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This paper is concerned with a model describing the distribution of vortices in a Type-Il
superconductor. These vortices are distributed continuously and occupy an unknownragiitbn

a D representing the free boundary. The problem is set as follows: two constgntsH, > 0 are
given, to find an open subsB of the smooth bounded open setc R? and a functiorH defined
on2\D such that:

div(F(VH|2)VH) —H =0in2\D

where the functiorf is analytic positive increasing
H = Hponas2

H =HionoD

aH _

S =00naD.

Here we prove the existence of a solutidnwith a domainD having an analytic boundary. We use
the Nash—Moser inverse function theorem applied to a degenerate case.

1. Introduction
1.1 Physical motivation

We are interested in a model of a Type-Il superconductor submerged in a uniform magnetic field
Ho. We examine different states of the material as a function of values of the applied magnetic field
Ho. In [2], Berestycki, Bonnet & Chapman have studied the following model:

div(?Xh) — H =0 on2 C R?
whereu(1 — u)2 = |[VH|?
H = Hponas2

which describes a cylindrical Type-Il superconductdrx R ¢ R3. They were interested in
solutions that are invariant by translation along the axis of the cylinder. It then reduces to a two-
dimensional problem posed on the sectferof the cylindrical superconductor. The equations are
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formally derived in [2] by passing to the limit when k — +o0 in Ginzburg—Landau equations.
These authors have proved that for fields Ho € [0, Hy) there is a unique solution corresponding
to the superconducting state. The value Hg corresponds to the superheating field beyond which
the superconducting solution ceases to be stable (Chapman [3]). This instability appears on the
boundary 92 of the open set when the variable u reaches the value % (meaning that |[VH |2 reaches
itsmaximal possible value which is ).

In the present work we consider the superconductor as submerged in amagnetic field superior to
the latter superheating field Hj. In this case we see that avorticity zone appears, in which somethin
filaments of normal material are surrounded by superconducting currents. This stateisreferred to in
the literature as the mixed state. In the limit k. — +o0 it isexplained in [7] how one can formally
derive a model where there exists a density of vortices in a certain zone D of the superconductor.
Thismodel is the following:

div(;£) — H = 0on 2\D
whereu(l — u)2 = |[VH|2

H = Hgp = const. on 92 (D)
H = Hy = const. on oD
onH =00naD,

where n isthe normal vector to 9 D, and the new parameter H1 (< Ho) playstherole of aLagrange
multiplier for aconstraint on the quantity of vortices in the superconductor.

Although problem (1.1) can be posed in higher dimensions as well, it has a physical meaning
for our present paper only in dimension 2. Thus we only study the problem in this physical case.
From amathematical point of view, our method could be adapted to problemsin higher dimensions.

The open set D could have a finite number of smooth connected components {D;} and our
approach could also apply to the free boundary problem (1.1) with the following more general
boundary conditions,

on each D;.

H = H;
onH =0

Nevertheless, in our article we only consider the special case where H;i = Hj for all index i.

1.2 Main results and ideas of proofs

In this article we state existence and analytic regularity of the solution (D, H) to problem (1.1).
Assuming 952 € C, we prove the existence of a branch of solutions, applying the Nash—Moser
inversefunction theorem to the degeneratecase: H1 = Hg, £2\D = ¢. We also prove some estimates
for an associated degenerate elliptic problem. .

Asin[2], we areinterested in solutions of (1.1) such that u < 3. The analysis of Chapman [3]

shows linear instability for solutions with u > % We restrict ourselves to the study of solutions

(D, H) to the following nonlinear equation:

div(F(IZVH|2)VH) — H = 0on 2\D
H = Hp = const. on 0£2

H = Hy = const. on oD

onH =00naD,

1.2)



DISTRIBUTION OF VORTICES IN A TYPE-11 SUPERCONDUCTOR 183

where F(s) is defined for s € [0, 5£) by F(s) = r=; and u isthe unique solutiontou(l — w2 = s
suchthat 0 < u < % The existence of aweak solution of (1.2) is proved in[7] such that [VH|? <
% — 8, withsome§ > 0. Thisisasolution of anonlinear obstacle problem. The uniqueness of this
solution is proved also.

We are interested in the regularity of the free boundary d D. Our main result is the following.

THEOREM 1.1 VHg > 0, 3H; € (0, Ho), YH1 € (Hz1, Ho): the free boundary 9 D of the solution
to (1.2) is C*° and homeomorphic to 452.

REMARK 1.2 If we know that 9D is C*, the analyticity of aD is then a consequence of
Kinderlehrer & Nirenberg's results [6], which deal with the case of analytic elliptic equations, with
analytic boundary conditions on the free boundary.

The interest of our article lies on the one hand in the result of C* regularity of the free
boundary 9D, and on the other hand in the use of the Nash—Moser inverse function theorem
applied to a degenerate case. For references on this theorem, see the book by Alinhac & Gérard
[1], and Hamilton [5]. Another proof of Theorem 1.1 can be derived by arguments coming from
free boundary theory for the obstacle problem (see [7]).

In Section 3 we prove in particular the following result.

THEOREM 1.3 Let (D*, H*) be a particular solution of (1.2) for Hy = H;* € (0, Ho) such that
D* cc £ and 9D* € C. Then problem (1.2) has a solution (D, H) withaD € C*, for every
Hy in aneighbourhood of H;'".

Some results similar to Theorem 1.3 are proved in Hamilton [5] and Schaeffer [10], and correspond
to the use of the Nash—M oser theorem for a nondegenerate elliptic problem. Some degenerate cases
are studied in Schaeffer [11] (the capacitor problem) and in Plotnikov [9] with methods different
from those used in this article.

Problem (1.2) that we study is an extension of both Berestycki, Bonnet & Chapman [2] and
Chapman, Rubinstein & Schatzman [4] combining the nonlinear field with the existence of afree
boundary. In [4], Chapman, Rubistein & Schatzman consider alinearized version of model (1.2) for
small Hp. They formally prove aresult similar to Theorem 1.1 using asymptotic analysis.

Here, to prove Theorem 1.1, we apply the inverse function theorem beginning with the solution
for Hf = Ho

D* =
{ H*=Hpondf2 = aD*.
This solution is unusual because 2\ D* = . We obtain a branch of solutions for Hy in aninterval
(H1, Ho], where Hj is chosen close enough to Hy = Ho.
More precisely, we proceed in the following way.
To simplify, we set I = 9 D. We split up problem (1.2) into two sub-problems

Sepl. Given I, find H such that

div(F(IVH|2)VH) — H =0on 2\D
H = Hp = const. on 92 (1.3
onH =0onT.

We obtain the solution H = H(I"), by local inversion of problem (1.3), for I in a neighbourhood
of I'* = aD*.
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Sep 2. Weimpose on H (") the constraint
H(M)r = Hi (1.9

which allowsusto obtain I' = I"(H1), once more by local inversion, for Hy in a neighbourhood of
Hy.
This method presents two main difficulties, which we will examine briefly:
(i) Why doesthe usua inverse function theorem not apply?

(i) How can we deal with the degeneracy: 2\D — @ as Hy — Hg?

(i) Application of the inverse function theorem

Theinverse function theorem in Banach spaces C% % can be applied to step 1 and gives H = H(I").
In contrast, if we note that @ : C9% — C9%, I' —— H(I")|r, a computation proves that the
differential D& is a 1-1 map from C9=1¢ into C%¢ (and thus it is not invertible from C%¢ to
CY%9), which in step 2 prevents us from using the inverse function theorem in Banach spaces C%¢.

Actualy, the loss of derivative of one unity on the inverse of the differential of @ comes from
the fact that we impose two limit conditions on the free boundary I": aDirichlet condition H = Hy
and a Neumann condition 9, H = O (see Subsection 3.2).

However, if we consider @ asamap @ : C*® — C*, then D@ isa 1-1 map from C* into
C®°, and the Nash—-Moser inverse function theorem can be applied.

(ii) Degeneracy : 2\D — ¢ when H; — Ho

To apply the Nash—Moser theorem, we must prove that (D®)~1 is regular (more precisely C>-
tame, see Subsection 2.1) until H; = Hp.

If € isthe order of the distance between I and 952, then when H; — Hp, we have e — 0,
and the difficulty is proving that (D@®)~1 is C*®-tame until € = 0.

The main idea is to scale the coordinate normal to the boundary so that the problem of the
domain shrinking ase — 0 istransformed to that of the elliptic constant tending to zero.

Hence, to inverse the differential D@ is reduced to solving an elliptic equation on the fixed
domain ST x (0, 1) whose coordinates are x = (s, p). Given the coefficients A = (& i, bj,c) and
on theright-hand side k = (ko, k1, k2), we search for the solution w to the following equation

aij(X)dijw + bj(X)9jw + c(X)w = Ko
dow(p =19 =k (1.5
w(p =0,s) = ko.

We use the classical repeated index summation convention withi, j € {o, p} and 9, = €ds. To be
clear we have, for example,

aj (X)3jw = €284 (X)dssW + 2685, dspW + 8pp (X)Dppw.
In particular, for e = 0, problem (1.5) is degenerate. We assume that:
Jco > 0, ¥x € St x [0,1], V& € R?, ajj ()& £ > colé|* (16)

We prove the following result of independent interest.
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THEOREM 1.4 (Tame €lipticity in a degenerate case). Let us consider a solution w of problem
(1.5) which we can write as

LA, e)w =k.

If there exist more particular coefficients A* € C* which satisfy (1.6) and such that L(A*, 0)
satisfies the maximum principle (see Subsection 5.1 for details), then w = w(A, K, €) exists and
is C°-tame on the right-hand side k € C°° of the equation and on the coefficients (A, €) in a
neighbourhood of (A*, 0).

1.3 Organization of the article

In Section 2 we recall some elements on tame maps and the Nash-Moser theorem, for the reader
who is not familiar with this theory. The proof of Theorem 1.3 is given in Section 3. In particular,
we explain in detail why the inverse function theorem in spaces C9% does not apply. The proof of
Theorem 1.1 is given in Section 4. The last section, Section 5, is devoted to the proof of Theorem
14.

2. Preliminaries: tame maps and the Nash—-Moser theorem

We recall below elements of the Nash—Moser theory that are used to prove the results presented in
this article. For this presentation we have taken our inspiration from Hamilton [5]. In the following
sections we will often refer to these preliminaries, but those readers who know the Nash—Moser
theory can skip Section 2 and start with Section 3.

2.1 Definitions

Let us choose o € (0, 1) which will be fixed hereafter. We recall some standard notations. For
an integer g and a function u defined on a set 2 C R", DY9u denotes al the partial derivatives

DO _ DO
of total order equal to q; [U]lqa:0 =  SUP [D7UC0 u(y)|' lulo;2 = sup |u(x)|, and
X,YER,X£Y X —y[* xef

|u|q,a;9 = Z?zo |Dju|0;9 + [u]q,oz;.Q-

Continuity. Let @ : C®°(M) — C*(N), where M and N are C* compact manifolds, possibly
with boundaries. The sequences of seminorms (| - [g.a)geny ON M and N, alow us to define the
continuity of themap @ inug € C*°(M), as

vgeN, n>0,39 €N, 5 >0, Yo € C*(M), @2.1)
(v = Uolg,a:m < 1) = (|2 (V) — P(U0)|q.a:N < 1)- '
Thisisthe definition of the continuity of maps between Frechet spaces.
Classicaly, if we consider @ : U — C°°(N) where U is an open set of C*°(M), we will say
that @ isCP (i.e. @ iscontinuous) if and only if it is continuousin every point u € U.
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Differentiation. The map @ is Cl if and only if @ is continuous and if there exists a continuous

map denoted D@ : U x C®°(M) — C%(N) linear in the second variable and such that: Yu <

. DdU+tv) — DU - .
U, Vv € C®(M), tlma Ch vt) w = D& (u) - v. We define in the same way the successive

differentiations and we say that @ isCY if D9~ existsand is C. We say that @ isC> if itisCY
for al g.

In particular, to verify the continuity of D4® onU x (C*®(M))d > (u, v, ..., vg) We use the
natural grading (in the sense of Hamilton [5]) [(u, v1, ..., vg)lpa:M = [Ulpa:m + D i1 [Vilp.a;M-

Tamemaps. Themap @ : U c C®(M) — C®(N) is CO-tameif and only if it is C? and if it
satisfies the tame inequality

Ir €N, Vg eN, 3Cqq > 0, Vu € U, [®(U)|ga < Cqa(l+ [Ulger.a). (2.2)

It requiresthat we have alinear estimate on anonlinear map @, and thisisfor all seminorms|-|q o;N-
We may have aloss of derivativesr > 0 possibly large but independent on g. In addition, we recall
that the Nash—Moser theorem stays true for the following more general definition of tame maps
where (2.2) in the previous definition is replaced by

Yup € U, 3 neighbourhood V(ug) C U, Ir e N, dbe N, Vg > b, 3Cq, > 0, 2.3)

Yu € V(Uo), |2 Wlg,e < Cqa(l+ [Ulgtr.a)- '
Inthe sameway @ isC9-tameif and only if the maps(Dj D)o<j<q areC%-tame, and @ isC>-tame
if and only if it is CY-tame for all g.

REMARK 2.1 Itiseasy to seethat: if @1 and @, are tame, then the sum @1 + &5, the product
@, - Py, the quotient %, the composition f o @1 by afunction f € C°, the composition of tame
maps @1 o P2, are tame maps.

2.2 The Nash—-Moser theorem

THEOREM 2.2 (Nash—-Moser). If M and N are C* compact manifolds, possibly with boundaries,
if®:U c C®M) - C®(N) isC>-tame, and if Vu € U, Yk € C*®°(N), D@ ) - w = kis
invertible, with aunique solution w = (D®(u))~1 -k, and (D@ (-))"LisaC>®-tamemapin (u, k),
then @ islocally invertible and ® ~1 islocally C*>°-tame.

REMARK 2.3 Contrary to the classical inverse function theorem in Banach spaces, here we must
(for the spaces C*) check that the linear map D@ (u) isinvertible in a neighbourhood of one point
Uo, and not only in the point ug (see Hamilton [5] for a counter-example).

2.3 Thetameéellipticity theorem

The following theorem will be used several times in the following sections. It gives the solution to
a nondegenerate elliptic equation as a C*°-tame map of the coefficients and the right-hand side of
the equation.
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THEOREM 2.4 (Tame dllipticity, Hamilton [5]). Let the linear elliptic operator L o of order 2,
defined on aC*° compact manifold M, possibly with boundaries, such that denoting A = (a&;j, bj, €)
which satisfies (1.6), we have L aw = & (X)djj w + bj (X)9j w + c(X)w, with boundary conditions

w Dirichlet
Bw = or

ohw Neumann

where n is the exterior unit normal.
If the coefficientsare C*°, i.e. A € U c C*°(M), and if the open set U is chosen such that the
system
Law =kgon M
{ Bw = kg onaM

has a unique solution w, then this solution, w = w(A, kg, kg) € C*°(M), is C>*-tamein A and
ink = (ko, kg). That is, w is C*°-tame relative to the coefficients and the right-hand side of the
equation.

In particular, if we sett = O for Dirichlet conditions, t = 1 for Neumann conditions, and
IKlg,e = IKolg,a + IKBlg+2—t,«, then we have the tame elliptic inequality

VA*e U, In > 0, VA e U,

24
(1A= A'low < 1) = (Yq € N, |wlgr2a < Cqrza (Kiga + Alqelkioa)). &P

REMARK 2.5 Theorem 2.4 istrueif the Neumann condition is changed into an oblique derivative
condition. Moreover, in Theorem 2.4 the boundary conditions can be different on different
connected components of the boundary of the manifold M. In this case, inequality (2.4) should
naturally be adapted.

3. Existence result by perturbation of a smooth free boundary

In this section we will prove Theorem 1.3. This kind of result is referred to in the literature as the
stability of the free boundary (see, for example, Schaeffer [10]). This approach consists of finding a
solution to problem (1.2) by perturbation of a particular solution.

3.1 Setting of the problem

Let us assume that a particular solution (D*, H*) isgiven with D* cc 2, I'* = dD* € C*° and
H"‘;-* = H; < Ho. For each value of the parameter Hy in a neighbourhood of H;", we will build a
smooth solution (D, H) to problem (1.2).

To simplify (without loss of generality), we assume that £2 and D* are diffeomorphic to a disk.
Then we can construct a local curvilinear parametrization (r, s) in a neighbourhood of I'* ccC
2:s e St parametrizes I'* proportionally to its length, and r denotes the transversal coordinate
positively oriented inward to the interior of D*, withr € (—rg,rg),ro > 0. Thus the boundary
I' = 0D of every smooth open set D closeto D* can be described in local coordinatesby r = G(s)
where G € C®(S1), and in particular, I'* is characterized by the equationr = G*(s) := 0.

We follow the method of the proof given in the introduction.
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FiG. 1. Local coordinates near I'* = 9D*.

Sep 1. Letusintroduce the map
@1: CO¥(SH x C®(R2\D) — C®(R2\D) x C>®(Sh x c>sh

(QH)‘_Q\B

3.1
(G, H) —  ®1(G,H) =1 Hje — Ho 3D

ar H|1"
where Q isaquasilinear elliptic operator given by
OH =a} (VH)3;jH — H
with for every vector V e R?
al (V) = F(VIH8ij + 2F (VD V, (32

and §jj = 1ifi = j, §j = 0ifi # j. With these notations we rewrite (1.3) (here 3 H, standsin
place of anH,r) as
®1(G,H)=0 33

and we will be able to obtain the solution H (G) by a proper inverse function theorem.
Sep2. Wewill set @3(G) := H(G)|r € C®(S') and rewrite (1.4) as
D7(G) = Hq (3.4)

where Hy is a constant close to H;". Solving (3.4) will give the parametrization G(Hy) of the free
boundary I".

This method will give a posteriori dnH|r = O, since oy H;r = 0 and Hjr = Hy = const. imply
that VH = Oon I'. Let us remark that we have chosen to write equations (3.1) and (3.3) with the
condition 6 H = 0on I", and not 9,H = 0 on I'", because the vector field 3, isindependent on I”
contrary to the normal vector n.

Although the inverse function theorem in the Banach spaces C%“ appliesin step 1, we will see
why it does not apply in step 2.
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3.2 Theinverse function theoremin spaces CY* does not apply

Let usassumethat step 1 issolvedin the spaces C%¢, i.e. that the function H (G) has been obtained.
Then it is not possible to solve step 2 in spaces C%¢ because of the following lemma

LEMMA 3.1 If H : G € CO%SY —s H(G) € CI%(2\D) satisfies #1(G, H(G)) = 0 and if
®y: G e CheShH — @5(G) = H(G)r € C%(S1), then the differential Dg ®»(G*) isa1-1
map from C9¢(S1) into CatLhe (ST,

In particular, Dg @2(G*) is not invertible from C92(S1) into C4#(S1).
For the proof of Lemma 3.1, we use the following result.

LEMMA 3.2 Under the assumptions of Lemma 3.1, we obtain

Dg®2-g=m

g__(ah>
— \oeH /) p

l DH(QH) - h= O|Q\B

if and only if

where h satisfies

hpe =0 (35)
h‘p =m.

Proof of Lemma 3.2. Let usintroduce h := DgH - g whereg € C®°(S1). Thus
Dec®2-9=(DgH-g+gdH)r

because & (ugovy) = () o vy + (Dugovy) - 3. Herewe know that H satisfies #1(G, H(G)) =0,

and then, in particular, d; Hjr = 0. Conseguently, by the definition of h we have
Dc®2-g= h|['.

Differentiating @1 (G, H(G)) = 0O with respect to G, we obtain

DH(QH)-hzom\B (3.6)
hse =0 3.7
(Orh+ 93 H)r=0. (3.8)

Therefore, equation Dg®> - g = m, written as

hir=m, (3.9)

o~ ()
— \oH/p

where h isasolution of system (3.6)—(3.8). This ends the proof of Lemma 3.2. |

can be inverted into:
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Proof of Lemma 3.1. For H = H* Hy = HS, D = D*, we have 0 # 9, H[}* e C(sh.
Therefore if m e CIt1¢ we have from Lemma 3.2 that (Dg®2(G*))"t(m) = g € C%¢, and
therefore Dg @,(G*) isa1-1 map from C%%(S?) to C4*12(ST) which proves Lemma3.1. |

There is aloss of derivatives on the inverse of the differential of @, which corresponds to the
fact that we impose on I" two boundary conditions of different orders: H;r = Hy and o, Hjr = 0.
We will therefore use the Nash—Moser theorem which applies in the spaces C* to problems with
loss of derivatives.

3.3 Proof of Theorem 1.3

Sep 1: the function H (G) obtained by the Nash—Moser theorem. Let us recall that applying the
implicit function theorem to the equation @1(G, H) = 0isthe same asapplying theinverse function
theoremtothemap ¥ : (G, H) — (G, @1(G, H)). In particular, D¥ isinvertible if and only if
Dy @1 is.

There is a small technical difficulty: on the one hand, a variation of G changes the domain of
definition of H, and on the another hand, the notion of tame map that we want to use to apply the
Nash—Moser theorem has only been defined on fixed compacts. To be rigorous we should use a
diffeomorphism fg : 2\D — £\ D* which depends smoothly on G. This would allows to bring
back @1 in a C*-tame map ¢4 defined on the fixed compact set 2\ D*.

Nevertheless, to avoid tedious computations, we will work with @1 asif it was @1.

Now the tame ellipticity Theorem 2.4 appliesto the following elliptic problem

Dy®1(G,H)-h=k

and therefore givesh = h(G, H, k) as a C°-tame map of its arguments.

Consequently, DY isinvertible with a C*°-tame inverse, and the Nash-Moser inverse function
Theorem 2.2 applies. This proves that ¥ (G, H) = (G, 0) issolved in H = H(G) which is a
C®°-tame map.

Sep 2: the solution G = G(H1). Let us consider the map @5 : C®(S) — C>°(S1) defined by
®2(G) := H(G)r. Thusfrom Lemma3.2, equation Dg ®2-g = missolved settingg = _(9?:?| hr
where h isasolution of (3.5).

Asin step 1 we prove that (Dg@,) 1 is C*-tame which allows us to apply the Nash-Moser
Theorem 2.2. This provesthat @, isinvertible in a neighbourhood of G* which satisfies ®2(G*) =

H;". This ends the proof of Theorem 1.3. ]

ReEmMARK 3.3 Inthe proof of Theorem 1.3 we have assumed that D and §2 are diffeomorphic to a
disk. It is straightforward to adapt the proof to caseswhere D and £2 have other smooth shapes and
topologies (and not necessary the same).

4. Existence of a smooth free boundary closeto 952.

In this section we prove the main result of this article: Theorem 1.1.
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FIG. 2. Local coordinates near 952.

4.1 Setting of the problem
Here we start from the particular solution that we know when I' = 32

D* =
{ H* = Ho = H;.
We search for free boundaries I = 9D closeto 9£2. Asin Section 3 we construct alocal curvilinear
parametrization (r, s) in aneighbourhood of dD* = 3£2: s € ST parametrizes 32 proportionally to

its length, and r denotes the transversal coordinate positively oriented inward to the interior of 2,
withr € (—ro, rg), ro > 0. We will note that

f(y1L, y2) = (s,1),

the diffeomorphism associated to these coordinates.

The constant Hg is fixed and Hy is a parameter. For Hy close to Ho, I" isclose to 042, at a
distance of order ¢. Problem (1.2) can be approximated by the one-dimensional equation H” = Hj,
which should give

H
HO — Hl = 7162. (41)
We take (4.1) as the definition of €. Then it is natura to search for free boundaries I' = 9D
parametrized by r = €G(s), such that, in the limit

G*":=1
A difficulty is that the open set £2\ D degenerates as ¢ — 0. Our goal is to obtain a branch of

solutions starting from the obvious solution G* = 1in e = 0, and using the Nash—-Moser inverse
function theorem.

4.2 The problemis reduced on the fixed compact set @ = St x [0, 1]
We reduce the problem on the compact set @ where w = St x (0, 1). We will note (s, p) as apoint
of this set. For this we use the following diffeomorphism from 2\ D into @ = S* x [0, 1] with
r
T eG(s)’

I
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We denote H (s, p) = %ﬁ&‘”l Asin Section 3, we aim to solve equation ®1(G, H) = 0, or
equivalently
®1(G,H,e)=0

where

@1 COESYH x C®@) x (—eg, €0) —> C®(w) x C®(ShH ><~C°°(S1)
) ) N (Qe.cH)w—1
(G.H,e) —> ®1(G.H,e) =1{ Hpe — 3
ap H|r*

and we denote 052 := {p = 0}, I'* := {p = 1}. A straightforward computation gives:
Oc.cH =&;djH +€bjaj H + e%cH
wherei, j € {0, p}, 3, = €ds and the coefficients A = (&, bj, €) are C*> functions of several
arguments A = A(,H, €dsH, G, G/, G”, Df, D?f, ¢, p, Ho), and
4= P.a%V) P for somevector field V : @ — R?

where P = M - (Df), M = ( 1@/(5) (1) ) al is defined in (3.2) and aﬂ V)&EE > |2
PG B
because F isincreasing and F(0) = 1. Therefore the quasilinear operator QG,G stays dliptic while
€ >0andGiscloseto G* = 1.
Let us remark that the particular solution

(p — 1)?

H* =
(s, p) 5

satisfies @1(G*, H*, 0) = 0.

The domain of definition isnow fixed, and we would like to apply the same method asin Section
3 (an ad hoc tame dllipticity theorem and the Nash—Moser theorem). For every € > O, the tame
elipticity Theorem 2.4 applies. However, on the one hand our problem degenerates as ¢ — 0,
because the ellipticity constant of the operator H — QG,G H tendsto 0. And on the other hand we
want to find solutions starting from the case ¢ = 0. We remove this difficulty by applying Theorem
1.4 which is another version of the tame ellipticity Theorem 2.4 which is valid in this degenerate
case.

4.3 Proof of Theorem 1.1
Sep 1: themap (G, €) —> H(G, €) isC®-tame. We want to solve

®1(G, H,e) =0. (4.2)

We obtain the straightforward result on the differential of b1
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LEMMA 4.1 We have o
5 B PH(QG,E H) . h|a)
DI:I D1 - h= h|352
dphyr=

where h € C®(@). For A = (j, bj, ©), let
L(A, ©h 1= &;djh + bjd;h + ch.

Then _ o _
D (Qa,.cH)-h=L(A eh

where coefficients A = (a;j, bj, ¢) are C* functions
A= A(VH, D?H, G, G/, G", Df, D?f,¢, p, Ho).

Moreover, for A* = A(G*, H*, 0), we have
2
2
a* = (W) 0 , b*=c*=0
0 1

where |32 | denotes the length of 952.

Because (G, H,e) —> A(G, H,¢) is a C*-tame map, it is clear that for (G, H,¢) in a
neighbourhood of (G*, H*, 0), the coefficients A are close to A*, and therefore we can apply
Theorem 1.4. By composition we deduce that the solution h = h(G, H, ¢, k) of

L(AG, H,e),e)h =k

is C>-tame. Then the Nash-Moser Theorem 2.2 applies to the map (G, Hoe) +—
(G, @1(G, H, ¢), ¢), ~defingd in a neighbourhood of (G*, H*, 0). We deduce the existence of
aC®-tamesolution H = H (G, ¢) to (4.2).

Sep 2: the solution G = G(e). To obtain the solution G(e) of our problem, we have to impose
the condition Hjr = Hy, i.e. Hjr+ = 0. We introduce the map ®»(G, €) := H(G, )|+ which is
C>-tame. To inverse Dg @, - g = m, we go back to the initial equations written in £2\ D which do
not depend explicitly on (G, ¢).

We proceed asin the proof of Lemma 3.2 and a straightforward computation gives the following
lemma

LEMMA 4.2 With the notations of this section we have

Dg®2-g=m

g=-G- < a"hN) (4.3)
3ppH )

if and only if
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where h € C> (@) satisfies i
PQ(QG,EH) -h=0
hae =0
h|1—'* =m.
We conclude as previously with the help of Theorem 1.4 (written here with two Dirichlet
conditions), that h = h(G, €, m) isC°°-tame and thereforefrom (4.3): g = g(G, ¢, m) isC>-tame.
We apply the Nash—Moser theorem to the map (G,e) —— (D2(G, €), €) which satisfies

Dr(G*,0) = H|*r* = 0. This proves the existence of the solution G(¢) to the equation
Do(G,e) =0.

Theorem 1.1 is proved. m|

5. Thetamedlipticity theorem in a degener ate case

In this section we prove Theorem 1.4.

5.1 Setting of the problem
For A = (a&j, bj, ) let usintroduce the elliptic operator defined for (s, p) € w = St x (0, 1)

Laecw = ajoijw + bjojw + cw

wherei, j € {0, p}, 0, = €ds. Weassumethat € € R, that A € C*(w), and that the coefficients A
satisfy

3co > 0, ¥x € ' x [0, 1], V& € R? & (X)&i&) > Colé|*. 5.1
For kg € C*®°(w) and (kg, k2) € C*°(dw) we consider the following system

Laew =koonw
dow(s, p =1) =ki(s) (5.2
w(s, p = 0) = ko(s).

Let k = (ko, k1, ko). System (5.2) will be denoted as
LA e)w = k.

For e # 0, let usrecall that from the Fredholm aternative theorem, L(A, €) isinvertibleif and only
if L(A, e)w = 0impliesw = 0. Let usdenotek < Oif andonly if kg < 0,k; > 0, ko > 0. Then let
us recall that L£(A, ¢) satisfies the maximum principle on w if and only if for every w € C2% (@),
LA, e)w < 0impliesw > 0. In particular, if L(A, ¢) satisfies the maximum principle, then
L(A, €) isinvertible.

For e = 0, the operator is degenerate. For s9 € ST we define Ag, = Aso, 1), wsy = w(So, ),
ks, = k(so,-). We introduce the following one-dimensional elliptic operator defined for v e
C>([0, 1]) by

Ay (S0, P)3ppv(p) + by(S0, P)I,v(P) + C(So, P)V(P)
Lo(Asp)v = 1 dpv(p =1)
v(p = 0).
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With these notations we see that for ¢ = 0, we have a continuous family of one-dimensional elliptic
problems well posed on (0, 1)

LA, 0w =k & VseS?, Lo(As)ws = kKs.

In particular, we will say that the operator L(A, 0) satisfies the maximum principle on w if and only
if for every s € ST, Lo(As) satisfies the maximum principle on (0, 1).

REMARK 5.1 The main reason for which the limit at ¢ = 0 is well posed is that the problem
remains nondegenerate in one direction transversal to the boundary of the annulus ST x (0, 1). In
contrast, there is no general existence nor uniqueness of solutions to the limit problem on the same
annulus for the operator 32 + €202,

Letusdenote P = (A, k) andforq € N, |P|g.e = |Alg.a +IKlg.a With[Klq¢ = [Kolg.a +IKilg+1.e+

[K2|g+2,- We denote by w(P, €) the solutionto L(A, e)w = k.
For P* = (A*, 0) with A* asin Theorem 1.4, we introduce the following open set

B={PeC® |P—-P*s <R
with R > 0. We chose R small enough such that the coefficients A satisfy (5.1) for (A, k) € B, and
L(A, 0) satisfy the maximum principle on the same set of coefficients. We will prove
THEOREM 5.2 (i) w(P, 0) isC%tameon B
(i) There exists eg € (0, 1) such that
Vg eN, 3Cq 4 > 0, Y(P, €) € B x (—€p, €0) -
[w(P, €) —w(P,0)g« < Cqalel*IPlg+3.e-

REMARK 5.3 There appears to be aloss of derivatives in the degenerate case, in contrast to the
tame ellipticity Theorem 2.4 for the nondegenerate case.

5.2 Theorem5.2 implies Theorem 1.4
In this subsection, we prove in two steps that Theorem 5.2 implies Theorem 1.4.

Sep A if w is CO-tame, then w is C®-tame. We denote P = (A k,e) and W =
(w, dsw, d,w, dssw, dspw, dppw). These notationswill only be used in this paragraph. In particular,
W is CO-tameif and only if w is. We have

LA, ) w =k < L(P)W(P) = lo(P)

where L(P) is a vector whose coordinates are polynomials in P, L(P)W(P) is a bilinear vector
function in L(P) and W(P), and lo(P) isthe linear polynomia in P defined by [o(P) = k.

If W(P) is CO-tame and satisfies L(P)W(P) = | (P) where | (P) is C1-tame, then we obtain by
differentiation

L(P) (DpW(P) - p) = Dpl(P) - p— (DpL(P) - HW(P).

Because the polynomial £(P) is C*®-tame in P we deduce that DpW(P) is CO-tame and then
W(P) isCl-tame.

Finally, because Io(P) is C°-tame, it is then straightforward to prove by recurrency that
DTW(P) is CO-tame, for every m e N.

This provesthat w is C*-tame.
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Sep B: Theorem 5.2 impliesthat w isC%-tame.  Letusdenoted(P, €) = w(P, €)—w(P, 0) where
werecall that P = (A, k).

From Theorem 5.2 (i) and thetame llipticity Theorem 2.4, it iseasy to provethat 6 iscontinuous
for ¢ # 0. Theorem 5.2 (ii) states that 6 is continuous until ¢ = 0 and then is C°-tame on B x
(—¢0, €0)-
The solution w = 6 + w(-, 0) is the sum of two C°-tame maps and therefore is C%-tame on B x
(—€0, €0). Finally, from the following straightforward Lemma 5.4, w(P, ¢) = w(A,k, €) is C-
tame on alarger open set without boundson k € C*.
This proves Theorem 1.4. |

We recall the following straightforward lemma, which is used in the proof (Step B) of Theorem
1.4.

LEMMA 5.4 Suppose that @ (u, k) is C?, linear in k, and satisfies a tame estimate when k is
bounded, i.e.

ARy >0, Vue U Cc C*®, Yk e C*:

5.3
(Klne < Ro) = (¥ € N, [8(U, Klg.e < Ca (141U Klgira) (>3)
then for all k € C*, we have atame inequality without bound on k

YueU CC®, Vke C®: VvVgeN,
Cq.o
|q)(u’ k)|q,ot < %“qb,a(l‘f' |U|q+r,a) + Cq,a|k|q+r,o¢~

In other words, because @ islinear ink, it is enough for @ to satisfy (5.3) to be CO-tamein U x C*
in the sense of Definition (2.3).

5.3  Proof of Theorem 5.2 (i)

We recall some useful tame inequalities. In particular, we will use them to prove that the map
P — w(P, 0) is CO-tame.

5.3.1 Fundamental tame inequalities. Let u and v be some C* functions on a smooth bounded
open set £2 in R"; then we have the following tame inequalities:

product (see[1])
Vg €N, lu-vlg,e < Cq,a(lUlofvlg,« + |Ulg«lvio)- (5.4)

interpolation (see[5]). If (i, j) belongs to the segment of extremities (k, 1) and (m, n), then for
every positive or null integersi, j, k, I, m, n we have

Ulielvlje < Cijkl.mn.e(Ulkelvlle + [UIma|vineg)-
In particular, we will use thisinequality under the following form

Vi, 20, |Pli«lPlj« <CIPlitjo if|Ploq isbounded. (5.5)
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5.3.2 Themap P —> w(P,0)isCC%tame. Inall that follows C will denote a generic constant.
To simplify the notations let us introduce w%(P) = w(P, 0). For every s € S, we apply the tame
elipticity Theorem 2.4 to each one-dimensional elliptic problem

£O(As)wg = ks (5.6)

where we recall that As = A(s, -), wl = wO(s, -), ks = K(s, -). For every s € S we find that with
PS = P(S» ')1
[wlg+2.« < CIPslq.a- (5.7)

Let us emphasize that here the coordinate s is fixed and then the Holder norms | - |« apply to
functions that only depend on the coordinate p.

The solution w? is C* relative to Ps. In particular, it is derivable relative to s because dsw® =
Dpw? - 8sP. Derivating equation (5.6), we obtain

Lo(As) (9swg) = Ks 1= dsks — Lo(3sAs) (wg).
From the tame ellipticity estimate (2.4) we obtain

19swllq+2.0 < C(IKslga + IKsloal Aslga)

and
IKslg.« < C(IdsKslq.a + 1£0(3sAs) - wl]q.a)
< C(kslg+1a + 10sAslo.a[wllgt2.a + 19sAslg.alwll2.a)
< C(|Pslg+1,0 + IPslyalPslg,a + IPslg+1,e!Pslo,e)
< C|Pslg+1a

where we have used (5.4) for the second line, (5.7) for the third line, and for the last line: (5.5) and
the fact that | Ps|o,« iSbounded because P € B. Wefind that for every s € st

05w lg+2.a < CIPslq+ia-
By a straightforward recurrency we obtain
08" welg+2. < CIPslgrm.a-
In particular, thisimplies with the Holder normson w = S* x (0, 1) that
[w’lge < CaalPlg+ia

which proves that w? is CO-tame. 0

5.4  Proof of Theorem 5.2 (ii)

We want to find estimates on 6 (P, €) = w(P, ¢) — w%(P) with w%(P) = w(P, 0).
Let usremark that
LA, €)0 = —(L(A, €) — L(A, 0)wP.

The linear differential operator L(A, ¢) islinear in A and polynomial in €, therefore we can write

LA €)f =K = —eM(A, e)w’
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where M (A, ¢) isalinear differential operator, whose coefficients are linear in A and polynomials
in €. To obtain elliptic estimates with constants independent on ¢, it isuseful to introduce the change
of coordinates. o = £, w, = %1 x (0, 1), Ao, p) = A(S, p),0(o, p) = 0(s, p), K(o, p) = K(s, p).
We deduce that

L(A, 16 =K on we. (5.8

The quantity g introduced in Theorem 5.2 is given by

LEMMA 5.5 (Schauder estimate). There exis_ts €0 € (0,1) and a constant Cyp > O such that for
each € € (—eo, €0)\{0}, for each coefficient A(o, p) = A(eo, p) such that (A, 0) € B, and for
every § € C%* solution to (5.8), we have

1012« < ColK]|o,a-

Proof deferred

Estimate on |]2,. For every (P,e) € B x ((—eo, €0)\{0}), we deduce the straightforward
estimates _ o
|9|2,a <C|K|O,a
<C|K|0,a
< Cle||M(A, e)w0lo.a
< Clel| Alog|wl2.q-

It gives B
1012, < Clel|Pl3a-

Estimate on [3,0|2,. We derive equation L(A, 1)6 = K relative to o, and we obtain
L(A, 1)(8,0) = 3K — L(3, A, 1)b.
We proceed similarly as in Subsection 5.3.2, and this gives
1050124 < Ce?|Plaq.
Estimateon |3,0]2,,. We have:
100126 < C(10]2.0 + 136020 + 1830]0.)-

Then we only need to estimate |8§§|O,a. Let usnote that K = (Ko, K1, K2). With these notations
we have LR1§ =Ko, i.e
@ijdij0 + D030 +co =Ko
wherei, j € {o, p}. We deduce that
929 =K,

where K, isafunction on (Ko, A, 8, V@, 3, V). Thus by derivation relative to p we can estimate
825. A straightforward computation gives

13010, < Clel|Plaq
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and then
[0,012,6 < Cle]|Plaq.

Estimates on higher derivatives of 6
A straightforward recurrency allows usto prove that for every j > i > 0 we have

1858071120 < Cjalel TPl 43 (5.9)
We deduce that
v¥q >0, 3Cq > 0, V(P, €) € B x (—e, €p),
10]g.e < Cqualél™™*IPlgs3.a-
This ends the proof of Theorem 5.2 (ii). ]

REMARK 5.6 Infact we can also obtain the following estimate: [0]q < Cg,ol€l|Plg+4,a-

Proof of Lemma 5.5. For this proof we take our inspiration from some ideas in [7], which were
based on Morrey [8].

If the lemmais false, then we can find sequences (en)n € (—1, D\{0}, (An, kn)n € B, (Kn)n
and (@n)n € C2¢ such that for An(o, p) = An(ena, p)

_ st
L(An, 1)0n = Ky on we, = 6_ x (0, 1)
n
and ey — 0, [Onl2e = 1, [Knloe — 0. Forog € Rand 1 > 0 let us define the box C,,(00) =

{(o, p), p €0, 1], |oc —oo| < u}. Then, onthe one hand, thereexistsaconstant C > 1and oy, € f—nl
such that

|9n|2,a;C1(an) < |9n|2,a < C|9n|2,01;C1(<7n)~

On the other hand, from élliptic estimates (see Morrey [8]) there exists a constant Cp > 0 such that
|0n]2,0:C1(0m) < C0(|§n||_l(c2(gn)) + 1K nl0.0:Ca(0m)-

Up to extraction of some subsequence, we have enon — Sy € ST, Ay — A and Ay — Ay, Where

_KOO(O" p) = Koosoo(l)) :_Iimn%+oo An(eno+e€non, p) = Ax (S, p). Moreover, On(o+on, 0) —
000 (0, p) Which satisfies [0 |2, < 1, and then

1 _
C—(:O < |000|L1(02(0))' (510)

We aso have
L(Aso, D) =0 onwg =R x (0, 1).

Let the subsolution v(p) = SUP, g B0 (0, p) (resp. the supersolution v(p) = inf, cr oo (0, p)):
it satisfies L(Ax, Dv > 0 (resp. L(Ax, D)y < 0). From the maximum principle applied to
Lo(Ax.s,,) Weobtain

0<T< 0 <v<O0.

This gives a contradiction with (5.10) and proves the lemma. |
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