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A free boundary problem involving a cusp: breakthrough of salt water
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In this paper we study a two-phase free boundary problem describing the stationary flow of fresh
and salt water in a porous medium, when both fluids are drawn into a well. For given discharges at
the well (Q f for fresh water andQs for salt water) we formulate the problem in terms of the stream
function in an axial symmetric flow domain inRn(n = 2, 3). We prove the existence of a continuous
free boundary which ends up in the well, located on the central axis. Moreover, we show that the free
boundary has a tangent at the well and approaches it in aC1 sense. Using the method of separation
of variables we also give a result concerning the asymptotic behaviour of the free boundary at the
well. For a given total discharge(Q := Q f + Qs) we consider the vanishingQs limit. We show that
a free boundary arises with a cusp at the central axis, having a positive distance from the well. This
work is a continuation of [5, 6].

Keywords: Porous media flow; free boundary problem.

1. Introduction

In two previous papers [5, 6], we studied a free boundary problem that results from a model
describing the withdrawal of fluid from a reservoir. In that model we considered the stationary flow
of two incompressible fluids through a homogeneous and isotropic porous medium (the reservoir).
The fluids have constant but different densities and are assumed to be separated by an abrupt
transition,an interface. In the reservoir one or more wells are present to recover one of the fluids.
Such models are relevant, for instance, when designing freshwater reservoirs in coastal regions.
Then fresh water overlays salt water from the sea.

When we think of a horizontal interface in the absence of the wells, we will observe an upconed
interface after applying the wells to the fluid on top, see Fig. 1, where a reservoir with only one well
is shown.

Assuming only horizontal flow along the vertical boundaries of the reservoir, with a fixed and
prescribed position of the interface (u0), a stationary flow and a stationary interface may result for
which the fluid below is stagnant. The fluid on top is drawn into the wells. This case is studied in
detail in [5]. It leads to an elliptic free boundary problem involving a parameterQ, which is related
to the withdrawal rate or discharge of the wells. It was shown that a critical rateQcr > 0 exists
such that forQ < Qcr the interface can be represented by an analytic function of the horizontal
coordinates. Moreover, the height of the interface increases whenever the rate increases. AtQ =
Qcr a cusp develops in the interface, being still at a positive distance from the well, see Fig. 2. These
results were proven for flows inRn, n � 2.
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FIG. 1. Smooth upconed interface, Q < Qcr .

FIG. 2. Interface with cusp, Q = Qcr .

In the second work [6], we analysed in detail the local behaviour near the cusp. This was
performed for the two-dimensional case (n = 2) only. Applying our local results to a configuration
with one well, as in Fig. 2, we obtain for points (x, z) on the interface (x horizontal, z vertical) near
the cusp (x0, z0)

lim
x→x0

|x − x0|
(z0 − z)3/2

= C

for some constant C > 0.
Keeping the reservoir dimensions (H and R) and all physical parameters fixed, the value of the

critical rate Qcr only depends on h − u0, where h denotes the distance between the well and the
bottom of the reservoir. We conjecture that Qcr = Qcr (h−u0) is continuous and strictly increasing
with Qcr (0) = 0.

Instead of considering the critical cusp case as the limit of subcritical cases, all having smooth
interfaces with stagnant salt water below, we propose in this paper a different stategy. In this strategy
we let the salt water move as well and we characterize the cusp case as the limit of vanishing flow
in the saltwater region.

Thus we first need to address the problem of what happens when the salt water also moves
towards the well. We expect a fluid distribution as in Fig. 4.

The main result of this paper is that there are stationary solutions of this type. We study these
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FIG. 3. Sketch of the behaviour of Qcr ; the shape of the curve is unknown.

FIG. 4. Salt water moves towards the well.

solutions for axial symmetric flows (n = 2, 3), with only one well on the central axis. This allows
us to formulate the problem in terms of a stream function, as in [2] or [4].

In Section 2 we present the weak formulation for the flow problem in a bounded, axial symmetric
reservoir of constant thickness. Now the formulation involves two parameters: Qs (outflow of salt
water at the well) and Q f (outflow of fresh water at the well), or rather Qs and Q := Qs + Q f

(total outflow at the well). As a result of this formulation we are able to prove that a weak solution
exists (Section 3). In Section 4 we show that the interface is a continuous curve in the z-direction.
On the axis it ends up in the well W and on the lateral boundary in a well-defined point (R, us).

In Sections 5 and 6 we consider the free boundary near the well. First, we show in Section 5 that
the free boundary has a tangent at W and approaches it in a C1-sense. The tangent direction is given
by the angle

ω∗ =




π

2

Qs − Q f

Qs + Q f
for n = 2,

arcsin
Qs − Q f

Qs + Q f
for n = 3,

with respect to the horizontal plane. Note that ω∗ only depends on the discharge at the well and
does not involve density (gravity) effects. The asympotic behaviour at W is studied in Section 6.
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Introducing polar coordinates and writing, for free boundary points (r, z),

r + i(z − h) = es+iω(s),

we give by means of the method of separation of variables an estimate for the rate of convergence
(see Theorem 6.7)

ω(s)→ ω∗ as s ↘ −∞.

Concerning the vanishing Qs limit we only have a partial result. In Section 7 we show that if Q
is sufficiently small, depending only on the reservoir dimensions and the position of the well, then
Qs ↘ 0 results in an interface with a cusp at the origin, having a positive distance from the well, and
with stagnant fluid below it. For larger values of Q we have no precise mathematical results when
taking this limit. However, we conjecture the following behaviour: if Q � Qcr (h), see Fig. 3, then
Qs ↘ 0 results in a decreasing sequence of interfaces, converging to a cusped interface satisfying
Qcr (h − u0) = Q, where u0 = lim

Qs↘0
us . Only for Q < Qcr (h) is this rigorously demonstrated.

If Q > Qcr (h), then Qs ↘ 0 results in a decreasing sequence of interfaces converging to a
cusped interface which partly coincides with the horizontal bottom of the reservoir, see Fig. 5.

FIG. 5. Conjectured interface for Q > Qcr (h).

In the two-dimensional setting such interfaces have been constructed explicitly using hodograph
techniques, for example, see [12].

2. Formulation of the problem

Let the reservoir occupy the bounded, axial-symmetric region

Ω̃ =
{
(x1, . . . , xn) :

√
x2

1 + · · · + x2
n−1 < R, 0 < xn < H

}
,

with n = 2, 3 describing the physical cases. It is saturated by either fresh water or salt water, which
are macroscopically separated by an interface S. We also write

Ω̃ = Ω̃ f ∪ S ∪ Ω̃s,

where Ω̃ f and Ω̃s denote the regions filled up by the fresh and salt groundwater, see Fig. 6.
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FIG. 6. Axial symmetric reservoir.

At the central axis, a well W is located at a distance h ∈ ]0, H [ above the horizontal plane
{xn = 0}. We will study the case where both fresh and salt water are being extracted from the
reservoir through W . Let Q f > 0 denote the discharge of fresh water and Qs > 0 the discharge
of salt water. Then Q := Qs + Q f is the total production rate of fluid from the reservoir. Each
fluid has a constant specific weight γi , with 0 < γ f < γs <∞ and the fluid–medium interaction is
characterized by a constant mobility λ > 0. The model is described by Darcy’s law

q + λ(grad p + γ ez) = 0

and the fluid balance equation
div q = −Q δW

in Ω̃ , where γ = γ f in Ω̃ f and γ = γs in Ω̃s . In these equations, q denotes the specific discharge,
p the pressure, ez the unit vector in the positive xn-direction (against the direction of gravity) and
δW the Dirac distribution at the point W . Along the upper and lower boundary of Ω̃ we require a
no-flow condition, expressed by

q · ez = 0 on {xn = 0} ∪ {xn = H}.
Along the cylindrical, lateral boundary we assume horizontal flow, i.e.

q is normal at {x2
1 + · · · + x2

n−1 = R2}.
Because of the cylindrical form of the reservoir and the central location of the well, we expect axial
symmetry of the unknowns. Thus introducing

r =
√

x2
1 + · · · + x2

n−1 and z = xn,

we consider p, q and γ to be functions of these variables. We obtain in the two-dimensional domain

Ω = {(r, z) : 0 < r < R, 0 < z < H }
Darcy’s law again

q + λ(∇ p + γ ez) = 0 , (2.1)
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where now q = qr er+qzez , with er = 1

r
(x1, . . . , xn−1, 0) and ez = (0, . . . , 0, 1), and∇ = (∂r , ∂z).

The fluid balance equation in Ω becomes

1

rn−2
∂r (r

n−2qr )+ ∂zqz = 0.

The latter equation suggests the introduction of a stream function ψ : Ω → R satisfying

q =
(
− 1

rn−2
∂zψ ,

1

rn−2
∂rψ

)
. (2.2)

At this point we first introduce dimensionless variables. Let Γ = λ(γs−γ f ). Then we normalize

ψ :=ψ/(Γ Hn−2) ; Q, Qs and Q f similar

γ := (γ − γ f )/(γs − γ f )

r = r/H ; z, H, R and h similar.

An equation for ψ results by taking the two-dimensional curl of Darcy’s law (2.1) and by
substituting (2.2) into the result, see also [2] or [4]. This yields

∇ ·
(

1

rn−2
∇ψ + γ er

)
= 0 in Ω, (2.3)

with

γ =
{

0 in Ω f ,

1 in Ωs,

where Ω f and Ωs now denote the subregions of Ω filled up by fresh and salt water, see Fig. 7.

FIG. 7. Boundary conditions for ψ .

Because the top and bottom of the reservoir are impervious, the stream function must be constant
there. The same is true on the symmetry axis, except, of course, at the location (0, h) of the well,
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where fluid is being extracted from the reservoir. There the stream function exhibits a jump Q. With
reference to Fig. 7 we take

ψ = 0 along AOW

and
ψ = Q along BCW.

The assumption of only horizontal flow along the lateral boundary requires

∂rψ = 0 along AB.

For future reference, we denote the boundary of Ω by ∂Ω , the part AOC B by ∂DΩ and the part
AB by ∂N Ω . Because the interface is stationary, ψ must be constant there as well. To ensure that
the prescribed saltwater discharge Qs is being extracted from the reservoir we take

ψ = Qs along the fresh–salt interface.

Now considering (2.3) in Ω f and Ωs , we expect to find, by the strong maximum principle,

0 < ψ < Qs in Ωs

and
Qs < ψ < Q in Ω f .

Therefore we write
γ = 1− H(ψ − Qs) in Ω,

where H(·) denotes the Heaviside graph

H(s) =




1 for s > 0,

[0, 1] for s = 0,

0 for s < 0.

We expect certain smoothness (at least Lipschitz continuity) away from the location of the well. To
capture the singular behaviour of ψ there, we consider the function ψ0 which corresponds to γ = 0
in Ω : i.e. it satisfies

∇ ·
(

1

rn−2
∇ψ0

)
= 0 in Ω (2.4)

and the ψ-boundary conditions on ∂Ω .

LEMMA 2.1 There exists exactly one such ψ0, smooth (at least C1) away from W , with ∂zψ0 > 0
in Ω . Near W it satisfies

ψ0 = ψ∗ + smooth terms,

where

ψ∗(r, z) :=




Q

2

(
2

π
arctan

z − h

r
+ 1

)
for n = 2,

Q

2

(
z − h

(r2 + (z − h)2)1/2
+ 1

)
for n = 3.
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Proof. We give the proof only for n = 3. It uses the pressure formulation in the three-dimensional
domain Ω̃ . Let p̃0 be the weak solution of the problem


∆ p̃0 = 2π QδW in Ω̃,

∂z p̃0 = 0 on top and bottom of Ω̃,

p̃0 = 0 on lateral side of Ω̃.

By standard elliptic theory, e.g. see [9], there exists a unique p̃0 which is smooth outside W . Clearly
p̃0 is axially symmetric. Therefore, writing x = (x1, x2, x3),

p̃0(x) = p0(r, z), with (r, z) ∈ Ω.

The function p0 is smooth inside Ω where it satisfies the equation

∂r (r∂r p0)+ ∂z(r∂z p0) = 0.

Since Ω is simply connected, this implies the existence of a unique (up to an additive constant)
function ψ0 : Ω̄\W → R which satisfies

∂z p0 = −1

r
∂rψ0 and ∂r p0 = 1

r
∂zψ0. (2.5)

One easily verifies that ψ0 solves (2.4) in Ω , that ψ0 is piecewise constant on ∂DΩ (except at W )
and that ∂rψ0 = 0 on ∂N Ω . To show that ψ0 jumps with Q at W we integrate the three-dimensional
equation for p̃0 over a small cylindrical neighbourhood of W . For ε, δ > 0 and sufficiently small,
let

Cε
δ :=

{
x = (x1, x2, x3) :

√
x2

1 + x2
2 < ε, |x3 − h| < δ

}
.

Then

2π Q=
∫

∂Cε
s

grad p̃0 · ν

= 2π

h+δ∫
h−δ

ε∂r p0(ε, z) dz +
∫

{√
x2

1+x2
2<ε

}{∂z p̃0(x1, x2, δ)− ∂z p̃0(x1, x2,−δ)} dx1 dx2.

In the first integral we replace the integrand by ∂zψ0(ε, z).
Then for δ fixed and ε ↘ 0 we find

Q = ψ0(0, h + δ)− ψ0(0, h − δ),

which shows that ψ0 indeed satisfies the correct jump condition at W . The proof concerning the
z-monotonicity of ψ0 in Ω follows as a special case of the proof of Proposition 3.4. (i.e. without
gravity). It will therefore not be given here.
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The asymptotic expressions follow from the observation that near W, p̃0 can be written as

p̃0(x) = −2π Q F(x −W )+ smooth terms,

where F is the fundamental solution of −∆ with respect to the origin. Consequently, near W ,

grad p̃0(x) = Q

2

x −W

|x −W |3 + smooth terms

or

∇ p0(r, z) = Q

2(r2 + (z − h)2)3/2
(rer + (z − h)ez)+ smooth terms.

Finally, we use relations (2.5) and obtain

ψ0 = ψ∗ + smooth terms near W,

with ψ∗ as in the assertion. ✷

Using ψ0 we introduce the following weak formulation. Let

V =
{
ζ ∈ H1,2(Ω) : ζ = 0 in ∂DΩ and r

2−n
2 ∇ζ ∈ L2(Ω;R2)

}
.

Find ψ ∈ ψ0 + V, γ ∈ L∞(Ω) and γN ∈ L∞(∂N Ω) such that∫
Ω

∇ζ ·
{

1

rn−2
∇(ψ − ψ0)+ γ er

}
=

∫
∂N Ω

ζγN (∗)

for all ζ ∈ V , and {
γ ∈ 1− H(ψ − Qs) in Ω,

γN ∈ 1− H(ψ − Qs) in ∂N Ω.
(∗∗)

REMARK. If the value of γ would exist at ∂N Ω , and coincide with γN , then the weak formulation
(at least formally) implies ∂r (ψ − ψ0) = 0 at ∂N Ω . Since ∂rψ0 = 0 along ∂N Ω , this gives the
desired boundary condition for ψ .

3. Existence of weak solution

LEMMA 3.1 There exists at least one weak solution {ψ, γ, γN }.
Proof. In the equation for ψ we introduce an ε-regularization with respect to γ and, based on the
function ψ0 in Section 2, an ε-regularization with respect to the term 1/rn−2 in the differential
equation, the Dirichlet condition on the axis, and due to the special construction below also with
respect to the domain.

The perturbed domain is
Ωε := ]0, R − ε[ × ]0, 1[

and the perturbed function
ψ0,ε : Ω̄ε → R,
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is defined by the shift
ψ0,ε (r, z) = ψ0(r + ε, z) for (r, z) ∈ Ω̄ε.

Each function ψ0,ε is a smooth solution of the perturbed equation

∇ ·
(

1

(r + ε)n−2
∇ ψ0,ε

)
= 0 in Ωε

and satisfies the boundary conditions, see Fig. 8,

mbox

FIG. 8. Shifted domain Ωε .

BCε




ψ0,ε = 0 on O Aε, ψ0,ε = Q on BεC

∂rψ0,ε = 0 on Aε Bε

ψ0,ε = ψ0(ε, ·) on OC,

where ψ0(ε, ·) satisfies : ψ0(ε, 0) = 0, ψ0(ε, 1) = Q, ∂zψ0(ε, ·) > 0 and ψ0(ε, z)→ ψ0(0, z) as
ε ↘ 0 pointwise for z �= h (with ψ0(0, ·) = 0 on OW and ψ0(0, ·) = Q on WC), see Lemma 2.1.

Next we turn to the ε-regularization for ψ , which we define through the problems (for any small
ε > 0)

Pε



∇ ·

(
1

(r + ε)n−2
∇ψ + (1− Hε(ψ − Qs))er

)
= 0 in Ωε,

ψ satisfies BCε,

where Hε is a smooth monotone approximation of the Heaviside graph. As for instance in [1] or [7],
Problem Pε has a unique smooth solution ψε. We first show that Problem Pε satisfies a comparison
principle. ✷

PROPOSITION 3.2 Let ψ1 and ψ2 be two solutions of the ψε-equation satisfying ψ1 � ψ2 on
∂DΩε and ∂r (ψ1 − ψ2) = 0 on ∂N Ωε. Then

ψ1 � ψ2 in Ωε.
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Proof. The proof is a modification of the proof of [11: Theorem 1]. There he tests the equation for
the difference ψ1 − ψ2 with the function (for δ > 0)

ζ = w

δ + w
with w = (ψ1 − ψ2 − δ)+.

Following this procedure we arrive at the identity

δ

∫
{ψ1−ψ2�δ}

1

(r + ε)n−2

|∇w|2
(δ + w)2

+ δ

∫
{ψ1−ψ2�δ}

(H2 − H1)
∂rw

(δ + w)2

+
∫

{ψ1−ψ2�δ}∩{r=R−ε}
(H1 − H2)

w

δ + w
= 0 ,

where we used the notation Hi = Hε(ψi − Qs). The first and second term are as in [11] and can be
treated similarly. The third term is non-negative, by the monotonicity of Hε, and can therefore be
disregarded from the estimates. Proceeding as in [11] results in ψ1 � ψ2 in Ω . ✷

COROLLARY 3.3 0 � ψε � Q in Ωε.

Proof. Since constants satisfy the equation, these inequalities follow from BCε. ✷

Returning to the existence proof we introduce the difference

vε := ψε − ψ0,ε in Ωε,

which satisfies the equation, with hε := Hε(vε + ψ0,ε − Qs),

∇ ·
(

1

(r + ε)n−2
∇ vε + (1− hε)er

)
= 0 in Ωε

and the homogeneous boundary conditions

vε|∂DΩε = 0 and ∂rvε|∂N Ωε = 0.

Multiplying the equation by vε and integrating over Ωε gives∫
Ωε

1

(r + ε)n−2
|∇vε|2 = −

∫
Ωε

(1− hε)∂rvε +
∫

{r=R−ε}
(1− hε)vε.

Absorbing the first term in the right-hand side and using Corrollary 3.3. for the second term, we
obtain the uniform estimate ∫

Ωε

1

(r + ε)n−2
|∇vε|2 � C.

Introducing the characteristic function of the set Ωε, we deduce

χΩε

∇vε

(r + ε)
n
2−1

is uniformly bounded in L2(R2;R2),
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χΩεvε is uniformly bounded in L∞(R2).

Consequently, there exist functions v∗ ∈ L2(Ω;R2) and v ∈ L2(Ω) such that for a sequence
ε ↘ 0

χΩε

∇vε

(r + ε)
n
2−1
→ χΩ v∗ weakly in L2(R2;R2),

χΩεvε → χΩ v weak star in L∞(R2).

Since then χΩε∇vε → χΩ r
n
2−1v∗ weakly in L2(R2;R2), it follows that v ∈ H1,2(Ω) with

∇v = r
n
2−1 v∗ a.e. in Ω.

Therefore vε → v weakly in H1.2
loc (Ω) and thus for a subsequence

vε → v a.e. in Ω.

Since also ψ0,ε → ψ locally uniformly in Ω̄\W , there exists γ̂ ∈ L∞(Ω) such that

χΩε Hε(vε + ψ0,ε − Qs)→ γ̂

weak star in L∞(R2) with γ̂ ∈ H(v + ψ0 − Qs), and γ̂N ∈ L∞(∂N Ω) such that

Hε(vε + ψ0,ε − Qs)(R − ε, ·)→ γ̂N (R, ·)
weak star in L∞(]0, 1[) with γ̂N ∈ H(v + ψ0 − Qs).

Finally, we test the vε-equation with ζ ∈ V . This gives∫
R2

∇ζ

(r + ε)
n
2−1

·
(

χΩε

∇vε

(r + ε)
n
2−1

)
+

∫
R2

∂rζχΩε
(1− Hε(vε + ψ0,ε − Qs))

=
∫

{r=R−ε}
ζ(1− Hε(vε + ψ0,ε − Qs)).

We now have all ingredients to pass to the limit for ε ↘ 0, which gives the weak equation (�) for
ψ := v + ψ0. ✷

Crucial for the existence of a free boundary is the inequality.

PROPOSITION 3.4 ∂zψ � 0 in sense of distributions.

Proof. For δ > 0, sufficiently small, we define the domain

Ωδ
ε = ]0, R − ε[ × ]δ, 1[

and the translated function

ψδ
ε (r, z) = ψε(r, z − δ) for (r, z) ∈ Ωδ

ε .

Using the properties of BCε and Corrollary 3.3 we have

ψδ
ε � ψε on ∂DΩδ

ε and ∂r (ψ
δ
ε − ψε) = 0 on ∂N Ωδ

ε .

Since ψδ
ε satisfies the ψε-equation as well, the comparison principle gives ψδ

ε � ψε in Ωδ
ε . From

this inequality ∂zψε � 0 in Ωε is immediate. Letting ε ↘ 0 completes the proof. ✷
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For later use we show continuity properties of the solution ψ .

THEOREM 3.5 ψ is Hölder continuous in Ω̄\W .

Proof. The Hölder continuity away from the axis follows from standard techniques. Since γN

depends only on the z-variable, the weak equation for ψ can be written as∫
Ω

∇ζ ·
(

1

rn−2
∇ψ + (γ − γN )er

)
= 0

for all ζ ∈ V , with ζ(r, z) = 0 for small r . If

ζ = η2(ψ − m) with m ∈ R, η ∈ C∞0 (R2)

is such a test function, we derive that∫
Ω

η2

rn−2
|∇ψ |2 � C

∫
Ω

(
η2rn−2 + |∇η|2

rn−2
(ψ − m)2

)
.

In particular, if x0 = (r0, z0) ∈ Ω̄ with r0 > δ (δ > 0, fixed) and if r0 − 2ρ � δ, let η be a standard
cut-off function satisfying η(x) = 1 for |x − x0| � ρ and η(x) = 0 for |x − x0| � 2ρ. In the three
cases:

(i) B2ρ(x0) ⊂ Ω, m = ∫
Ω∩B2ρ(x0)\Bρ(x0)

ψ;

(i i) r0 = R, [z0 − 2ρ, z0 + 2ρ] ⊂ [0, 1], m as in (i);

(i i i) z0 = 0 (or 1), 2ρ < 1, m = 0 (or Q);
we can apply the above inequality. Using Poincaré’s inequality for ψ −m on Ω ∩ B2ρ(x0)\Bρ(x0)

we obtain an estimate

∫
Ω∩Bρ(x0)

|∇ψ |2 � Cδ


ρ2 +

∫
Ω∩B2ρ(x0)\Bρ(x0)

|∇ψ |2

 .

From this we deduce for given δ > 0 (as above) and ε > 0∫
Ω∩Bρ(x0)

|∇ψ |2 � Cδ,ερ
2−ε

for all x0 = (r0, x0) ∈ Ω̄ and ρ > 0 with r0 − 2ρ � δ. Then by the Morrey lemma, see [9], the
Hölder continuity of ψ away from the axis and with any Hölder exponent follows.

For n = 2, the same procedure applies at the axis outside the well. To obtain the result for n � 3
we switch to the pressure formulation of the problem. In the proof of Lemma 2.1, the function ψ0
has been defined by p0. Here we want to define the pressure p by the stream function ψ , which
locally in Ω is a weak solution of

∇ ·
(

1

rn−2
∇ψ + γ er

)
= 0,
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where the vector field under the divergence is in L2
loc(Ω;R2). Since Ω is simply connected, there

exists (up to an additive constant) a unique function p ∈ H1,2
loc (Ω) with

∂z p = −
(

1

rn−2
∂rψ + γ

)
, ∂r p = 1

rn−2
∂zψ.

Further, since ∂r∂zψ = ∂z∂rψ in distributional sense, p is a weak solution of

∂r (r
n−2∂r p)+ ∂z(r

n−2(∂z p + γ )) = 0.

Now consider the corresponding quantities on the n-dimensional domain Ω̃ , e.g.

p̃(x1, . . . , xn) = p(r, xn) with r =
√

x2
1 + · · · + x2

n−1.

It follows that for ζ̃ ∈ C∞0 (Ω̃), with ζ̃ (x) = 0 for small r ,∫
Ω̃

∇ ζ̃ · (∇ p̃ + γ̃ exn ) =
∫
Ω

rn−2 ∇ζ · (∇ p + γ ez) = 0,

where

ζ(r, z) =
∫

ζ̃ (rξ, z)dHn−1(ξ).

Moreover, since ψ −ψ0 ∈ V , it follows from (2.5) that r2−n|∇ψ |2 ∈ L1(Ω\Bε(W )). This implies
that rn−2|∇ p|2 ∈ L1(Ω\Bε(W )); that is, |∇ p̃| ∈ L2(Ω̃\{r = 0}\Bε(W )).

Since the axis {r = 0} is a removable singularity for H1,2-spaces, it follows that p̃ ∈
H1,2

loc (Ω̃\W ) and
∫
Ω̃

∇ ζ̃ · (∇ p̃ + γ̃ exn ) = 0 for all ζ̃ ∈ C∞0 (Ω̃\W ). We then can apply the above

technique to obtain ∫
Bρ(x)

|∇ p̃|2 � Cρn−ε

locally in Ω̃\W . Covering (n − 2)-dimensional rings by balls this gives

∫
Ω∩Bρ(x0)

rn−2|∇ p|2 � C

(
1+

(
r0

ρ

)n−2
)

ρn−ε

for balls Bρ(x0) away from the well and x0 = (r0, z0).
Since

r2−n|∇ψ |2 � 2rn−2(|∇ p|2 + 1),

we obtain the estimate ∫
Ω∩Bρ(x0)

1

rn−2
|∇ψ |2 � Cρ2−ε.

Again, the Morrey lemma implies the Hölder continuity, at the axis and away from the well. ✷
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THEOREM 3.6 ψ is Lipschitz continuous locally in Ω ∪ {(R, z); 0 < z < 1}.
Proof. We follow the proof of Lipschitz continuity in [3; see also 4: Theorem 3.8]. To include the
boundary ∂N Ω we reflect ψ by

ψ(r, z) := ψ(2R − r, z) for R � r < 2R.

Setting

a(r, z) :=



r2−n for r < R,

(2R − r)2−n for r > R,

β(r, z) :=



γ (r, z) for r < R

−γ (2R − r, z) for r > R

we see that equation (�) in Section 2 becomes∫
D

∇ζ · (a∇ψ + βer ) =
∫

∂N Ω

ζ 2γN (3.1)

for test functions ζ with support in D := {(r, z); 0 < r < 2R, 0 < z < 1}. Note that a is locally
Lipschitz continuous in D.

First we derive a monotonicity formula. Let

ϕ(ρ) := ϕ1(ρ) · ϕ2(ρ), ϕi (ρ) :=
∫
Bρ

− a|∇wi |2,

where Bρ = Bρ(x0) with ψ(x0) = Qs , and w1 = max(ψ − Qs, 0) , w2 = min(ψ − Qs, 0). We
claim that

ϕ′ � −2Lϕ,

where L is the local Lipschitz constant of a. To prove this replace ζ by ζwi and obtain∫
D

∇(ζ wi ) · a∇ wi = 2
∫

∂N Ω

ζ wiγN −
∫
D

∂r (ζ wi )β

= ci {2
∫

∂N Ω

ζ wi −
∫

D∩Ω

∂r (ζ wi )+
∫

D\Ω
∂r (ζ wi )} = 0,

where c1 = 0, c2 = 1 and (��) in Section 2 has been used. Letting ξ → χBρ in an appropriate way,
we derive that for almost all ρ ∫

Bρ

a|∇ wi |2 =
∫

∂ Bρ

a wi ∂ρ wi .

Since

ϕ′(ρ)+ 4

ρ
ϕ(ρ) =

∑
i �= j

ϕj (ρ)

ρ2

∫
∂ Bρ

a|∇ wi |2,
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we only have to consider the case ϕ(ρ) > 0. Then

ρ
ϕ′(ρ)

ϕ(ρ)
+ 4= ρ

∑
i

∫
∂ Bρ

a

(
|∂ρ wi |2 +

∣∣∣∣ 1

ρ
∂θwi

∣∣∣∣
2
)

∫
∂ Bρ

a wi ∂ρ wi

� 2
∑

i

(
∫

∂ Bρ

a|∂θ wi |2)1/2

(
∫

∂ Bρ

a|wi |2)1/2
� 2
√

cρ

√
si ,

where

cρ :=
inf
Bρ

a

sup
Bρ

a
and si :=

∫
∂ Bρ

|∂θ wi |2
∫

∂ Bρ

|wi |2 .

Since (see [3])
√

s1 +√s2 � 2, we obtain

ϕ′(ρ)

ϕ(ρ)
� − 4

ρ
(
√

cρ − 1).

Since cρ � 1− Lρ, the assertion follows.
Next we derive a mean value estimate. Let again Bρ = Bρ(x0) with ψ(x0) = Qs, Gx Green’s

function for the negative Laplacian with pole x ∈ Bρ , and Px the corresponding Poisson function.
Then, setting u = ψ − Qs ,

u(x)−
∫

∂ Bρ

Px u =
∫
Bρ

∇Gx · ∇ψ,

where the right-hand side is well defined by the L2-gradient estimate in the previous proof. Using
identity (3.1) with ζ = Gx , it becomes

= − 1

a(x)




∫
Bρ

∇Gx · (a − a(x))∇ψ +
∫
Bρ

∇Gx · βer +
∫

Bρ∩∂N Ω

Gx 2γN


 .

Therefore we obtain for x ∈ Bρ/2∣∣∣∣∣∣∣u(x)−
∫

∂ Bρ

Px u

∣∣∣∣∣∣∣ � C




∫
Bρ

|∇ψ | +
∫
Bρ

|∇Gx | +
∫

Bρ∩∂N Ω

|Gx |




� Cρ
(
‖∇ψ‖L2(Bρ) + 1

)

� Cρ.
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For x = x0 this gives ∣∣∣∣∣∣∣
∫

∂ Bρ

u

∣∣∣∣∣∣∣ � Cρ.

Together with the monotonicity formula it follows as in [ACF2: Lemma 5.2] that∫
∂ Bρ

|u| � Cρ.

Then the above estimate for x ∈ Bρ/2 implies

‖u‖L∞(Bρ/2) � Cρ.

Finally, we use the fact that ∇ · a∇ψ = 0 in Ω ∩ {ψ �= Qs} with smooth coefficient a. Let
x ∈ Ω ∩ {ψ �= Qs} near the free boundary, ρ := dist (x, {ψ = Qs}) and x0 ∈ ∂ Bρ(x)∩ {ψ = Qs}.
Then by the elliptic C1,α-estimate

|∇ψ(x)| � C
1

ρ

∫
Bρ(X)

− |ψ − Qs |,

where the interior estimate was used if Bρ/2(x) ⊂ Ω . Otherwise one has to apply the boundary
estimate with homogeneous Neumann data. Since Bρ(x) ⊂ Bρ̃/2(x0) with ρ̃ = 4ρ, we obtain by
the above L∞-estimate

|∇ψ(x)| � C.

✷

4. Free boundary

The continuity and z-monotonicity of the solution ψ in Section 3 imply that in Ω , the boundary
of {ψ > Qs} is the graph in the z-direction of an upper semicontinuous function, similarly the
boundary of {ψ < Qs} is the graph of a lower semicontinuous function. We prove that the two
functions coincide, i.e. a mushy region does not occur.

This essentially follows from the following

NON-OSCILLATION LEMMA 4.1 Suppose in Ω there are four vertical lines

!i := {(ri , z); z1 � z � z2} , i = 1, . . . , 4

with z1 < z2, r1 < r2 < r3 < r4, such that ψ − Qs has no zeros on these lines and changes sign
on successive lines, for instance as in Fig. 9.

Then

z2 − z1 � 2L

rn−2
1

(r4 − r1),

where L is the Lipschitz constant of ψ on the rectangle enclosing the four lines.
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FIG. 9. Sign change of ψ − Qs on successive lines.

Proof. We use the following. In the open set {ψ �= Qs}, the stream function solves the analytic
elliptic equation

∂r

(
1

rn−2
∂rψ

)
+ ∂z

(
1

rn−2
∂zψ

)
= 0.

It follows that at each point (r, z) ∈ Ω with ψ(r, z) �= Qs , either∇ψ(r, z) �= 0 or that∇ψ(r, z) = 0
and the level set {ψ = ψ(r, z)} near (r, z) consists of an even number of smooth lines:

either or

In particular, points with the latter property are isolated. By an arbitrary small perturbation of z1, z2
we can assume that

∇ψ(r, z) �= 0 for r1 � r � r4, z = z1 or z2.

For definiteness, let us assume that ψ < Qs on !1. Consider the rectangle

R1 := [r1, r3]× [z1, z2].

Choose ξ1 with r1 < ξ1 < r3 so that

ψ(ξ1, z1) = sup
r1�r�r3

ψ(r, z1) > Qs .
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Since ∂zψ � 0 by Lemma 3.4 and ∇ψ(ξ1, z1) �= 0 by the choice of z1, it follows that ∇ψ(ξ1, z1)

points upwards, i.e. ∂zψ(ξ1, z1) > 0. We thus can construct in R1 a curve s �→ σ1(s), with σ1(0) =
(ξ1, z1), so that

σ ′1(s) =
∇ψ(σ1(s))

|∇ψ(σ1(s))| whenever ∇ψ(σ1(s)) �= 0,

and so that σ1 is Lipschitz continuous. By the properties of ψ on ∂ R1 it follows that the curve
reaches a point (ξ̃1, z2) = σ1(s1) on ∂ R1, as in Fig. 10.

FIG. 10. Construction of the curve σ1 in R1.

Similarly, let

R2 := [r2, r4]× [z1, z2]

and choose ξ2, with max(r2, ξ̃1) < ξ2 < r4, so that

ψ(ξ2, z2) = inf
max(r2,ξ̃1)�r�r4

ψ(r, z2) < Qs .

As above,∇ψ(ξ2, z2) points upwards, so that there exists a curve s �→ σ2(s) in R2, with σ2(0) =
(ξ2, z2), so that

σ ′2(s) = −
∇ψ(σ2(s))

|∇ψ(σ2(2))| whenever ∇ψ(σ2(s)) �= 0.

As before, this curve reaches a point (ξ̃2, z1) = σ2(s2) on ∂ R2.
Since ψ > Qs on σ1 and ψ < Qs on σ2 it follows that ξ̃2 > ξ1. Let R be the region bounded by

σ1, σ2 and the horizontal segments {(r, z1) : ξ1 � r � ξ̃2} and {(r, z2) : ξ̃1 � r � ξ2}, see Fig. 11
The idea is now to integrate ∆ψ over R and to use on the one hand Gauss’ theorem and on the

other hand the differential equation. To make this precise, we have to use the weak equation for ψ

with test function

ζ(r, z) = η(z)dρ(r, z), ρ > 0 small ,

where

dρ(r, z) = min

(
1,

1

ρ
dist ((r, z), ∂ R)

)
,
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FIG. 11. Construction of the region R.

and where η is a cut-off function η ∈ C∞0 (]z1, z2[) with 0 � η � 1. Then

∫
R

1

rn−2
∇ζ · ∇ψ =−

∫
R

∇ζ · (γ er )

=−
∫
R

ηγ ∂r dρ.

For small ρ we have ∂r dρ �= 0 only near σ2, where γ = 1, and near σ1, where γ = 0. Hence the
right-hand side integral becomes

−
z2∫

z1

η(z)


 ∫
{r;(r,z)∈R∩Bρ(σ2)}

∂r dρ(r, z) dr


 dz

=
z2∫

z1

η(z) dz.

Thus

z2∫
z1

η(z) dz =
∫
R

1

rn−2
dρ∂zη ∂zψ +

∫
R

η

rn−2
∇ dρ · ∇ψ.

The last integral tends to 0 as ρ → 0, since ∇ψ is tangential on σ1, σ2 by construction of these
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curves. Hence we obtain

z2∫
z1

η(z) dz �
∫
R

1

rn−2
|∂zη||∂zψ |

� L

rn−2
1

∫
R

|∂zη| � L(r4 − r1)

rn−2
1

z2∫
z1

|∂zη(z)| dz.

Now choosing η as in Fig. 12 and letting ε ↘ 0 we obtain the assertion. ✷

FIG. 12. Properties of the test function η.

Next we show

PROPOSITION 4.2 A free boundary cannot contain isolated vertical segments: i.e. a situation as
below cannot occur.

FIG. 13. Isolated vertical segment.

Proof. See also [4]. It follows that ∂zγ = 0 in distributional sense in a neighbourhood U of the
segment. For small δ > 0, consider the function v(r, z) := ψ(r, z + δ) − ψ(r, z). Then v � 0 by
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Proposition 3.4, v = 0 on the segment, and v is a continuous solution of ∇ · (r2−n ∇v) = 0 in U .
By elliptic regularity theory v is smooth, and therefore v = 0 by the strong maximum principle. We
conclude that ψ(r, z) = ϕ(r) in U with a continuous function ϕ different from Qs away from the
segment. This argument extends to small vertical strips, on the left of the segment reaching the top
of Ω and on the right of the segment reaching the bottom of Ω . This yields a contradiction to the
Dirichlet data. ✷

Next we show that a mushy region (if it exists) increases to the left.

LEMMA 4.3 Suppose there exist r0 ∈ ]0, R[ and z1, z2 ∈ ]0, 1[, with z1 < z2, such that

ψ(r0, z)




> Qs for z2 < z < 1

= Qs for z1 � z � z2

< Qs for 0 < z < z1.

Then
ψ = Qs in ]0, r0]× [z1, z2].

Proof. Consider two points T = (r0, zT ) and B = (r0, zB) with z1 � zB < zT � z2, and two
sequences (xn)n∈N, (x̃n)n∈N with xn = (rn, zn), rn < r0, xn → T as n → ∞ and x̃n =
(r̃n, z̃n), r̃n < r0, x̃n → B as n →∞, see Fig. 14. Now assume that ψ(xn) < Qs and ψ(x̃n) > Qs

for large n. ✷

FIG. 14. Sequences (xn)n∈N and (x̃n)n∈N .

Then in view of the non-oscillation result, these sequences cannot exist simultaneously.
Therefore we have to deal with one of the following two cases.

Case 1. ψ � Qs in a left neighbourhood N of T .
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FIG. 15. Two possible cases.

Case 2. ψ � Qs in a left neighbourhood Ñ of B.
In the first case we assert

CLAIM 4.4 ψ = Qs in L := N∩ ]0, r0]× [zB, zT ].

Proof. Suppose the assertion is not true. Then there exists a point x ∈ L , where ψ(x) > Qs .
The Hölder continuity of ψ implies the existence of a neighbourhood M where ψ > Qs and
consequently γ = 0, see Fig. 16.

FIG. 16. Construction of sets.

Next, consider the set C ⊂ L shown as the shaded region in Fig. 16. Since ψ � Qs in C we
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have
∇ · (r2−n∇ψ) � 0 and thus ∂rγ � 0 in C,

by the differential equation for ψ . Using γ � 0 in Ω and γ = 0 in M , we find γ = 0,∇ ·
(r2−n∇ψ) = 0 and, by the strong maximum principle, ψ > Qs in C .

Next we choose points P �= P̃ as in Fig. 17. By the non-oscillation result (argue as for cases
1, 2 above, but now from the right instead of the left) we have either ψ � Qs in a small horizontal
strip to the right of the point P , or ψ � Qs in a small horizontal strip to the right of P̃ .

FIG. 17. Possible situation near P .

First consider ψ � Qs in a right neighbourhood of P . This implies again ∇ · (r2−n∇ψ) � 0
and ∂rγ � 0 in the shaded area of Fig. 17. Since γ = 0 in C , we have γ = 0,∇ · (r2−n∇ψ) = 0
and thus ψ > Qs in the shaded area. In particular, ψ(P) > Qs which gives a contradiction.

Finally, consider the case ψ � Qs, ψ �≡ Qs , in every small right neighbourhood of P̃ . If
x ′ = (r ′, z′) is a point in such a neighbourhood with ψ(x ′) < Qs then, using similar arguments
as before, ψ < Qs in the shaded region of Fig. 18. In particular, ψ(r ′, z′) < Qs for r > r ′. Since
∂zψ � 0, this implies ψ < Qs and γ = 1 in the region with upper left corner x ′, see again Fig. 18.

FIG. 18. Construction in a right neighbourhood.
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By assumption, there exists a sequence (x ′n = (r ′n, z′n))n∈N with x ′n → P̃ as n → ∞, rn > r0
and ψ(x ′n) < Qs . As a consequence of Fig. 18, we therefore arrive at the following situation which
is a contradiction to Proposition 4.2. This concludes the proof of the claim. ✷

We continue with the proof of Lemma 4.3 using Claim 4.4. Assuming the top case of Fig. 15,
we find ψ = Qs in L and, using ∂zψ � 0, ψ � Qs below L . Thus the top case implies the
bottom case. Conversely, starting from the bottom case of Fig. 15, we find ψ = Qs in an upper left
neighbourhood of B (repeat proof of Claim 4.4 with reversed signs). Using again the z-monotonicity
of ψ we observe that the bottom case implies the top case. Therefore both cases are always true.
Thus, by Claim 4.4, we are left with ψ = Qs in L , and similarly ψ = Qs in some left upper
neighbourhood of B. This gives ψ = Qs to the left of the segment BT , which proves the lemma. ✷

With these preparations we can prove

THEOREM 4.5 The free boundary Ω ∩ {ψ = Qs} is the graph in the z-direction of a continuous
function g : ]0, R[→ R. Moreover,

h = lim
r↘0

g(r) and us := lim
r↗R

g(r) ∈]0, 1[

exists.

Proof. From the continuity of ψ in Lemma 3.5 it follows that the free boundary stays away from
the lower and upper boundary of Ω . Therefore, if the free boundary is not a continuous graph, a
vertical segment as in Lemma 4.3 exists. However, then we conclude that ψ = Qs to the left, and
therefore ψ cannot attain its boundary values on {r = 0}, which are either 0 or Q. Hence g exists
and by the continuity of Theorem 3.5 we infer that g(r)→ h as r ↘ 0. The last statement follows
from the Non-Oscillation Lemma 4.1, taking into account that ψ is Lipschitz continuous up to the
right boundary of Ω (Theorem 3.6.). ✷

REMARK 4.6 Theorem 4.5 implies that γ = χ{z<g(r)} and γN = χ{z<us }. Moreover, we find for
fixed z ∈ ]0, us [∪] us, 1 [

lim
r↗R

γ (r, z) = γN (z).

As a consequence, ψ satisfies the Neumann condition on ∂N Ω , away from the free boundary point.
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5. Free boundary near well

It follows from Theorem 4.5 that the free boundary approaches W as a continuous curve. In this
section we prove that the free boundary has a tangent at W and that it approaches W in a C1-sense.

We use polar coordinates.
r + i(z − h) = ρeiθ (5.1)

and consider a small neighbourhood

Dρ0 := {(r, z) ∈ Ω; r2 + (z − h)2 < ρ2
0}.

The function ψ∗ defined in Lemma 2.1 plays an important role in this section as well as in Section
6. It has the form

ψ∗(r, z) = Q

2
(ϕ∗(r, z)+ 1)

with

ϕ∗(r, z) = ϕ̃∗(θ) =




2

π
θ for n = 2,

sin θ for n = 3,

implying that ψ∗ is constant on rays starting at W . We therefore set

ψ̃∗(θ) = Q

2
(ϕ̃∗(θ)+ 1).

As ψ0, the function ψ∗ satisfies

∂r (r
2−n∂r ψ∗)+ ∂z(r

2−n∂z ψ∗) = 0.

Hence, the local weak equation of ψ near W can be written as∫
Dρ0

∇ζ · (r2−n∇(ψ − ψ∗)+ γ er ) = 0 (5.2)

for all ζ ∈ C∞0 (Dρ0).

DEFINITION 5.1 Define ω∗, with −π

2
< ω∗ <

π

2
, by

ψ̃∗(ω∗) = Qs .

Thus ψ∗ = Qs on the ray in the direction eiω∗ . We have

ϕ̃∗(ω∗) = Qrel := Qs − Q f

Qs + Q f
,

that is

ω∗ =




π

2
Qrel for n = 2,

arcsin Qrel for n = 3.
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We shall need the following.

COMPARISON LEMMA 5.2 Let D ⊂ Ω be open and connected, and let ψ ∈ C0,1
loc (D), γ =

1− H(ψ − Qs) be a weak solution of

∇ · (r2−n∇ψ + γ er ) = 0 in D.

Further, let ϕ ∈ C0,1
loc (D), β = 1− H(ϕ − Qs) be a smooth strict supersolution in the sense that

∇ · (r2−n∇ϕ) = 0 in D ∩ {ϕ �= Qs},
D ∩ {ϕ = Qs} is a C2-curve,

[ν · (r2−n∇ϕ + βer )] < 0 on D ∩ ∂{ϕ < Qs}.
Then ψ � ϕ in D implies ψ < ϕ in D.

Note. The corresponding version for strict subsolutions also holds.

Proof. Let x0 = (r0, z0) ∈ D with ψ(x0) = ϕ(x0). If ψ(x0) > Qs , then the strong maximum
principle implies that ψ = ϕ in the connected component of {ψ > Qs} containing x0. The same
argument applies if ψ(x0) < Qs . Thus it remains to exclude the case that ψ(x0) = Qs . We consider
the blow-up at x0. Since ϕ has a C2 free boundary, the functions

ϕδ(x) := 1

δ
(ϕ(x0 + δx)− ϕ(x0))

converge to a piecewise linear function ϕ0, and {ϕ0 = 0} is a line through the origin. Moreover,

[ν · (r2−n
0 ∇ϕ0 + β0 er )] < 0

on this line, where β0 = 1− H(ϕ0). Similarly

ψδ → ψ0 weakly in H1,2
loc (R2),

γδ → γ0 weak star in L∞loc(R
2),

where ψ0 is globally Lipschitz continuous with ψ0(0) = 0 and

∇ · (r2−n
0 ∇ψ0 + γ0 er ) = 0 in R

2.

Furthermore, as in [4: Lemma 3.10],

∇ψδ → ∇ψ0 strongly in L2
loc(R

2).

Following again [4: Lemma 3.10] and using the monotonicity formula derived in the proof of
Theorem 3.6, we arrive at the following two cases:

(i) ψ0 is a piecewise linear two-phase solution. Then {ψ0 = 0} = {ϕ0 = 0}. Since ψ0 �
ϕ0, ψ0 satisfies the free boundary condition, and ϕ0 the strict free boundary condition for a
supersolution, we end up with a contradiction.
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(ii) ψ0 has a sign. Since ψ0 � ϕ0 and {ϕ0 < 0} is non-empty, ψ0 � 0 is a one-phase solution.
Further, min(ϕ0, 0) is a strict one-phase supersolution at its free boundary. Then we apply the
bump argument [see 4: proof of Lemma 5.2] to derive a contradiction.

✷

The next statement implies, that the free boundary has the unique tangent direction eiω∗ at the
well.

LEMMA 5.3 For small ρ > 0 there exist ερ > 0 with ερ → 0 as ρ → 0 so that

ψ∗ − ερ � ψ � ψ∗ + ερ in Dρ.

Proof. Let ε �= 0 be small, −π

2
< ωε <

π

2
, and define

ϕ̃(θ) :=




ε + ψ̃∗(θ)

ψ̃∗(ωε)
(Qs − ε) for − π

2
� θ � ωε,

Q + ε − Q − ψ̃∗(θ)

Q − ψ̃∗(ωε)
(Q + ε − Qs) for ωε � θ � π

2
.

FIG. 19. ψ̃ for n = 2 and ε > 0.

Then
ϕ̃′(ωε − 0) (≷) ϕ̃′(ωε + 0)

if and only if
ψ̃∗(ωε) (≶) ψ̃∗(ω∗)− ε.

For small |ε| > 0 this is satisfied if ωε = ω∗ − aε, with a > 1/ψ̃ ′∗(ω∗) > 0. We define

ϕ(r, z) := ϕ̃(θ) with θ as in (5.1).
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Then on the free boundary of ϕ[
ν · r2−n∇ϕ

]
(r, z) = r1−n[ ϕ̃′ ](θ)→−∞ (+∞),

as (r, z) ∈ ∂ {ϕ < Qs} → W . It follows that ϕ is a smooth strict super-(sub-) solution in Dρε in the
sense of Lemma 5.2, if ρε is small enough. Moreover, if |ε| is small enough, then ∂zϕ > 0.

In order to compare ψ with ϕ we use the fact that ∇(ψ − ψ∗) ∈ L2(Dρ0). Then by the Courant
Lemma [C], there is a countable sequence ρ → 0 with

osc
[− π

2 , π
2 ]

(ψ̃ − ψ̃∗)(ρ, ·)→ 0.

Since ψ̃(ρ,−π
2 ) = 0 = ψ̃∗(−π

2 ), we can choose ρ < ρε so that

|ψ − ψ∗| < |ε| on Ω ∩ ∂ Dρ.

Then on this set ψ (≶) ψ∗ + ε (�) ϕ and therefore

ψ (≶) ϕ on ∂ Dρ\W.

To apply Lemma 5.2, let ϕδ(r, z) := ϕ(r, z + δ) for δ > 0 (< 0). Obviously ψ (�) ϕδ in D̄ρ for
large |δ|. Here we take the value Q for ψ at W and ε for ϕδ at W − δez (0 for ψ and Q + ε for ϕδ).
Choose |δ|minimal with this property. Assume |δ| > 0. Then ψ (≶) ϕδ in Dρ by Lemma 5.2. Since
∂zϕ > 0 we still have ψ (≶) ϕδ on ∂ Dρ , which contradicts the minimality of |δ|. Thus |δ| = 0 and
consequently

ψ (�) ϕ (�) ψ∗ + Cε in Dρ.

✷

For later use we introduce the scaling

ψρ(x) := ψ(W + ρ(x −W )) for x = (r, z) near W,

the same for γρ . Equation (5.2) then becomes∫
Dρ0/ρ

∇ζ · (r2−n∇(ψρ − ψ∗)+ ρn−1γρer ) = 0 (5.3)

for ζ ∈ C∞0 (Dρ0/ρ). Let R > 0 be a fixed large number and ρ � ρ0/R.
From Lemma 5.3 we infer

|ψρ − ψ∗| � ερ → 0 as ρ → 0 in DR, (5.4)

{ψρ = Qs} ∩ DR ⊂
{

W + s eiθ ; s > 0, |θ − ω∗| � 2ερ

Q

}
. (5.5)

PROPOSITION 5.4 For σ > 0 consider the region

Gσ
R := {(r, z) = W + s eiθ ∈ D̄R; s � σ, |θ − ω∗| � σ }.

Then for small ρ

|∇(ψρ − ψ∗)| � C(σ, R)ερ in Gσ
R .
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Proof. For small ρ we have ∇ · (r2−n∇(ψρ − ψ∗)) = 0 in Gσ/2
2R . Then elliptic C1,α-estimates

together with (5.4) give the result. ✷

The goal is to prove that ∇(ψρ − ψ∗) is small up to the free boundary of ψρ . We can prove at
least the following:

LEMMA 5.5 Let R  1 and τ > 0 be fixed. Then there exists κ > 0 with the following property
for small ρ : for balls

B̂ ⊂ DR ∩ {ψρ (≶) Qs}, diam B̂ � 2,

x̂ ∈ ∂ B̂ ∩ {ψρ = Qs}, |x̂ −W | � 2,

we have

FIG. 20. Cone property.

∇ψρ(x̂ + s e) · e � κ

for |s| � 1 and |e| = 1 with e · ν̂ � τ (resp. e · (−ν̂ � τ)), where ν̂ is the outer normal to ∂ B̂ at x̂ .

Proof. It follows from (5.5) that for some σ0 > 0 and for small ρ, for all B̂ as in the statement

B̃ := {x ∈ B̂; (x − x̂) · ν̂ � −1} ⊂ Gσ0
R .

Consider the case B̂ ⊂ {ψρ < Qs}. Then, by (5.4), for small ρ

ψρ � ψ∗ + ερ � ψ̃∗(ω∗ − σ0)+ ερ � Qs − δ0 in B̃,
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for some δ0 > 0. Since ψρ � Qs and ∇ · (r2−n∇ψρ) = 0 in B̂, it follows from elliptic theory that

ψρ(x) � Qs − κ0 dist (x, ∂ B̂), x ∈ B̂, (5.6)

for some κ0 > 0 being independant of ρ and B̂.
Now let κ > 0. Assume the assertion fails. Thus, consider a sequence ρ → 0 and B̂ρ, x̂ρ, ν̂ρ as

in the statement and points

xρ = x̂ρ + sρ eρ, |sρ | � 1, (5.7)

|eρ | = 1, eρ · ν̂ρ � τ, (5.8)

such that
∇ψρ(xρ) · eρ � κ. (5.9)

The properties of B̂ρ together with (5.4), (5.5) imply that for a subsequence ρ → 0

x̂ρ → x∗ = (r∗, z∗) = s∗eiω∗ with s∗ > 0, (5.10)

ν̂ρ → ν∗ = ieiω∗ . (5.11)

We claim that δ := |xρ − x̂ρ | → 0 as ρ → 0. If not, it follows from (5.11), (5.8) and (5.5) that for
a subsequence ρ → 0, xρ ∈ Gσ

R for some σ > 0. Then Proposition 5.4 implies, if sρ → s and
eρ → e as ρ → 0,

∇ψρ(xρ) · eρ � ∇ψ∗(xρ) · eρ − C(σ, R)ερ

→ ∇ψ∗(x∗ + se) · e.
Since ∇ψ∗(x∗) is proportional to ν∗, the infimum κ1 for all such values of s and e with |s| �
1, |e| = 1, e · ν∗ � τ is positive. Thus we derive a contradiction if κ < κ1.

We first consider the case xρ ∈ B̂ρ , that is sρ < 0. We perform the blow-up with respect to the
distances δ = |xρ − x̂ρ | = |sρ |, that is we consider

ϕδ(x) := 1

δ

(
(ψρ − ψ∗)(x̂ρ + δx)− (ψρ − ψ∗)(x̂ρ)

)
.

The regularity results obtained in Theorems 3.5 and 3.6 apply in a neighbourhood of x∗, uniformly
in ρ, to the solutions ψρ of (5.3). Therefore the functions ϕδ are Lipschitz continuous in any bounded
domain, uniformly in δ. We conclude from (5.3) (as in the proof of Lemma 5.2) that ϕδ → ϕ in
H1,2

loc (R2) for a subsequence δ → 0, and that ∇ · (r2−n∗ ∇ϕ) = 0; that is, ϕ is harmonic. Moreover,
ϕ is globally Lipschitz continuous and ϕ(0) = 0. Then it follows from Liouville’s theorem that ϕ is
linear; that is,

ϕ(x) = a · x with a ∈ R
2. (5.12)

For points x̂ρ + δx ∈ B̂ρ we have, using (5.6),

ϕδ(x) � −κ0 dist (x̂ρ + δx, ∂ B̂ρ)

−1

δ

(
ψ∗(x̂ρ + δx)− ψ∗(x̂ρ)

)
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which, as ρ → 0, results in lower case,

ϕ(x) � κ0 x · ν∗ − ∇ψ∗(x∗) · x for x · ν∗ < 0.

Since ∇ψ∗(x∗) = β ν∗ for some β > 0, we see that (5.9) implies a = α ν∗ with

α � κ0 − β.

Next we consider a subsequence for which

1

δ
(xρ − x̂ρ) = −eρ →−e

with e · ν∗ � τ > 0 and we use (5.9). By (5.5), the free boundary corresponding to ϕδ converges
to {x · ν∗ = 0}. It follows from elliptic theory that ϕδ → ϕ smoothly near −e. In particular,
∇ϕδ(−eρ)→ ∇ϕ(−e) = α ν∗. Using assumption (5.9) we obtain

∇ϕδ(−eρ) · eρ = ∇(ψρ − ψ∗)(xρ) · eρ

� κ − ∇ψ∗(xρ) · eρ

→ κ − β ν∗ · e
and find

κ � (α + β)ν∗ · e � τ(α + β) � τ κ0,

a contradiction if κ < τ κ0.
Next we consider the case sρ > 0, where we assume that ψρ(xρ) �= Qs . Again consider the

blow-up with respect to δ = |xρ − x̂ρ | = sρ . As before, ϕ(x) = αx · ν∗ with α � κ0−β. Let ε > 0.
Then for x · ν∗ � ε we have

1

δ
(ψρ(x̂ρ + δx)− Qs) = ϕδ(x)+ 1

δ

(
ψ∗(x̂ρ + δx)− ψ∗(x̂ρ)

)
→ (α + β)x · ν∗ � κ0 · ε > 0,

locally uniformly in x . Choosing ε < e · ν∗ this says that the free boundary corresponding to ϕδ

stays away from e, in particular ψρ(xρ) > Qs for small ρ. We then derive a contradiction as before.
Note that a posteriori this proves that ψρ(x̂ρ + s eρ) > Qs for all 0 < s � 1. ✷

We are now in a position to prove the following.

THEOREM 5.6 Let e be any direction different from ±eiω∗ . Then for small ρ the free boundary in
Ω ∩ Bρ(W ) is a graph in direction e.

Proof. Consider the situation for the scaled functions ψρ . Choose two balls B̂1, B̂2 as in Lemma
5.5 and Ŵ = (0, ĥ) �= W , so that a region G as in Fig. 21 is well defined. For definiteness we
assume that B̂1, B̂2 ⊂ {ψρ < Qs} and that ĥ < h.

Note, see the previous proof, that ν̂1, ν̂2 are close to i ei ω∗ if ρ is small.
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FIG. 21. Shaded region is G.

The following is a consequence of (5.4), (5.5) and Lemma 5.5. Consider a ray starting at Ŵ .
For rays contributing to ∂G, the function ψρ is strictly increasing on ∂G. For rays cutting ∂G, the
function ψρ attains its minimum at the first cutting point and its maximum at the second cutting
point. Now let λ < 1, near 1, and define

ψρλ(x) := Qs + 1

λn−1
(ψρ(Ŵ + λ(x − Ŵ ))− Qs),

Gλ :={x; Ŵ + λ(x − Ŵ ) ∈ G}.
Then ψρλ is a weak solution in Gλ. Below we show that

ψρλ < ψρ on ∂(Gλ ∩ G). (5.13)

If ψε denotes the approximation of ψ from Section 3, then also ψε
ρλ < ψε

ρ on ∂(Gλ ∩ G) for small
ε. As in Proposition 3.2, it then follows that ψε

ρλ � ψε
ρ in Gλ∩G resulting in ψρλ � ψρ in Gλ∩G.

As a consequence, ψρ is monotonically increasing in G along rays starting at Ŵ . Since we can vary
B̂1, B̂2 and Ŵ the assertion follows.

It remains to prove (5.13) for λ near 1, provided the geometry of G is chosen appropriately.
Consider the part

S = {x = Ŵ + se ; s1 � s � s2},
of one of the above rays intersecting Ḡ. It follows from (5.4), (5.5) and Lemma 5.5 that for small ρ

∇ψδ(x) · e � κ
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for all x ∈ S if S ⊂ ∂G, or for x near Ŵ + s1e and Ŵ + s2e otherwise. Note that κ > 0 is
independent of the domains G that were chosen. It follows that for all points x = Ŵ + se under
consideration and all λ < 1, near 1,

ψρ(Ŵ + se)− ψρ(W + λse) � κ(1− λ)s.

Thus with
ξ := ψρ(Ŵ + se),

ψρλ(Ŵ + se)− ψρ(Ŵ + se) � Qs − ξ + 1

λn−1
(ξ − κ(1− λ)s − Qs)

= 1− λ

λn−1

(
(ξ − Qs)

1− λn−1

1− λ
− κs

)

� 1− λ

λn−1
(2 L(s2 − s1)− κ s1),

where L is the Lipschitz constant of ψ in a suitable domain. Then it follows from (5.5) and
Proposition 5.4 that for small ρ we can choose in the definition of G the two rays starting at W so
that they enclose an angle of magnitude Cερ . Finally, we choose G so that s2 − s1 � C ερ and
s1 � c > 0. This proves (5.13) for small ρ. ✷

6. Asymptotic behaviour near the well

In Section 5 we have proved that the free boundary has a tangent eiω∗ at W . Now we study how
the free boundary approaches this tangent direction. In the analysis we use the standard conformal
transformation

r + i(z − h) = es+iθ , ρ = es . (6.1)

Then the neighbourhood D := Dρ0 in Section 5 becomes

D̃ = {(s, θ);−π

2
< θ <

π

2
,−∞ < s < s0}, with s0 = log ρ0.

We denote the transformed functions by a superscript, for instance, ψ̃(s, θ) = ψ(r, z) with
arguments related by (6.1).

We recall the local weak equation of ψ near W :∫
D

∇ζ ·
(

1

rn−2
∇(ψ − ψ∗)+ γ er

)
dr dz = 0 (6.2)

for all ζ ∈ C∞0 (D). Since

∇ζ = 1

r2 + z2

[
r − z
z − r

]
∇ ζ̃ ,

the transformed weak equation becomes∫
D̃

∇ ζ̃ ·
(

1

rn−2
∇(ψ̃ − ψ̃∗)+ γ̃

[
r
−z

])
ds dθ = 0 (6.3)
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FIG. 22. Free boundary approaching the well.

for all ζ̃ ∈ C∞0 (D̃), where r = es cos θ and z = es sin θ .
To demonstrate the behaviour near the well we apply the general method of separation of

variables by giving an eigenfunction expansion in the θ -direction and by reducing (6.3) to ordinary
differential equations for the coefficients in the s-variable. We first consider

LEMMA 6.1 The eigenvalue problem, with m = n − 2 and n = 2 or 3,


∂θ

(
1

cosm θ
∂θ u

)
+ 1

cosm θ
λu = 0 for − π

2
< θ <

π

2
,

u
(
−π

2

)
= 0, u

(π

2

)
= 0,

has the following eigenfunctions ek and eigenvalues λk for k � 1 : for m = 0

ek(θ) =
√

2

π
sin

(
k

(
θ + π

2

))
, λk = k2,

and for m = 1

ek(θ) =
√

λk(2k + 1)

2

1

2kk!

(
∂k−1

t (t2 − 1)k
)
|t = sin θ , λk = k(k + 1).

These functions form an orthonormal basis of the weighted L2-space with inner product

〈u, v〉 :=
π/2∫

−π/2

u(θ)v(θ)

cosm(θ)
dθ.

Proof. We only prove the case m = 1. Consider the transformation t = sin θ . Then the equation for
ũ(t) := u(θ) is

(1− t2)∂2
t ũ + λũ = 0, (6.4)
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and this gives for ṽ := ∂t ũ
∂t ((1− t2)∂t ṽ)+ λṽ = 0.

Solutions (ṽ, λ) are given by the Legendre polynomials

Pk(t) := 1

2kk!
∂k

t (t2 − 1)k , λk = k(k + 1),

normalized so that Pk(±1) = (±1)k . Moreover,

1∫
−1

Pk(t)P!(t) dt = 2

2k + 1
δk,!.

Then for k � 1, the functions

Ẽk(t) :=
t∫

−1

Pk(s)ds = 1

2kk!
∂k−1

t (t2 − 1)k

vanish for t = ±1. Set Ek(θ) := Ẽk(sin θ). Using (6.4) for (Ẽk, λk) we see that

〈Ek, E!〉 =
1∫

−1

Ẽk(t)Ẽ!(t)

1− t2
dt = − 1

λk

1∫
−1

Ẽ ′′k (t)Ẽ!(t) dt

= 1

λk

1∫
−1

Pk(t)P!(t) dt = 2

λk(2k + 1)
δk.!.

Therefore define ek :=
√

λk (2k+1)
2 Ek . The rest of the result then follows from spectral theory.

✷

In addition we need the following estimates.

PROPOSITION 6.2 There exists a constant C so that for all k � 1 and for all |θ | � π
2

|ek(θ)|� C,

|e′k(θ)|� C k1+m
2 . (6.6)

Proof. Again we only consider m = 1. We use the representation

Pk(cos ϑ) =
k∑

i=o

bi bk−i cos((k − 2i)ϑ)

where

bk :=
∏

1�i�k

(
1− 1

2i

)
= 1 · 3 · · · (2k − 1)

2 · 4 · · · (2k)
,
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which implies that for |t | � 1, setting t = cos ϑ ,

|Pk(t)| �
k∑

i=0

bi bk−i = Pk(cos 0) = 1,

see [10: p93, 290]. It follows, again with t = cos ϑ, 0 � ϑ � π , that

Ẽk(t) =
π∫

ϑ

Pk(cos ϑ) sin ϑ dϑ

=
k∑

i=0

bi bk−i

2

∫ π

ϑ

{sin((k + 1− 2i)ϑ)− sin((k − 1− 2i)ϑ)} dϑ.

With

aj (ϑ) := j

π∫
ϑ

sin( jϑ)dϑ = cos( jϑ)− cos( jπ)

this gives

Ẽk(t) =
∑

0�i�k
2i �=k+1

bi bk−i

2(k + 1− 2i)
ak+1−2i (ϑ)−

∑
1�i�k+1
2i �=k+1

bi−1bk+1−i

2(k + 1− 2i)
ak+1−2i (ϑ).

For 1 � i � k, the expression
bi bk−i − bi−1bk+1−i

k + 1− 2i
does not change if we replace i by k + 1− i , and it equals

bi−1bk−i

k + 1− 2i

((
1− 1

2i

)
−

(
1− 1

2(k + 1− i)

))
= − bi−1bk−i

2i(k + 1− i)
.

Further, aj = a− j , so that

Ẽk(t) = b0bk

k + 1
ak+1(ϑ)−

∑
1�i< k+1

2

bi−1bk−i

2i(k + 1− i)
ak+1−2i (ϑ).

Now, |aj (ϑ)| � 2 and bk � (k + 1)−1/2 since

log bk =
k∑

i=1

log

(
1− 1

2i

)
� −1

2

k∑
i=1

1

i
� −1

2
log(k + 1).

This implies the estimate

|Ẽk(t)| � 2(k + 1)−3/2 + ∑
1�i< k+1

2

i−3/2(k + 1− i)−3/2

� 2(k + 1)−3/2(1+√2
∞∑

i=1
i−3/2),
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which proves (6.5). Since
E ′k(θ) = Pk(sin θ) cos θ,

and |Pk(sin θ)| � 1, we obtain (6.6). ✷

We note that estimate (6.6) might not be optimal, but it is sufficient to prove the desired
convergence of the free boundary. In order to start the procedure, we need the following initial
information about the free boundary near the well.

THEOREM 6.3 For small enough ρ0 there exists a continuous function s �→ ω(s) ∈
]
− π

2
,
π

2

[
so that

1. ψ̃(s, θ) < Qs , for −π

2
� θ < ω(s),

ψ̃(s, θ) > Qs , for ω(s) < θ � π

2
.

2. ω(s)→ ω∗ as s ↘ −∞,

where ω∗ is defined in 5.1.

Proof. Follows from Lemma 5.3 and Theorem 5.6. ✷

Next we define the coefficients in the eigenfunction expansion. For convenience we retain the
notation m = n − 2.

DEFINITION 6.4 For any s < s0 and k � 1, set

ψk(s) :=
π/2∫

−π/2

ek(θ)

cosm θ
(ψ̃(s, θ)− ψ̃∗(θ)) dθ = 〈ψ̃(s, ·)− ψ̃∗, ek〉,

ck(s) :=
π/2∫

−π/2

ek(θ)γ̃ (s, θ) cos θ dθ =
ω(s)∫
−π/2

ek(θ) cos θ dθ,

sk(s) :=
π/2∫

−π/2

e′k(θ)γ̃ (s, θ) sin θ dθ =
ω(s)∫
−π/2

e′k(θ) sin θ dθ.

We have the identity

ck(s)+ sk(s) = ek(ω(s)) sin ω(s) for all s < s0 and k � 1. (6.7)

PROPOSITION 6.5 There exists a sequence (sj )j∈N, with sj → ∞ as j → ∞, so that for all j
and for all k � 1

|ψk(sj )|2 + |ψ ′k(sj )|2 � em sj .
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Proof. By the normalization of ek we have

|ψk(s)|2 �
π/2∫

−π/2

|(ψ̃ − ψ̃∗)(s, θ)|2
cosm θ

dθ.

Since (ψ̃ − ψ̃0)
(

s,−π

2

)
= 0 we have

0∫
−π/2

|(ψ̃ − ψ̃∗)(s, θ)|2
cosm θ

dθ �
0∫

−π/2

θ + π
2

cosm θ

0∫
−π/2

|∂θ (ψ̃ − ψ̃∗)(s, θ̃ )|2 dθ̃ dθ

� C

π/2∫
−π/2

|∂θ (ψ̃ − ψ̃∗)(s, θ)|2 dθ.

Similarly we argue for the integral over [0, π/2]. Moreover,

|(ψ ′k(s))|2 �
π/2∫

−π/2

|∂s(ψ̃ − ψ̃∗)(s, θ)|2
cosm θ

dθ,

so that

|ψk(s)|2 + |ψ ′k(s)|2 � C

π/2∫
−π/2

|∇(ψ̃ − ψ̃∗)(s, θ)|2
cosm θ

dθ.

The smoothness of the boundary data of the difference ψ − ψ∗ implies |∇(ψ − ψ∗)|2/rm ∈
L1(Ω). Consequently,

∞>

∫
D

|∇(ψ − ψ∗)|2
rm

dr dz =
∫
D̃

|∇(ψ̃ − ψ̃∗)|2
ems cosm θ

ds dθ

� 1

C

s0∫
−∞

e−ms sup
k�1

(
|ψk(s)|2 + |ψ ′k(s)|2

)
ds.

✷

From this the assertion follows.

PROPOSITION 6.6 There exists a constant C so that for all s < s0 and all k � 1

|sk(s)− sk(−∞)|� C, (6.8)

|s1(s)− s1(−∞)|� C |ω(s)− ω∗| (6.9)

|ck(s)− ck(−∞)|� C min
(
ω(s)− ω∗, k

m
2 −1

)
. (6.10)
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Proof. Using identity (6.7) and property (6.5) we see that (6.8) follows from (6.10). Further, (6.9)
is obvious since e′1 is bounded, see (6.6). Also, from property (6.5),

|ck(s)− ck(−∞)| � C |ω(s)− ω∗|,

therefore it remains to show that for all −π

2
� θ− < θ+ � π

2
and for all k � 1

∣∣∣∣∣∣∣
θ+∫

θ−

ek(θ) cos θ dθ

∣∣∣∣∣∣∣ � C k
m
2 −1.

Using the differential equation for ek we obtain

θ+∫
θ−

ek(θ) cos θ dθ =− 1

λk

θ+∫
θ−

(
e′k(θ)

cosm θ

)′
cosm+1 θ dθ

=− 1

λk
e′k(θ) cos θ

∣∣∣∣ θ = θ+
θ = θ−

+ m + 1

λk

θ+∫
θ−

e′k(θ) sin θ dθ.

The desired estimate follows from property (6.6) and from the observation λk � k2 for all k � 1.
✷

THEOREM 6.7 As s ↘ −∞

ω(s)− ω∗ = cρ1+m log
1

ρ
+ O(ρ1+m),

where ρ = es ,

c = 2

(2+ m)Q

|e1(ω∗)|2(− sin ω∗)
ϕ̃′∗(ω∗)

> 0,

and

ϕ̃′∗(ω∗) =



2

π
for n = 2,

cos ω∗ for n = 3.

Proof. In the weak equation (6.3) we substitute

ζ̃ (s, θ) = η(s)ek(θ) with η ∈ C∞0 (]−∞, s0[).

To evaluate the resulting expression we use the differential equation for ek and Definition 6.4, i.e.

π/2∫
−π/2

e′k
cosm θ

∂θ (ψ̃ − ψ̃∗) = λk ψk(s)
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and
π/2∫

−π/2

ek

cosm θ
∂s(ψ̃ − ψ̃∗) = ψ ′k(s).

Then the weak Eq. (6.3) becomes, with ρ = es ,

0 =
s0∫

−∞

(
1

ρm

(
η′ψ ′k + ηλk ψk

)+ ρ(η′ck − η sk)

)
ds

for all test functions η; that is, (
ψ ′k
ρm
+ ρck

)′
= λk

ψk

ρm
− ρ sk .

Since λk = k(k + m), this implies the identity

(eks(ψ ′k − (k + m)ψk + ρm+1ck))
′ =

(
e(k+m)s

(
ψ ′k
ρm
+ ρck

)
− (k + m)eksψk

)′
= eks(λkψk − ρm+1sk)+ (k + m)eks(ρm+1ck − kψk)

= ρk+m+1((k + m)ck − sk).

Now we integrate and obtain by (6.10) and Proposition (6.5), using the notation ρ̃ = es̃ ,

ψ ′k − (k + m)ψk + ρm+1ck = ρ−k

s∫
−∞

ρ̃k+m+1((k + m)ck(s̃)− sk(s̃)) ds̃.

A second integration leads to the formula

ψk(s) =
(

ρ

ρ0

)k+m

ψk(s0)+ ρk+m

s0∫
s

ρ̃1−kck(s̃) ds̃

−ρk+m

s0∫
s

ρ̃−2k−m

s̃∫
−∞
˜̃ρk+m+1 (

(k + m)ck( ˜̃s)− sk( ˜̃s)
)

d ˜̃s ds̃.

Let ψ0
k (s) be the same expression, except that ck is replaced by c0

k := ck(−∞) and sk by s0
k :=

sk(−∞). Then a computation using (6.7) gives

ψ0
k (s) =

(
ρ

ρ0

)k+m

ψk(s0)+ ek(ω∗) sin ω∗
k + m + 1

ϕ0
k (s) (6.11)

where

ϕ0
k (s) = ρk+m




s0 − s for k = 1,

1
k−1

(
ρ1−k − ρ1−k

0

)
for k � 2.
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Now, since {ek; k � 1} is an orthonormal system in the Hilbert space defined in Lemma 6.1, we
have for all s and for almost all θ the representation

ψ̃(s, θ)− ψ̃∗(θ) =
∞∑

k=1

ψk(s)ek(θ). (6.12)

Let us evaluate the left-hand side at the free boundary, that is for θ = ω(s). Using the identity for
ω∗ from Theorem 6.3, we obtain

ψ̃(s, ω(s))− ψ̃∗(ω(s)) = Qs − ψ̃∗(ω(s))

= ψ̃∗(ω∗)− ψ̃∗(ω(s))

= Q

2
(ϕ̃∗(ω∗)− ϕ̃∗(ω(s))) .

Since ω(s) → ω∗ as s ↘ −∞ (see Theorem 6.3, second statement) the right-hand side of this
equality can be expanded. This results in

ψ̃(s, ω(s))− ψ̃∗(ω(s)) = −Q

2
ϕ̃′∗(ω∗)(ω(s)− ω∗)+ O

(
|ω(s)− ω∗|2

)
. (6.13)

The goal is to prove from these identities, that the behaviour of the free boundary near the well, that
is the first term in the expansion of ω(s)− ω∗ as s ↘ −∞, is given by ψ0

1 (s).
For this we first use the results from Proposition 6.6 and obtain for k � 2 the estimate

|ψk(s)− ψ0
k (s)| � C k

m
2 −1ϕ0

k (s) � C ρ1+mk
m
2 −2.

Here, and in the following estimates, the constants C do not depend on θ and s0. Using (6.5) we
obtain ∣∣∣∣∣

∑
k�2

(ψk(s)− ψ0
k (s))ek(θ)

∣∣∣∣∣ � C ρ1+m,

and also ∣∣∣∣∣
∑
k�2

(ψ0
k (s)− (

ρ

ρ0
)k+mψk(s0))ek(θ)

∣∣∣∣∣ � C ρ1+m .

All computations also hold if we replace s0 by a smaller value. Let us replace s0 by one of the values
(sj )j∈N from Proposition 6.5 and let ρj = esj . Note that now all ψ0

k depend on j . Then for s < sj∣∣∣∣∣
∑
k�1

(
ρ

ρj

)k+m

ψk(sj )ek(θ)

∣∣∣∣∣ � C
∑
k�1

ρk+m

ρj
k+m

2
= C

ρ1+m

(ρj − ρ)ρ
m
2

j

.

Altogether we obtain from (6.12)

ψ̃(s, θ)− ψ̃∗(θ) =
(
ψ1(s)− ψ0

1 (s)
)

e1(θ) +

e1(ω∗) sin ω∗
m + 2

ϕ0
1(s)e1(θ)+ O


ρ1+m


1+ 1

(ρj − ρ)ρ
m
2

j





 .
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Letting θ → ω(s) we obtain using (6.13) and restricting arguments to s � sj − 1

Q

2
(ϕ̃∗(ω∗)− ϕ̃∗(ω(s))) = e1(ω∗) sin ω∗

m + 2
ϕ0

1(s)e1(ω(s))

+(ψ1(s)− ψ0
1 (s))e1(ω(s))+ O


ρ1+m


1+ 1

ρ
1+m

2
j





 .

(6.14)

Using again (6.5) and Proposition 6.6 we see that∣∣∣(ψ1(s)− ψ0
1 (s)

)
e1(ω(s))

∣∣∣ (6.15)

� Cρ1+m

sj∫
s

(|ω(s̃)− ω∗| + ρ̃−2−m

s̃∫
−∞

˜̃ρ2+m |ω( ˜̃s)− ω∗| d ˜̃s) ds̃,

which gives the rough estimate∣∣∣(ψ1(s)− ψ0
1 (s)

)∣∣∣ � C ρ1+m(sj − s). (6.16)

Now fix j = j0. Then for large negative values of s, say s � s∗ < sj0 , the left-hand side of (6.14) is
estimated by

� c|ω(s)− ω∗|.
Therefore we obtain from (6.14), (6.16) for such values of s

|ω(s)− ω∗| � C ρ1+m


1+ 1

ρ
1+m

2
j0

+ (sj0 − s)




� C(sj0 , s∗, ε)ρ1+m−ε

for ε > 0. Now let ε = 1
2 and choose j with sj � s∗. Then we obtain from (6.14) for s � sj∣∣∣ψ1(s)− ψ0

1 (s)e1(ω(s))
∣∣∣ � C(sj0 , s∗, sj )ρ

1+m,

so that from (6.14)∣∣∣∣∣ Q

2
(ϕ̃∗(ω(s))− ϕ̃∗(ω∗))+ (e1(ω∗))2 sin ω∗

m + 2
ρ1+m(sj − s)

∣∣∣∣∣ � C1(sj0 , s∗, sj )ρ
1+m .

From this the assertion follows. ✷

7. The vanishing Qs limit

In this section we show that for Q sufficiently small, the limit Qs ↘ 0 leads to an interface with
singular behaviour at the central axis. This limit interface will be at a positive distance below the
well.
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To explain the meaning of singular behaviour, we first recall some definitions and results from
[5] in the context of the axial symmetric domain Ω̃ (see Section 2). In that paper we studied the case
Qs = 0 directly; i.e. we considered the case of stagnant salt water underlying fresh water flowing
towards the well W , while the height of the interface along the cylindrical lateral boundary was
fixed at a distance h − u0 below the well. This yields a one-phase free boundary problem in terms
of the variable

w̃ =



p̃ + xn in Ω̃ f ,

0 in Ω̃s,

(7.1)

where p̃ denotes the fluid pressure (as in the proof of Theorem 3.5).
Given a distance h − u0, it was shown that a maximal rate exists, the so-called critical rate

Qcr = Qcr (h−u0), such that only for Q � Qcr (h−u0)) could the existence of w̃ in an appropriate
setting be established. In the same range, the corresponding free boundary has a positive distance
from the well and is the graph in vertical direction of a function of the horizontal coordinates. The
free boundary conditions are (at points of sufficient smoothness)

w̃ = 0 and ∂νw̃ = en · ν at the free boundary. (7.2)

Moreover, if Q < Qcr (h − u0), then w̃ > 0 in an upper neighbourhood of the free boundary which
is then analytic. As explained in [5], smoothness of the free boundary is implied by positivity of w̃

in an upper neighbourhood of the free boundary and vice versa.
Uniqueness was also established for subcritical rates, implying that w̃ and the free boundary are

axial symmetric (at least in the context of this paper).
The case Q = Qcr (h−u0) was considered as the limit Q ↗ Qcr . As a result we established the

existence of an axial symmetric free boundary (and w̃), which loses regularity at the central axis:
i.e. points where w̃ < 0 converge from above to the free boundary at the central axis. In [6] we
studied the consequence of this behaviour when n = 2 in detail, leading to the formation of a cusp
in the free boundary.

Because we treat here the cases n = 2, 3 together, we say that a cusp is formed at the free
boundary whenever points with w̃ < 0 enter the free boundary: see Property 4.17 of [5] for the
precise statement.

We start by showing some monotonicity results for the weak formulation. They follow directly
from Proposition 3.2 and are only valid for solutions constructed according to the procedure of
Section 3, that is to say if they are ‘constructed accordingly’ . We show monotonicity with respect
to Q for fixed Qs , and with respect to Qs for fixed Q.

LEMMA 7.1 Let Q1, Q2 denote total discharges satisfying Q1 > Q2 > Qs (for Qs fixed) and let
Qs1 , Qs2 denote salt discharges satisfying Qs1 < Qs2 < Q (for Q fixed). If g1 and g2 denote the
free boundaries of the correspondingly constructed weak solutions for one of these pairs of ordered
data, then

g1(r) � g2(r) for all r ∈ [0, R].

Proof. The function ϕ := ψ − Qs satisfies the weak formulation (∗) and (∗∗) with Qs = 0 and
with the modified Dirichlet data, see Fig. 7,

ϕ =


−Qs on AOW

Q − Qs on BCW.
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For both pairs of Dirichlet data we have ϕ1 � ϕ2 on ∂ΩD . The same ordering carries over to
the Dirichlet data in BCε and, by Proposition 3.2, to the approximations ϕiε . Passing to the limit
gives ϕ1 � ϕ2 in Ω̄ . Identifying the free boundaries with the level sets {ϕi = 0} and using the
z-monotonicity of ϕ2, yields the inequality. ✷

Next we turn to the convergence for vanishing Qs . For convenience we denote the weak solution
coresponding to the pair (Qs, Q) by ψs .

The main result is

THEOREM 7.2 Let Q < Qcr (h) be fixed. Then

ψ := lim
Qs↘0

ψs ( exists in Ω̄\W )

is a weak solution corresponding to Qs = 0. The corresponding free boundary has a cusp at the
central axis. In other words, ψ is a cusp solution corresponding to u0 := lim

Qs↘0
us .

Proof. As in Lemma 2.1 we only give the proof for n = 3. We first constuct a comparison function
for the solutions ψs to ensure that for all Qs > 0, the free boundary stays away from the bottom
of Ω . Choose any Qc ∈ ]Q, Qcr (h)[ and let w̃c denote the subcritical solution related to Qc and
u0 = 0, see Fig. 23.

FIG. 23. Properties of the subcritical solution w̃c.

Since subcritical solutions have smooth free boundaries, we find that w̃c satisfies


∆w̃c = 2π Qc δW in Ω̃ f ;
∂nw̃c = 0 along top;
w̃c = z along lateral boundary;
w̃c = 0, ∂νw̃c = en · ν along S;
w̃c = 0 in Ω̃s .

Since w̃c is radial symmetric we define, as before, the two-dimensional pressure

pc(r, z) = wc(r, z)− z in Ω f ,
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and through relations (2.5) a stream function ψ fc : Ω̄ f \W → R. Following the proof of Lemma
2.1, we choose ψ fc to be the solution of (see Fig. 24),


∇ · (1

r
∇ψ) = 0 in Ω f ;

ψ = Qs on S ∪ T W ;
ψ = Qs + Qc on BCW ;
∂rψ = 0 on AB.

AO

FIG. 24. Definition of ψ fc .

One easily verifies that w = 0 along S implies the second condition

1

r
∂νψ fc + er · ν = 0 on S.

Next we extend the construction below the free boundary. Let ψsc : Ω̄s → R be the solution of



∇ · (1

r
∇ψ) = 0 in Ωs;

ψ = Qs on S;
ψ = ψB on AOT .

where ψB is a smooth function satisfying 0 < ψB � Qs, ψB(A) = ψB(T ) = Qs and ψB �≡ Qs .
Such a ψsc clearly exists and satisfies

1

r
∂ν ψsc > 0 on S.

We now show that the composite function ψc : Ω̄ → R, defined by

ψc =



ψ fc in Ω f ,

ψsc in Ωs,
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is a supersolution for ψs , for any Qs > 0. To see this we extend ψc by ψc = Qs + Qc in the half
strip {(r, z) : 0 � r � R, z � 1}. We shift the composite function downwards over distance L to
obtain

ψcL (r, z) = ψc(r, z + L) (r, z) ∈ Ω̄.

Since Qs + Qc > Q we have
ψcL > ψs in Ω̄,

for L sufficiently large and for all Qs > 0. Next we decrease L , i.e. shift ψc upwards, until the two
functions touch. We claim that this cannot happen for any L � 0.

Since [
1

r
∂ν ψcL

]
+ er · ν < 0 on S,

it follows from the Comparison Lemma 5.2 that the functions cannot touch in interior points of Ω .
Obviously, not on ∂DΩ and, by the strong maximum principle, not on ∂N Ω . The latter observation
follows from the fact that ψcL > Qs on ∂N Ω for all L � 0.

Denoting the free boundaries of ψs, wc by the functions gs, uc (see Theorem 4.5) we deduce
from the comparison that for all Qs > 0

gs(r) � uc(r) > 0 on [0, R[ ,

and, in particular,
us � 0.

As a second step we consider the convergence of ψs . As in the existence proof of Section 3 we
deduce the uniform estimate ∫

Ω

1

r
|∇(ψs − ψ0)|2 � C.

Since ψ0 does not depend on Qs , we obtain for a sequence Qs ↘ 0:

ψs − ψ0 → ψ − ψ0 weakly in H1,2(Ω);

ψs − ψ0 → ψ − ψ0 strongly in L2(Ω) and a.e. in Ω;

γs :=χ{ψs<Qs } → γ weak star in L∞(Ω);

γNs :=χ{ψs<Qs } → γN weak star in L∞(∂N Ω).

The triple {ψ, γ, γN } satisfies (�) and (��) for Qs = 0,

0 � ψ < Q in Ω,

and (in sense of distributions in Ω)

∇ · ( 1
r∇ψ + γ er ) = 0;

∂zψ � 0 (inherited from approximations);

∂rγ � 0 (from weak equation and ψ � 0).
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Let ∂{ψ > 0} ∩ Ω denote the free boundary of the limit problem. The z-monotonicity of ψ and
r -monotonicity of γ (apply same argument as in the proof of Claim 4.4) imply for ψ the property:
if ψ(r0, z0) > 0 for some (r0, z0) ∈ Ω , then ψ > 0 in the set {(r.z) : r � r0, z � z0}. This tells
us that the free boundary is a Lipschitz graph in any intermediate direction between er end ez , that
it has well-defined end points (0, uT ) and (R, u0), and that it is decreasing it r . In fact it is strictly
decreasing. The occurrence of a horizontal segment would lead to a contradiction using the Hopf
principle and the free boundary condition ∂νψ = 0.

According to Lemma 7.1, the free boundaries of the approximating problems decrease with
Qs ↘ 0. From this monotonicity and ∂rγs � 0 one deduces that a mushy region, where ψ = 0 and
γ < 1, cannot exist. Hence

γ = 1 in Ω\{ψ > 0}
and

γN = 1 in ∂N Ω\{ψ > 0}.
In other words

γ = 1− χ{ψ>0} in Ω and γN = 1− χ{ψ>0} in ∂N Ω.

Furthermore, there exists g ∈ C([0, R]), g strictly decreasing and g(r) � uc(r) > 0 on [0, R[, such
that

∂{ψ > 0} ∩Ω = {(r, z) : 0 � r � R, z = g(r)}.
We only need to verify the continuity. Using the monotonicity, this follows directly if we can rule
our vertical segments. This is done by a similar argument as in the proof of Proposition 4.2. As in
Remark 4.6 it follows that

∂rψ = 0 in {(R, z) : u0 < z < 1}. (7.3)

In the third step we return to the function w̃, defined in (7.1). First find the two-dimensional pressure
p ∈ H1,2

loc (Ω) ∩ C(Ω) from the definitions

∂z p = −1

r
∂rψ − γ

∂r p = +1

r
∂zψ




in Ω (7.4)

such that p = 0 along the bottom of Ω . Then set

w = p + z in Ω. (7.5)

The weak equation for ψ implies for w the weak equation

∇ · (r(∇w − χ{ψ>0}ez)
) = 0 in Ω.

Introducing w̃0 : Ω̃\W → R as the unique solution of

∆w̃0 = 2π QδW in Ω̃,

B̃C




∂zw̃0 = 0 on the top,

w̃0 = 0 on the bottom,

w̃0 = (z − u0)+ on the lateral sides,
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we find for w̃ − w̃0 the weak equation

∇ · (∇(w̃ − w̃0)+ γ̃ ) = 0 in Ω̃ (7.6)

with
w̃= 0, γ̃ = 1 below free boundary,

∆w̃= 0, γ̃ = 0 above free boundary.

Moreover, w̃ satisfies B̃C , which follows directly from definitions (7.4), (7.5) and the ψ-boundary
conditions, including (7.3).

These properties imply that (w̃, γ̃ ) is a weak solution of the free boundary problem introduced

in [5]. There it was shown that if, for some open set U ⊂ ¯̃
Ω ∩ {x3 = 0} and for some ε > 0,

w̃ > 0 in {(x1, x2, x3) : (x1.x2) ∈ U, g̃ < x3 < g̃ + ε}
then

g̃ is analytic in U.

The monotonicity of the free boundary, combined with

∂rw � 0 in Ω, in sense of distributions, (7.7)

which is a consequence of the z-monotonicity of ψ , imply that w̃ > 0 in an upper neighbourhood
of the free boundary, away from the central axis. Hence

g is analytic in ]0, R[.

To conclude the proof, we show that negativity of w̃ enters the free boundary at the top (0, uT ).
Clearly, w̃ < 0 near the well. This follows from the observation that w̃0 →−∞ when approaching
W and w̃ − w̃0 ∈ Cα(Ω̃) for some α ∈ (0, 1). Consequently, the free boundary for Qs = 0 has a
positive distance from the well: i.e.

uT < h.

For Qs > 0 we define the function ws (and w̃s) from (7.4), (7.5), with ψ = ψs and γ = γs , such
that ws(O) = 0. We first show that ws is non-decreasing along the free boundary: i.e.

ws(r, gs(r)) is non-decreasing in r ∈]0, R[. (7.8)

If the free boundary were smooth, this would be a direct consequence of the Hopf principle, applied
to ψs in {ψs < Qs}, and transformations (7.4), (7.5). These transformations imply



1

r
∇ψs − er = (−∂zws, ∂rws) in Ω f ,

1

r
∇ψs = (−∂zws, ∂rws) in Ωs .

(7.9)

Hence, for an orientation as below we find along the free boundary
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1

r
∂+ν ψs − er · ν = ν · (−∂zws, ∂rws) = ∇ws · (νz,−νr ) = ∂τws

and, reflecting the free boundary conditions,

0 < ∂−ν ψs = ∂τws ( Hopf).

Since we established only continuity for the free boundary we have to argue in a different way.
The starting point is the weak equation for ψs : for all ζ ∈ C∞0 (Ω)

0 =
∫
Ω

∇ζ ·
(

1

r
∇ψs + γs er

)

=
∫

Ω∩{ψs>Qs }
∇ζ ·

(
1

r
∇ψs − er

)
+

∫
Ω

∇ζ · 1

r
∇min (ψs, Qs),

where we replaced γs by−(1−γs) = −χ{ψs>Qs }. Since min (ψs, Qs) is a supersolution, the second
integral is non-negative for ζ � 0. Substituting (7.9) yields

0 �
∫

Ω∩{ψs>Qs }
∇ζ · (−∂zws, ∂rws) for all ζ ∈ C∞0 (Ω), ζ � 0.

Let xκ = (rκ , zκ) ∈ {ψs = Qs}, k = 1, 2 and r1 < r2, be two free boundary points and let
R ⊂⊂ Ω denote a rectangle as in Fig. 25. Further, let the non-negative test functions ζ convergence
towards the characteristic function of R. Since w ∈ H1,2

loc (Ω) ∩ C(Ω), it follows that for almost all
such R

0 �
∫

∂ R∩{ψs>Qs }
(−ν) · (−∂zws, ∂r ws) = −

∫
∂ R∩{ψs>Qs }

∂τws = ws(x1)− ws(x2).

Because w is continuous, this establishes (7.8). Finally, we consider again the limit Qs ↘ 0, now
for the functions w̃s . Since (w̃s, γ̃s) satisfies (7.6) and w̃s − w̃0 = 0 (by appropriate normalization)
along the lateral boundary of Ω̃ f , we have H1,2 and Cα estimates implying for a sequence Qs ↘ 0,

w̃s − w̃0 → w̃ − w̃0 weakly in H1,2(Ω̃) and strongly in Cα(
¯̃

Ω).

Next we fix two arbitrary points on the central axis between the well and the top of the free boundary:
i.e.

xκ = (0, 0, zκ), k = 1, 2, with uT < z1 < z2 < h.
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FIG. 25. The rectangle R.

Further consider for approriate Qs ↘ 0, the sequences of free boundary points

x Qs
k = {ψs = Qs} ∩ {x3 = zk} for k = 1, 2

satisfying
w̃s(x Qs

1 ) � w̃s(x Qs
2 ),

and with no free boundary points between xκ and x Qs
κ . Continuity of the free boundaries ensures the

existence of such sequences. Moreover, the monotonicity in Qs of the free boundaries imply that
both sequences move monotonically in the direction of the axis. In fact

lim
Qs↘0

x Qs
κ = xκ ,

otherwise the limit free boundary would be above x3 = uT . The convergence properties of x Qs
κ and

w̃s imply
w̃(x1) � w̃(x2). (7.10).

Now suppose there exists x0 = (0, 0, z0), with uT < z0 < h, such that w̃(x0) = 0. Then, by (7.10),
w̃ = 0 on the axis between the free boundary and x0. Since w̃ is harmonic in a neighbourhood of
that segment and ∇w̃ · er � 0, we obtain a contradiction. ✷
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