ®« if p issmall.
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FIG.21. Shaded regionis G.

The following is a consequence of (5.4), (5.5) and Lemma 5.5. Consider a ray starting at W.
For rays contributing to 3G, the function v, is strictly increasing on dG. For rays cutting G, the
function v, attains its minimum at the first cutting point and its maximum at the second cutting
point. Now let A < 1, near 1, and define

Ypr(X) = Qs + An—l_lwp(w +2.0x = W) - Qq),
Gy :={x; W+ r(x — W) e G}
Then v, isaweak solution in G, . Below we show that
Y < ¥, 0N3(G; NG). (5.13)
If 4¢ denotes the approximation of 1 from Section 3, then also me < ¥, 0nd(G; N G) for small
e. Asin Proposition 3.2, it then follows that w;/\ < ¥, inGuNGresultinginy,, < ¢, inG,NG.

As aconseguence, ¥, ismonotonically increasing in G along rays starting at W. Since we can vary

By, B, and W the assertion follows.
It remains to prove (5.13) for A near 1, provided the geometry of G is chosen appropriately.
Consider the part
S={x=W+se; s <s<s),

of one of the above raysintersecting G. It follows from (5.4), (5.5) and Lemma 5.5 that for small p

Vis(X)-e 2«
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foral x € Sif S c G, or for x newr W + sje and W + sze otherwise. Note that ¥ > 0 is
independent of the domains G that were chosen. It follows that for all points x = W + se under
considerationand al A < 1, near 1,

V(W 4 58) — ¥, (W + As8) > k(1 — 1)s.

Thus with .

Ypr (W + 58) — 9, (W +50) < Qs — & + (6 = k(1= 1) — Qo)

1—x 1— -1
=51 <(S_QS)71—)\ _KS)

A
< ST 2L(s2—5s1) —« s1),

where L is the Lipschitz constant of ¢ in a suitable domain. Then it follows from (5.5) and
Proposition 5.4 that for small p we can choose in the definition of G the two rays starting at W so
that they enclose an angle of magnitude Ce,. Finaly, we choose G so that s, — 51 < C ¢, and
s1 > ¢ > 0. This proves (5.13) for small p. |

6. Asymptotic behaviour near the well

In Section 5 we have proved that the free boundary has a tangent €<+ at W. Now we study how
the free boundary approaches this tangent direction. In the analysis we use the standard conformal
transformation _

r+i(z—h)y =et", p =€ (6.1)

Then the neighbourhood D := D, in Section 5 becomes

D :{(S,@);—% <0 < %,—oo <S< g}, withsy=logpo.

We denote the transformed functions by a superscript, for instance, ¥ (s, 6) = v (r, z) with
arguments related by (6.1).
Werecall the local weak equation of v near W:

/ vc-(rni_zv(w—w*Hyef) drdz=0 6.2)
D

foral ¢ € C3°(D). Since
1 [ r —z } ~
V{ VC?

T2y |z
the transformed weak equation becomes
~ 1 - - - r
f V§~<rn2 V(w—¢*)+y[ _ Ddsdezo (6.3)

)
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Y=0Q Y > Qs

Qs

Y < Qs

FIG. 22. Free boundary approaching the well.

foral ¢ € C3°(D), wherer = €°cosf and z = e3sind.

To demonstrate the behaviour near the well we apply the general method of separation of
variables by giving an eigenfunction expansion in the 6-direction and by reducing (6.3) to ordinary
differential equations for the coefficients in the s-variable. We first consider

LEMMA 6.1 The eigenvalue problem, with m=n—2andn =2or 3,
o (—=— dpu) + ——— =0 for —Z <6<
“\ cosmg ” cosmg 27T

(50 u(3) -0

has the following eigenfunctions ex and eigenvalues Ay for k > 1:form =10

(9 =\/§sin(k<0+%)), w = K2,
andform=1

Wkt D 1
& (6) =,/% T (E)tk‘l(tz—l)k) It —gng. Ak = k(K+1).

These functions form an orthonormal basis of the weighted L 2-space with inner product

/2

T uene)
(u, v) .—/ e do.

—/2

Proof. We only prove the case m = 1. Consider thetransformationt = siné. Then the equation for
G(t) :=u@)is
(1-1%820+ 10 =0, (6.4)
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and thisgivesfor v := 9;[
*((L—tDad) + A0 =0.

Solutions (v, 1) are given by the Legendre polynomials

Py(t) := FA2-1k, k=kk+D,

kK1
normalized so that P (£1) = (+1)%. Moreover,
/ PUOPO = 2= 5

Then for k > 1, the functions

~ 1 _
Ex(t) = / Pc(s)ds = o] A L(t? — pk
1

vanish for t = +1. Set Ex(0) := Ex(sin®). Using (6.4) for (Ex, Ak) we see that

Ex(t)Eg(t
(E. E0) =/k1(17t‘;()d S / E/OE M dt
“1
1 G 2
— - [RoPOd =
-1

Therefore define e = / W Ek. The rest of the result then follows from spectral theory.

In addition we need the following estimates.

PROPOSITION 6.2 There existsa constant C so that for all k > 1 and for all || < %

le(6)] <C,
lel(0)| <C kM7 .

Proof. Again weonly consider m = 1. We use the representation

K
Pc(Cos®) = Z bi bi_i cos((k — 2i)%)

i=0

1 1-3---(2k — 1)
b = (1__,>:—,
lﬂk 2i 2.4... (2%

where

O

(6.6)
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which impliesthat for |t| < 1, settingt = cos®,

k
IP(®] < ) bibe i = Pk(cos0) =1,

i=0
see[10: p93, 290]. It follows, again witht = cos®, 0 < ¢ < 7, that

T

Ex(t) =/ P (cos®) sing d

53
=~

—sin((k—1—2i)9)}dy.

With
) =] /sin(jz?)dz? = cos(j ) — cos(j)
this gives
~ b| bk i bI 1bk+l i
Ex) = 12 (F) — a+1-2i (7).
P e s TP VI e T
2|;ék+1 2 #k+1

For 1 < i <k, theexpression
bibk—i — bi_1bky1-i

k+1-2i
does not changeif wereplacei by k+1 —i, andit equas

bi bk 1_£ (1_ 1 _ bbb
K+1—2i 2i 2k+1—-i))/)  2ikk+1-i)

Further, & = a_j, so that

bi_1b
Z 1T A (),

k

Now, |aj ()] < 2and by < (k+ 1)~/ since

logh E log (1 Ek log(k + 1)
g0k = g % < 2. 1' 2 g .
II|isi|||pIi$tI|eeﬂi|r|ate

B <2k+D 324 Y i-¥2k41—i)-32
1<t

<2+ 1)1+ V33 i-92),
i=1
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which proves (6.5). Since
Ei(9) = Px(sin®) coso,
and |Px(sin#)| < 1, we obtain (6.6). |

We note that estimate (6.6) might not be optimal, but it is sufficient to prove the desired
convergence of the free boundary. In order to start the procedure, we need the following initial
information about the free boundary near the well.

THEOREM 6.3 For small enough pg there exists a continuous function s — w(s) € } — % %[
so that
1 (s 6) < Qs, for —% <6 < w(s),

T

V(s 0) > Qs, for w(s) <6 < >

2. (L)(S) —> W4 aSS \ —0Q,
where w, is defined in 5.1.

Proof. Followsfrom Lemma 5.3 and Theorem 5.6. (]

Next we define the coefficients in the eigenfunction expansion. For convenience we retain the
notationm=n — 2.

DEFINITION 6.4 Foranys < sandk > 1, set

/2
_ [ &O oy s — T
Yk(s) == cosme(l//(s’ 0) — ¥«(0)) do = (Y (S, ) — Vs, &),
—/2
7/2 ()
ck(s) = / e(0)y(s,0)cosh dv = / ex(0) cos6 do,
—/2 —/2
/2 (S)
S(S) 1= / g (0)y(s,0)sinodo = / g (0)sing do.
—n/2 —/2
We have the identity
ck(S) + «(s) = e(w(s)) SINw(S) forals < sgandk > 1. (6.7)

PROPOSITION 6.5 There exists a sequence (§j)jen, With s — oo as j — oo, so that for all j
andforallk > 1

lYk(S)I12 + Vi) < €M,
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Proof. By the normalization of ex we have
/2 _ 9
- * y 9)'
2 ¢ [(¥ — P)(s .
[k ()] T ooshe
—/2
. ~ ~ T
Since (Y — o) (s, —§> = O we have
[ = G 6)2 6+3 [
— VIS, 2 s 62 dE
- A < A - * bl
/ ROLLINT / | / 180 — P (s, )2 o
—/2 —/2 —/2
/2
<cC / 180 — P (s, )12 .
—/2
Similarly we argue for the integral over [0, 7z /2]. Moreover,
/2 - - 2
Os(¥ — Y)(s, 0)
/ 2 g / | S de
[(Y ()] o0 )
—/2
so that
/2 ~ ~ 2
V(i — ¥4)(S, 0)|
2 [(s)2<C / | do.
Yk + (Y ()] ey
—/2
The smoothness of the boundary data of the difference ¥ — v, implies V(¢ — y,)|2/r™ €
L1(£2). Consequently,
V(¥ — ¥ ? / MUERDIE
— " _drdz= | ———~—dsdd
OO>/ rm rdz ems cosm 9 S
D B
1 S0
>5[ em™am (s + i) o
k=1
—00
O
From this the assertion follows.
PROPOSITION 6.6 Thereexistsa constant C sothat for all s < spandall k > 1
[sk(S) — x(—00)| < C, (6.8)
[51(S) — s1(—00)| < Clax(S) — w| (6.9)
ICk(S) — Ck(—00)| < C min (w(s) — o, k%—l) . (6.10)
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Proof. Using identity (6.7) and property (6.5) we see that (6.8) follows from (6.10). Further, (6.9)
is obvious since €] is bounded, see (6.6). Also, from property (6.5),

Ick(S) — Ck(—00)| < Cla(s) — wxl,

therefore it remains to show that for all —% <0_ <0 < % andforallk > 1

04
/ ex(@)cosfdo| < Ckz L.
0_

Using the differential equation for ex we obtain
0

01

L [(8O) _an
fq(@)cos@de_ Ak/<cosm9> cos™ 0 do
o _

04
= m+1 .
‘ 0=0,  M+- fe{((e)smede.
02 )"k
0_

_ 1 / (0) cosh
B xkq< 6_

The desired estimate follows from property (6.6) and from the observation Ax > k?forall k > 1.
O

THEOREM 6.7 AsSs \ —c©
1+m 1 1+m
w(S) — ws = Cp Iog;+O(,o ),

where p = €°,
2 ler@o)?(—sinwy)
Cc= - > 0,
2+mQ @L ()
and )
— forn=2,

@;(w*) = { T
cosw, forn=3.

Proof. Inthe weak equation (6.3) we substitute
£(s,0) = n(s)e(®) withn € C3°(] — oo, o).

To evaluate the resulting expression we use the differential equation for ex and Definition 6.4, i.e.

/2
/ coan 5 A — ) = MUK

—/2
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and
/2
a( 7 7 /
f BT — ) = ().
—/2

Then the weak Eq. (6.3) becomes, with p = €5,

S
1
0= / (,O_m (Vi + mak Yk) + p('ck —n &)) ds

—00

for all test functions n; that is,
Yk ' Yk
(p—nﬁ +PC|<> = )»kp—m — P -
Since Ak = k(k + m), thisimplies the identity

€Sy, — (k+myyn + p™Ho)) = (e(”m)s <% - ka) —(k+ m)ekSWk>
= €S0k — p™ 0 + (k 4+ m)eS(p™ e — kyk)
= o™ (K + m)ck — ).

Now we integrate and obtain by (6.10) and Proposition (6.5), using the notation 5 = €3,
S

W — K+ M+ p™ g = p* / AL 4 m)e®) — (@) 6.

—00

A second integration leads to the formula

P k+m 0
Yk(S) = (%) Yk(So) + pM / A Kok(8) ds
S

S 5
_pktm / 52k-m / /~5k+m+1 ((k + myck@) — Sk(é)) ds ds.
s —00

Let ¥, 2(s) be the same expression, except that ¢ is replaced by ¢ := cx(—o0) and s by s =
Sk(—00). Then acomputation using (6.7) gives

&(ws) SNwy

k+m
Oy — [~
wk(s>—<po> Yk(s0) + Krmt1 ok (S) (6.11)

where
S—S fork =1,

0 k+m
P (s) =p
k [ lel (,ol_k - ,oé_k) fork > 2.
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Now, since {ex; k > 1} is an orthonormal system in the Hilbert space defined in Lemma 6.1, we
have for al s and for aimost all 6 the representation

V(s,0) = (6) =) vk(S)e(®). (6.12)
k=1

Let us evaluate the left-hand side at the free boundary, that is for 6 = w(s). Using the identity for
wy from Theorem 6.3, we obtain

V(s () — P (@(s)) = Qs — Y (e(9))
= P(ws) — P (@(9))
= % (@+(@4) — Gr(@(9))) -
Since w(S) — w, 8S \y —oo (see Theorem 6.3, second statement) the right-hand side of this
equality can be expanded. Thisresultsin
75 06) ~ u@(®) = ~ 2 Gl @) 00 + O (10(s) ~ 0. ). (6.13)

The goal isto prove from these identities, that the behaviour of the free boundary near the well, that
isthefirst term in the expansion of w(S) — w, ass \ —oo, isgiven by wf(s).
For this we first use the results from Proposition 6.6 and obtain for k > 2 the estimate

[Y(s) — ¥2(s)] < C k3 Lpd(s) < C pt™k 22,

Here, and in the following estimates, the constants C do not depend on 6 and s. Using (6.5) we
obtain

D Wk(s) — YR(e)(®)| < C pttM,

k>2

and also

Y Wl — (%)”r”wk(s()))a((e)

k>2

All computations also hold if we replace 5o by asmaller value. Let us replace o by one of the values
(S)jen from Proposition 6.5 and let pj = €% . Note that now all 1/49 depend on j. Thenfor s < s;

P k+m pk+m pl+m
> (—) k(s)a®)| <C Y S =cC -
k>1 \ P k>1 007 (pj — PP

Altogether we obtain from (6.12)

V(.0) = @) = (va(9) — vi(9) ) e1(0) +

% #2(s)e1(60) + O (p”m (1+ 7m)) .
() = P)pj*
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Letting # — w(s) weobtain using (6.13) and restricting argumentstos < §; — 1

- e1(w«) Sil’la)*

—— pd(s)er(w(s))

%(sﬁ*(w*) — ¢:(w(9)))

1
+(W(s) — YP(s)er@(9) + O (p1+m (1+ wa
(6.14)
Using again (6.5) and Proposition 6.6 we see that
(129 - v2©®) er(wis)| (6.15)
S 3
<Ct (0@ -l + 572" [ 55 Mo® - wldas
S —00
which gives the rough estimate
‘(wl(S) — l/ff(S))‘ < CpHM(g —9). (6.16)

Now fix j = jo. Then for large negative values of s, say s < s, < sj,, the left-hand side of (6.14) is
estimated by
Z Clo(s) — wyl.

Therefore we obtain from (6.14), (6.16) for such values of s

1
lo(S) — wy] < C pltm (1+ I m + (Sjg — S))
2
Pio
< C(Sjps S, &)p ¢

fore > 0. Now let e = % and choose j with s; < s,. Then we obtain from (6.14) for s < s

¥1(9 - e ©(©)| < C5p. 5. §)0™™,

so that from (6.14)
B 3 e1(wy))? sinw,
2 (@ ®) ~ ) + ((m—+2pl+m<s,- —9)| < Ca(5. 5. 5)0M.
From this the assertion follows. O

7. Thevanishing @ limit

In this section we show that for Q sufficiently small, the limit Qs N\, 0 leads to an interface with
singular behaviour at the central axis. This limit interface will be at a positive distance below the
well.
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To explain the meaning of singular behaviour, we first recall some definitions and results from
[5] in the context of the axial symmetric domain £2 (see Section 2). In that paper we studied the case
Qs = Odirectly; i.e. we considered the case of stagnant salt water underlying fresh water flowing
towards the well W, while the height of the interface along the cylindrical lateral boundary was
fixed at a distance h — ug below the well. This yields a one-phase free boundary problem in terms
of the variable _

P+Xn in £,
= (7.1)
0 in £,
where p denotes the fluid pressure (as in the proof of Theorem 3.5).

Given a distance h — up, it was shown that a maximal rate exists, the so-called critical rate
Qo = Q¢r (h—up), suchthat only for Q < Q¢ (h—up)) could the existence of w in an appropriate
setting be established. In the same range, the corresponding free boundary has a positive distance
from the well and is the graph in vertical direction of a function of the horizontal coordinates. The
free boundary conditions are (at points of sufficient smoothness)

w=0 and 9w =-¢e€n-v at the free boundary. (7.2

Moreover, if Q < Q¢ (h — Ug), then w > 0in an upper neighbourhood of the free boundary which
isthen analytic. As explained in [5], smoothness of the free boundary isimplied by positivity of w
in an upper neighbourhood of the free boundary and vice versa.

Uniqueness was also established for subcritical rates, implying that @ and the free boundary are
axial symmetric (at least in the context of this paper).

Thecase Q = Q¢ (h—up) was considered asthelimit Q 7 Q. Asaresult we established the
existence of an axial symmetric free boundary (and ), which loses regularity at the central axis:
i.e. points where 0 < 0 converge from above to the free boundary at the central axis. In [6] we
studied the consequence of this behaviour when n = 2 in detail, leading to the formation of a cusp
in the free boundary.

Because we treat here the cases n = 2, 3 together, we say that a cusp is formed at the free
boundary whenever points with @ < 0 enter the free boundary: see Property 4.17 of [5] for the
precise statement.

We start by showing some monotonicity results for the weak formulation. They follow directly
from Proposition 3.2 and are only valid for solutions constructed according to the procedure of
Section 3, that is to say if they are ‘ constructed accordingly’. We show monatonicity with respect
to Q for fixed Qs, and with respect to Qs for fixed Q.

LEMMA 7.1 Let Q1, Q2 denote total discharges satisfying Q1 > Q2 > Qs (for Qs fixed) and let
Qs;, Qs, denote salt discharges satisfying Qs, < Qs, < Q (for Q fixed). If g1 and g» denote the
free boundaries of the correspondingly constructed weak solutions for one of these pairs of ordered
data, then

01(r) < g2(r) forallr € [0, R].

Proof. The function ¢ := v — Qs satisfies the weak formulation (x) and (x*) with Qs = 0 and
with the modified Dirichlet data, see Fig. 7,
—Qs on AOW

§0:
Q—Qs on BCW.
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For both pairs of Dirichlet data we have ¢1 > @2 on 9£2p. The same ordering carries over to
the Dirichlet data in BC, and, by Proposition 3.2, to the approximations ¢j, . Passing to the limit
gives p1 > ¢ in 2. ldentifying the free boundaries with the level sets {¢i = 0} and using the
z-monotonicity of ¢o, yields the inequality. O

Next we turn to the convergence for vanishing Qs. For convenience we denote the weak solution

coresponding to the pair (Qs, Q) by s.
Themain result is

THEOREM 7.2 Let Q < Qg (h) befixed. Then
= lim existsin 2\W
14 S\Olﬂs( \W)

is a weak solution corresponding to Qs = 0. The corresponding free boundary has a cusp at the
central axis. In other words, v is a cusp solution corresponding to ug := QIiT0 Us.

Proof. AsinLemma2.1 we only give the proof for n = 3. Wefirst constuct a comparison function
for the solutions /s to ensure that for all Qs > 0, the free boundary stays away from the bottom
of 2. Choose any Q¢ € ]Q, Q¢ (h)[ and let w denote the subcritical solution related to Q¢ and
up = 0, seeFig. 23.

I,

Bn—l

R

FIG. 23. Properties of the subcritical solution wc.

Since subcritical solutions have smooth free boundaries, we find that w. satisfies

Ae = 27 Q¢ dw in £2f;

onwe =0 aong top;

We =2 along lateral boundary;
we=0, d,l0c =€,-v aongsS

e =0 in Qs.

Since 1w isradial symmetric we define, as before, the two-dimensional pressure

Pc(r,2) = welr,2) —z in £,
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and through relations (2.5) a stream function ¢, : £2¢\W — R. Following the proof of Lemma
2.1, we choose ¢, to be the solution of (see Fig. 24),

1
V-V =0 in 2

¥ = Qs on SUTW;
¥ = Qs+ Qc on BCW;
oy =0 on AB.
C B
We
S §y
T y
Qs
0 A

FIG. 24. Definition of ..

One easily verifiesthat w = 0 along Simplies the second condition
1
FE)lefc+e, -v=0 on S
Next we extend the construction below the free boundary. Let ys, : £2s — R be the solution of

V. (%VI//) =0 in 0

¥ = Qs on S
v =Yg on AOT.

where vrg is a smooth function satisfying 0 < ¥ < Qs, ¥B(A) = ¥g(T) = Qs and ¥g # Qs.
Such a5, clearly exists and satisfies

1
Fav Ys >0 on S

We now show that the composite function ¢ : £2 — R, defined by

Vi, in 2,
wc =
Ys IN 2,
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is a supersolution for s, for any Qs > 0. To see this we extend ¢ by ¥ = Qs + Q¢ in the half
strip {(r,2) : 0 <r < R,z > 1}. We shift the composite function downwards over distance L to
obtain

Ve (1, 2) = Ye(r, z+ L) (r,z) € 2.
Since Qs + Q¢ > Q we have .
Yo >Ys in 2,
for L sufficiently large and for all Qs > 0. Next we decrease L, i.e. shift . upwards, until the two

functions touch. We claim that this cannot happen for any L > 0.
Since

1
[Fav wCL]Jre, -v<0 on S

it follows from the Comparison Lemma 5.2 that the functions cannot touch in interior points of £2.
Obviously, not on dp £2 and, by the strong maximum principle, not on dy £2. The latter observation
follows from the fact that ¢, > Qs onan$2 foral L > 0.

Denating the free boundaries of 5, we by the functions gs, uc (see Theorem 4.5) we deduce
from the comparison that for all Qs > 0

gs(r) > uc(r) >0 on [O,R[,

and, in particular,
us = 0.

As a second step we consider the convergence of 5. As in the existence proof of Section 3 we
deduce the uniform estimate

1
/ V(s = Yo)l? < C.
2
Since yg does not depend on Qg, we obtain for a sequence Qs \, O:

¥s — Yo — ¥ — Yo weakly in H-2(2);
Vs — Yo — ¥ — Yo strongly in L2(£2) and ae. in £2;
Vs = X{ys<Qs) — ¥ Weak star in L>°(£2);

YNs -= X{ys<Qs) — YN Weak star in L (N £2).
Thetriple {, y, yn} satisfies (x) and (x*) for Qs = 0,
0<y <Q in £,
and (in sense of distributionsin £2)
V-({VYtye) =0
9z > 0 (inherited from approximations);

ory < 0 (from weak equation and v > 0).
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Let 9{y > 0} N £2 denote the free boundary of the limit problem. The z-monotonicity of ¢ and
r-monotonicity of y (apply same argument as in the proof of Claim 4.4) imply for v the property:
if ¥ (ro, z0) > 0for some (rg, zp) € £2,theny > Ointheset {(r.2) :r > rg,z > zo}. Thistells
us that the free boundary is a Lipschitz graph in any intermediate direction between e end e, that
it has well-defined end points (0, ut) and (R, up), and that it is decreasing it r. In fact it is strictly
decreasing. The occurrence of a horizontal segment would lead to a contradiction using the Hopf
principle and the free boundary condition 9,y = 0.

According to Lemma 7.1, the free boundaries of the approximating problems decrease with
Qs \\ 0. From this monotonicity and d; ys < 0 one deduces that a mushy region, where v = 0 and
y < 1, cannot exist. Hence

y=1 in £2\{y >0}

and
yn=1 in onR2\{y > 0}

In other words
Yy =1— x>0 in £ and YN =1— x>0 in oNS2.

Furthermore, thereexists g € C([0, R]), g strictly decreasing and g(r) > uc(r) > 0on|[0, R[, such
that
Hy >0NL2={r,2:0<r <R, z=9g(r)}.

We only need to verify the continuity. Using the monotonicity, this follows directly if we can rule
our vertical segments. This is done by a similar argument as in the proof of Proposition 4.2. Asin
Remark 4.6 it follows that

oY =0in{(R,2) :up <z<1}. (7.3
Inthethird step we return to the function w, defined in (7.1). First find the two-dimensional pressure
p € HL2(22) N C(£2) from the definitions

1
0zp = ——0rY —v

in (7.4)

o p= +r}azw

such that p = 0 along the bottom of §2. Then set
w=p+z in £2. (7.5)

The weak equation for v implies for w the weak equation
V- (r(Vw — xiy-0&)) =0 in £.
Introducing wo : $2\W — R as the unique solution of
Ao = 27 Qéw in 2,

y o;wg =0 on the top,
BC{ wo=0 on the bottom,
wo = (Z—Up)+ onthelateral sides,
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we find for w — wo the weak equation

V- (Vw—wg)+y)=0 in £ (7.6)
with
w=0, y=1 below free boundary,
Aw =0, 7=0 above free boundary.

Moreover, o satisfies BC, which follows directly from definitions (7.4), (7.5) and the v -boundary
conditions, including (7.3).
These propertiesimply that (w, y) is aweak solution of the free boundary problem introduced

in[5]. Thereit was shown that if, for someopenset U C £2 N {x3 = 0} and for some e > 0,
w>0 in {(X1,X2,X3): (X1.X2) €U, § <x3<@§+ ¢}

then
g isanalyticin U.
The monotonicity of the free boundary, combined with

orw > 0in £2, insense of distributions, 7.7)

which is a consequence of the z-monotonicity of v, imply that w > 0 in an upper neighbourhood
of the free boundary, away from the central axis. Hence

gisanadyticin]0, R[.

To conclude the proof, we show that negativity of w enters the free boundary at the top (0, ut).
Clearly, w < 0 near the well. Thisfollows from the observation that wo — —oo when approaching
W and i — g € C*(£2) for somea € (0, 1). Consequently, the free boundary for Qs = O has a
positive distance from the well: i.e.

ur < h.

For Qs > 0 we define the function ws (and ws) from (7.4), (7.5), with = ys and y = ys, such
that ws(O) = 0. Wefirst show that ws is non-decreasing along the free boundary: i.e.

ws(r, gs(r)) isnon-decreasing inr €]0, R[. (7.8)

If the free boundary were smooth, thiswould be a direct consequence of the Hopf principle, applied
to ¥s in {ys < Qs}, and transformations (7.4), (7.5). These transformations imply

1 .
Fvws — & = (—0zws, o ws) in £f,
(7.9
1 .
FVI/fs = (—0dzws, Or ws) in £s.

Hence, for an orientation as below we find along the free boundary
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s > Qs

£b. ¢ = Q,

1
Faj_Ws —&  -Vv=V- (—azws, arws) = sz . (l)z, —])r) = 8‘EwS

and, reflecting the free boundary conditions,

Since we established only continuity for the free boundary we have to argue in a different way.
The starting point is the weak equation for ys: for al ¢ € C3°(£2)

1
0 =/V§'<r—v¢s+)’ser>
2

1 1 .
= / V¢ - (FVWS—Q>+/V§'vam(1ﬁS, Qs),
2N{s>Qs} 2

wherewereplaced ys by —(1—ys) = — x{ys>Qs}- SinCEMIN (s, Qs) isasupersolution, the second
integral is non-negative for ¢ > 0. Substituting (7.9) yields

2N{¢s>Qs}
Let X, = (re,ze) € {¥s = Qs}, k= 1,2andr; < rp, be two free boundary points and let
R cc £ denote arectangle asin Fig. 25. Further, |et the non-negative test functions ¢ convergence

towards the characteristic function of R. Since w € Hlf)’f(ﬁ) N C(£2), it follows that for amost al
such R

0> (—v) - (—0zws, Or wg) = — Orws = ws(X1) — ws(X2).

dRN{Ys>Qs} IRN{Ys>Qs}
Because w is continuous, this establishes (7.8). Finally, we consider again thelimit Qs ~\, 0, how
for the functions ws. Since (ws, ys) satisfies (7.6) and ws — wo = 0 (by appropriate normalization)
along the lateral boundary of £2¢, we have H1-2 and C* estimatesimplying for a sequence Qs \, 0,

s — o — W — o weakly in HL2(£2) and strongly in C*(©).
Next wefix two arbitrary pointson the central axis between thewell and the top of the free boundary:

i.e
X, = (0,0, z,), k=1,2, withur <z1 <7, < h.
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14
| -
hs > Qs Y
’”«‘\IL_\ T
o fb.
R

FIG. 25. Therectangle R.

Further consider for approriate Qs “\ 0, the sequences of free boundary points
XSS ={ys=Qs}N{x3=12} fork=12

satisfying
Ds(X2) > ws(X2),

and with no free boundary points between x, and x,*°. Continuity of the free boundaries ensures the
existence of such sequences. Moreover, the monotonicity in Qs of the free boundaries imply that
both sequences move monotonically in the direction of the axis. In fact

lim x% = x,,
Qs\0

otherwise the limit free boundary would be above x3 = ut. The convergence properties of x,** and
ws imply

w(X1) = w(X2). (7.10).
Now suppose there exists xo = (0, 0, zg), with ut < zg < h, such that w(xg) = 0. Then, by (7.10),

w = 0 on the axis between the free boundary and Xg. Since w is harmonic in a neighbourhood of
that segment and Vo - < 0, we obtain a contradiction. O
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