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This paper is concerned with a model describing the distribution of vortices in a Type-II
superconductor. These vortices are distributed continuously and occupy an unknown regionD with
∂ D representing the free boundary. The problem is set as follows: two constantsH0 > H1 > 0 are
given, to find an open subsetD of the smooth bounded open setΩ ⊂ R

2 and a functionH defined
onΩ\D such that: 



div(F(|∇ H |2)∇ H) − H = 0 in Ω\D
where the functionF is analytic positive increasing
H = H0 on ∂Ω

H = H1 on ∂ D
∂ H
∂n = 0 on∂ D.

Here we prove the existence of a solutionH with a domainD having an analytic boundary. We use
the Nash–Moser inverse function theorem applied to a degenerate case.

1. Introduction

1.1 Physical motivation

We are interested in a model of a Type-II superconductor submerged in a uniform magnetic field
H0. We examine different states of the material as a function of values of the applied magnetic field
H0. In [2], Berestycki, Bonnet & Chapman have studied the following model:


div( ∇ H

1−u ) − H = 0 onΩ ⊂ R
2

whereu(1 − u)2 = |∇ H |2
H = H0 on ∂Ω

which describes a cylindrical Type-II superconductorΩ × R ⊂ R
3. They were interested in

solutions that are invariant by translation along the axis of the cylinder. It then reduces to a two-
dimensional problem posed on the sectionΩ of the cylindrical superconductor. The equations are
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formally derived in [2] by passing to the limit when κ → +∞ in Ginzburg–Landau equations.
These authors have proved that for fields H0 ∈ [0, H∗

0 ) there is a unique solution corresponding
to the superconducting state. The value H∗

0 corresponds to the superheating field beyond which
the superconducting solution ceases to be stable (Chapman [3]). This instability appears on the
boundary ∂Ω of the open set when the variable u reaches the value 1

3 (meaning that |∇ H |2 reaches
its maximal possible value which is 4

27 ).
In the present work we consider the superconductor as submerged in a magnetic field superior to

the latter superheating field H∗
0 . In this case we see that a vorticity zone appears, in which some thin

filaments of normal material are surrounded by superconducting currents. This state is referred to in
the literature as the mixed state. In the limit κ → +∞ it is explained in [7] how one can formally
derive a model where there exists a density of vortices in a certain zone D of the superconductor.
This model is the following:




div( ∇ H
1−u ) − H = 0 on Ω\D

where u(1 − u)2 = |∇ H |2
H = H0 = const. on ∂Ω

H = H1 = const. on ∂ D
∂n H = 0 on ∂ D,

(1.1)

where n is the normal vector to ∂ D, and the new parameter H1 (� H0) plays the role of a Lagrange
multiplier for a constraint on the quantity of vortices in the superconductor.

Although problem (1.1) can be posed in higher dimensions as well, it has a physical meaning
for our present paper only in dimension 2. Thus we only study the problem in this physical case.
From a mathematical point of view, our method could be adapted to problems in higher dimensions.

The open set D could have a finite number of smooth connected components {Di } and our
approach could also apply to the free boundary problem (1.1) with the following more general
boundary conditions, {

H = Hi

∂n H = 0

∣∣∣∣ on each Di .

Nevertheless, in our article we only consider the special case where Hi = H1 for all index i .

1.2 Main results and ideas of proofs

In this article we state existence and analytic regularity of the solution (D, H) to problem (1.1).
Assuming ∂Ω ∈ C∞, we prove the existence of a branch of solutions, applying the Nash–Moser
inverse function theorem to the degenerate case: H1 = H0, Ω\D = ∅. We also prove some estimates
for an associated degenerate elliptic problem.

As in [2], we are interested in solutions of (1.1) such that u < 1
3 . The analysis of Chapman [3]

shows linear instability for solutions with u � 1
3 . We restrict ourselves to the study of solutions

(D, H) to the following nonlinear equation:


div(F(|∇ H |2)∇ H) − H = 0 on Ω\D
H = H0 = const. on ∂Ω

H = H1 = const. on ∂ D
∂n H = 0 on ∂ D,

(1.2)
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where F(s) is defined for s ∈ [0, 4
27 ) by F(s) = 1

1−u and u is the unique solution to u(1 − u)2 = s

such that 0 � u < 1
3 . The existence of a weak solution of (1.2) is proved in [7] such that |∇ H |2 <

4
27 − δ, with some δ > 0. This is a solution of a nonlinear obstacle problem. The uniqueness of this
solution is proved also.

We are interested in the regularity of the free boundary ∂ D. Our main result is the following.

THEOREM 1.1 ∀H0 > 0, ∃H1 ∈ (0, H0), ∀H1 ∈ (H1, H0): the free boundary ∂ D of the solution
to (1.2) is C∞ and homeomorphic to ∂Ω .

REMARK 1.2 If we know that ∂ D is C∞, the analyticity of ∂ D is then a consequence of
Kinderlehrer & Nirenberg’s results [6], which deal with the case of analytic elliptic equations, with
analytic boundary conditions on the free boundary.

The interest of our article lies on the one hand in the result of C∞ regularity of the free
boundary ∂ D, and on the other hand in the use of the Nash–Moser inverse function theorem
applied to a degenerate case. For references on this theorem, see the book by Alinhac & Gérard
[1], and Hamilton [5]. Another proof of Theorem 1.1 can be derived by arguments coming from
free boundary theory for the obstacle problem (see [7]).

In Section 3 we prove in particular the following result.

THEOREM 1.3 Let (D∗, H∗) be a particular solution of (1.2) for H1 = H∗
1 ∈ (0, H0) such that

D∗ ⊂⊂ Ω and ∂ D∗ ∈ C∞. Then problem (1.2) has a solution (D, H) with ∂ D ∈ C∞, for every
H1 in a neighbourhood of H∗

1 .

Some results similar to Theorem 1.3 are proved in Hamilton [5] and Schaeffer [10], and correspond
to the use of the Nash–Moser theorem for a nondegenerate elliptic problem. Some degenerate cases
are studied in Schaeffer [11] (the capacitor problem) and in Plotnikov [9] with methods different
from those used in this article.

Problem (1.2) that we study is an extension of both Berestycki, Bonnet & Chapman [2] and
Chapman, Rubinstein & Schatzman [4] combining the nonlinear field with the existence of a free
boundary. In [4], Chapman, Rubistein & Schatzman consider a linearized version of model (1.2) for
small H0. They formally prove a result similar to Theorem 1.1 using asymptotic analysis.

Here, to prove Theorem 1.1, we apply the inverse function theorem beginning with the solution
for H∗

1 = H0 {
D∗ = Ω

H∗ ≡ H0 on ∂Ω = ∂ D∗.
This solution is unusual because Ω\D∗ = ∅. We obtain a branch of solutions for H1 in an interval
(H1, H0], where H1 is chosen close enough to H∗

1 = H0.
More precisely, we proceed in the following way.
To simplify, we set Γ = ∂ D. We split up problem (1.2) into two sub-problems

Step 1. Given Γ , find H such that


div(F(|∇ H |2)∇ H) − H = 0 on Ω\D
H = H0 = const. on ∂Ω

∂n H = 0 on Γ.

(1.3)

We obtain the solution H = H(Γ ), by local inversion of problem (1.3), for Γ in a neighbourhood
of Γ ∗ = ∂ D∗.
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Step 2. We impose on H(Γ ) the constraint

H(Γ )|Γ = H1 (1.4)

which allows us to obtain Γ = Γ (H1), once more by local inversion, for H1 in a neighbourhood of
H∗

1 .
This method presents two main difficulties, which we will examine briefly:

(i) Why does the usual inverse function theorem not apply?

(ii) How can we deal with the degeneracy: Ω\D −→ ∅ as H1 −→ H0?

(i) Application of the inverse function theorem

The inverse function theorem in Banach spaces Cq,α can be applied to step 1 and gives H = H(Γ ).
In contrast, if we note that Φ : Cq,α −→ Cq,α, Γ �−→ H(Γ )|Γ , a computation proves that the
differential DΦ is a 1–1 map from Cq−1,α into Cq,α (and thus it is not invertible from Cq,α to
Cq,α), which in step 2 prevents us from using the inverse function theorem in Banach spaces Cq,α .

Actually, the loss of derivative of one unity on the inverse of the differential of Φ comes from
the fact that we impose two limit conditions on the free boundary Γ : a Dirichlet condition H = H1
and a Neumann condition ∂n H = 0 (see Subsection 3.2).

However, if we consider Φ as a map Φ : C∞ −→ C∞, then DΦ is a 1–1 map from C∞ into
C∞, and the Nash–Moser inverse function theorem can be applied.

(ii) Degeneracy : Ω\D −→ ∅ when H1 −→ H0

To apply the Nash–Moser theorem, we must prove that (DΦ)−1 is regular (more precisely C∞-
tame, see Subsection 2.1) until H1 = H0.

If ε is the order of the distance between Γ and ∂Ω , then when H1 −→ H0, we have ε −→ 0,
and the difficulty is proving that (DΦ)−1 is C∞-tame until ε = 0.

The main idea is to scale the coordinate normal to the boundary so that the problem of the
domain shrinking as ε → 0 is transformed to that of the elliptic constant tending to zero.

Hence, to inverse the differential DΦ is reduced to solving an elliptic equation on the fixed
domain S

1 × (0, 1) whose coordinates are x = (s, ρ). Given the coefficients A = (ai j , bj , c) and
on the right-hand side k = (k0, k1, k2), we search for the solution w to the following equation


ai j (x)∂i jw + bj (x)∂jw + c(x)w = k0
∂ρw(ρ = 1, s) = k1
w(ρ = 0, s) = k2.

(1.5)

We use the classical repeated index summation convention with i, j ∈ {σ, ρ} and ∂σ = ε∂s . To be
clear we have, for example,

ai j (x)∂i jw = ε2aσσ (x)∂ssw + 2εaσρ∂sρw + aρρ(x)∂ρρw.

In particular, for ε = 0, problem (1.5) is degenerate. We assume that:

∃c0 > 0, ∀x ∈ S
1 × [0, 1], ∀ξ ∈ R

2, ai j (x)ξiξj � c0|ξ |2. (1.6)

We prove the following result of independent interest.
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THEOREM 1.4 (Tame ellipticity in a degenerate case). Let us consider a solution w of problem
(1.5) which we can write as

L(A, ε)w = k.

If there exist more particular coefficients A∗ ∈ C∞ which satisfy (1.6) and such that L(A∗, 0)

satisfies the maximum principle (see Subsection 5.1 for details), then w = w(A, k, ε) exists and
is C∞-tame on the right-hand side k ∈ C∞ of the equation and on the coefficients (A, ε) in a
neighbourhood of (A∗, 0).

1.3 Organization of the article

In Section 2 we recall some elements on tame maps and the Nash–Moser theorem, for the reader
who is not familiar with this theory. The proof of Theorem 1.3 is given in Section 3. In particular,
we explain in detail why the inverse function theorem in spaces Cq,α does not apply. The proof of
Theorem 1.1 is given in Section 4. The last section, Section 5, is devoted to the proof of Theorem
1.4.

2. Preliminaries: tame maps and the Nash–Moser theorem

We recall below elements of the Nash–Moser theory that are used to prove the results presented in
this article. For this presentation we have taken our inspiration from Hamilton [5]. In the following
sections we will often refer to these preliminaries, but those readers who know the Nash–Moser
theory can skip Section 2 and start with Section 3.

2.1 Definitions

Let us choose α ∈ (0, 1) which will be fixed hereafter. We recall some standard notations. For
an integer q and a function u defined on a set Ω ⊂ R

n , Dqu denotes all the partial derivatives

of total order equal to q; [u]q,α;Ω = sup
x,y∈Ω,x �=y

|Dqu(x) − Dqu(y)|
|x − y|α , |u|0;Ω = sup

x∈Ω

|u(x)|, and

|u|q,α;Ω = ∑q
j=0 |D j u|0;Ω + [u]q,α;Ω .

Continuity. Let Φ : C∞(M) → C∞(N ), where M and N are C∞ compact manifolds, possibly
with boundaries. The sequences of seminorms (| · |q,α)q∈N on M and N , allow us to define the
continuity of the map Φ in u0 ∈ C∞(M), as

∀q ∈ N, η > 0, ∃q ′ ∈ N, η′ > 0, ∀v ∈ C∞(M),

(|v − u0|q ′,α;M < η′) �⇒ (|Φ(v) − Φ(u0)|q,α;N < η).
(2.1)

This is the definition of the continuity of maps between Frechet spaces.
Classically, if we consider Φ : U → C∞(N ) where U is an open set of C∞(M), we will say

that Φ is C0 (i.e. Φ is continuous) if and only if it is continuous in every point u ∈ U .
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Differentiation. The map Φ is C1 if and only if Φ is continuous and if there exists a continuous
map denoted DΦ : U × C∞(M) → C∞(N ) linear in the second variable and such that: ∀u ∈
U, ∀v ∈ C∞(M), lim

t→0

Φ(u + tv) − Φ(u)

t
= DΦ(u) · v. We define in the same way the successive

differentiations and we say that Φ is Cq if Dq−1Φ exists and is C1. We say that Φ is C∞ if it is Cq

for all q.
In particular, to verify the continuity of DqΦ on U × (C∞(M))q � (u, v1, . . . , vq) we use the

natural grading (in the sense of Hamilton [5]) |(u, v1, . . . , vq)|p,α;M = |u|p,α;M + ∑q
i=1 |vi |p,α;M .

Tame maps. The map Φ : U ⊂ C∞(M) → C∞(N ) is C0-tame if and only if it is C0 and if it
satisfies the tame inequality

∃r ∈ N, ∀q ∈ N, ∃Cq,α > 0, ∀u ∈ U, |Φ(u)|q,α � Cq,α(1 + |u|q+r,α). (2.2)

It requires that we have a linear estimate on a nonlinear map Φ, and this is for all seminorms |·|q,α;N .
We may have a loss of derivatives r � 0 possibly large but independent on q. In addition, we recall
that the Nash–Moser theorem stays true for the following more general definition of tame maps
where (2.2) in the previous definition is replaced by

∀u0 ∈ U, ∃ neighbourhood V(u0) ⊂ U, ∃r ∈ N, ∃b ∈ N, ∀q � b, ∃Cq,α > 0,

∀u ∈ V(u0), |Φ(u)|q,α � Cq,α(1 + |u|q+r,α).
(2.3)

In the same way Φ is Cq -tame if and only if the maps (D jΦ)0� j�q are C0-tame, and Φ is C∞-tame
if and only if it is Cq -tame for all q .

REMARK 2.1 It is easy to see that: if Φ1 and Φ2 are tame, then the sum Φ1 + Φ2, the product
Φ1 · Φ2, the quotient Φ1

Φ2
, the composition f ◦ Φ1 by a function f ∈ C∞, the composition of tame

maps Φ1 ◦ Φ2, are tame maps.

2.2 The Nash–Moser theorem

THEOREM 2.2 (Nash–Moser). If M and N are C∞ compact manifolds, possibly with boundaries,
if Φ : U ⊂ C∞(M) → C∞(N ) is C∞-tame, and if ∀u ∈ U, ∀k ∈ C∞(N ), DΦ(u) · w = k is
invertible, with a unique solution w = (DΦ(u))−1 · k, and (DΦ(·))−1 is a C∞-tame map in (u, k),
then Φ is locally invertible and Φ−1 is locally C∞-tame.

REMARK 2.3 Contrary to the classical inverse function theorem in Banach spaces, here we must
(for the spaces C∞) check that the linear map DΦ(u) is invertible in a neighbourhood of one point
u0, and not only in the point u0 (see Hamilton [5] for a counter-example).

2.3 The tame ellipticity theorem

The following theorem will be used several times in the following sections. It gives the solution to
a nondegenerate elliptic equation as a C∞-tame map of the coefficients and the right-hand side of
the equation.
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THEOREM 2.4 (Tame ellipticity, Hamilton [5]). Let the linear elliptic operator L A of order 2,
defined on a C∞ compact manifold M , possibly with boundaries, such that denoting A = (ai j , bj , c)
which satisfies (1.6), we have L Aw = ai j (x)∂i jw + bj (x)∂jw + c(x)w, with boundary conditions

Bw =



w Dirichlet
or

∂nw Neumann

where n is the exterior unit normal.
If the coefficients are C∞, i.e. A ∈ U ⊂ C∞(M), and if the open set U is chosen such that the

system {
L Aw = k0 on M
Bw = kB on ∂ M

has a unique solution w, then this solution, w = w(A, k0, kB) ∈ C∞(M), is C∞-tame in A and
in k = (k0, kB). That is, w is C∞-tame relative to the coefficients and the right-hand side of the
equation.

In particular, if we set t = 0 for Dirichlet conditions, t = 1 for Neumann conditions, and
|k|q,α = |k0|q,α + |kB |q+2−t,α , then we have the tame elliptic inequality

∀A∗ ∈ U, ∃η > 0, ∀A ∈ U,(|A − A∗|0,α < η
) �⇒ (∀q ∈ N, |w|q+2,α � Cq+2,α

(|k|q,α + |A|q,α|k|0,α

))
.

(2.4)

REMARK 2.5 Theorem 2.4 is true if the Neumann condition is changed into an oblique derivative
condition. Moreover, in Theorem 2.4 the boundary conditions can be different on different
connected components of the boundary of the manifold M . In this case, inequality (2.4) should
naturally be adapted.

3. Existence result by perturbation of a smooth free boundary

In this section we will prove Theorem 1.3. This kind of result is referred to in the literature as the
stability of the free boundary (see, for example, Schaeffer [10]). This approach consists of finding a
solution to problem (1.2) by perturbation of a particular solution.

3.1 Setting of the problem

Let us assume that a particular solution (D∗, H∗) is given with D∗ ⊂⊂ Ω , Γ ∗ = ∂ D∗ ∈ C∞ and
H∗|Γ ∗ = H∗

1 < H0. For each value of the parameter H1 in a neighbourhood of H∗
1 , we will build a

smooth solution (D, H) to problem (1.2).
To simplify (without loss of generality), we assume that Ω and D∗ are diffeomorphic to a disk.

Then we can construct a local curvilinear parametrization (r, s) in a neighbourhood of Γ ∗ ⊂⊂
Ω: s ∈ S

1 parametrizes Γ ∗ proportionally to its length, and r denotes the transversal coordinate
positively oriented inward to the interior of D∗, with r ∈ (−r0, r0), r0 > 0. Thus the boundary
Γ = ∂ D of every smooth open set D close to D∗ can be described in local coordinates by r = G(s)
where G ∈ C∞(S1), and in particular, Γ ∗ is characterized by the equation r = G∗(s) := 0.

We follow the method of the proof given in the introduction.
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sD*

\ D*Ω

r

FIG. 1. Local coordinates near Γ ∗ = ∂ D∗.

Step 1. Let us introduce the map

Φ1 : C∞(S1) × C∞(Ω\D) −→ C∞(Ω\D) × C∞(S1) × C∞(S1)

(G, H) �−→ Φ1(G, H) =



(QH)|Ω\D
H|∂Ω − H0
∂r H|Γ

(3.1)

where Q is a quasilinear elliptic operator given by

QH = a0
i j (∇ H)∂i j H − H

with for every vector V ∈ R
2

a0
i j (V ) := F(|V |2)δi j + 2F ′(|V |2)Vi Vj (3.2)

and δi j = 1 if i = j , δi j = 0 if i �= j . With these notations we rewrite (1.3) (here ∂r H|Γ stands in
place of ∂n H|Γ ) as

Φ1(G, H) = 0 (3.3)

and we will be able to obtain the solution H(G) by a proper inverse function theorem.

Step 2. We will set Φ2(G) := H(G)|Γ ∈ C∞(S1) and rewrite (1.4) as

Φ2(G) = H1 (3.4)

where H1 is a constant close to H∗
1 . Solving (3.4) will give the parametrization G(H1) of the free

boundary Γ .
This method will give a posteriori ∂n H|Γ = 0, since ∂r H|Γ = 0 and H|Γ = H1 = const. imply

that ∇ H = 0 on Γ . Let us remark that we have chosen to write equations (3.1) and (3.3) with the
condition ∂r H = 0 on Γ , and not ∂n H = 0 on Γ , because the vector field ∂r is independent on Γ

contrary to the normal vector n.
Although the inverse function theorem in the Banach spaces Cq,α applies in step 1, we will see

why it does not apply in step 2.
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3.2 The inverse function theorem in spaces Cq,α does not apply

Let us assume that step 1 is solved in the spaces Cq,α , i.e. that the function H(G) has been obtained.
Then it is not possible to solve step 2 in spaces Cq,α because of the following lemma.

LEMMA 3.1 If H : G ∈ Cq,α(S1) �−→ H(G) ∈ Cq,α(Ω\D) satisfies Φ1(G, H(G)) = 0 and if
Φ2 : G ∈ Cq,α(S1) �−→ Φ2(G) = H(G)|Γ ∈ Cq,α(S1), then the differential DGΦ2(G∗) is a 1–1
map from Cq,α(S1) into Cq+1,α(S1).

In particular, DGΦ2(G∗) is not invertible from Cq,α(S1) into Cq,α(S1).
For the proof of Lemma 3.1, we use the following result.

LEMMA 3.2 Under the assumptions of Lemma 3.1, we obtain

DGΦ2 · g = m

if and only if

g = −
(

∂r h

∂rr H

)
|Γ

where h satisfies 


DH (QH) · h = 0|Ω\D
h|∂Ω = 0
h|Γ = m.

(3.5)

Proof of Lemma 3.2. Let us introduce h := DG H · g where g ∈ C∞(S1). Thus

DGΦ2 · g = (DG H · g + g ∂r H)|Γ

because d
dt (ut ◦vt ) = ( dut

dt )◦vt +(Dut ◦vt ) · dvt
dt . Here we know that H satisfies Φ1(G, H(G)) = 0,

and then, in particular, ∂r H|Γ = 0. Consequently, by the definition of h we have

DGΦ2 · g = h|Γ .

Differentiating Φ1(G, H(G)) = 0 with respect to G, we obtain

DH (QH) · h = 0|Ω\D (3.6)

h|∂Ω = 0 (3.7)

(∂r h + g∂rr H)|Γ = 0. (3.8)

Therefore, equation DGΦ2 · g = m , written as

h|Γ = m, (3.9)

can be inverted into:

g = −
(

∂r h

∂rr H

)
|Γ

where h is a solution of system (3.6)–(3.8). This ends the proof of Lemma 3.2. ✷
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Proof of Lemma 3.1. For H = H∗, H1 = H∗
1 , D = D∗, we have 0 �= ∂rr H∗|Γ ∗ ∈ C∞(S1).

Therefore if m ∈ Cq+1,α , we have from Lemma 3.2 that (DGΦ2(G∗))−1(m) = g ∈ Cq,α , and
therefore DGΦ2(G∗) is a 1–1 map from Cq,α(S1) to Cq+1,α(S1) which proves Lemma 3.1. ✷

There is a loss of derivatives on the inverse of the differential of Φ2 which corresponds to the
fact that we impose on Γ two boundary conditions of different orders: H|Γ = H1 and ∂r H|Γ = 0.
We will therefore use the Nash–Moser theorem which applies in the spaces C∞ to problems with
loss of derivatives.

3.3 Proof of Theorem 1.3

Step 1: the function H(G) obtained by the Nash–Moser theorem. Let us recall that applying the
implicit function theorem to the equation Φ1(G, H) = 0 is the same as applying the inverse function
theorem to the map Ψ : (G, H) �−→ (G, Φ1(G, H)). In particular, DΨ is invertible if and only if
DH Φ1 is.

There is a small technical difficulty: on the one hand, a variation of G changes the domain of
definition of H , and on the another hand, the notion of tame map that we want to use to apply the
Nash–Moser theorem has only been defined on fixed compacts. To be rigorous we should use a
diffeomorphism fG : Ω\D → Ω\D∗ which depends smoothly on G. This would allows to bring
back Φ1 in a C∞-tame map Φ̃1 defined on the fixed compact set Ω\D∗.

Nevertheless, to avoid tedious computations, we will work with Φ1 as if it was Φ̃1.
Now the tame ellipticity Theorem 2.4 applies to the following elliptic problem

DH Φ1(G, H) · h = k

and therefore gives h = h(G, H, k) as a C∞-tame map of its arguments.
Consequently, DΨ is invertible with a C∞-tame inverse, and the Nash–Moser inverse function

Theorem 2.2 applies. This proves that Ψ (G, H) = (G, 0) is solved in H = H(G) which is a
C∞-tame map.

Step 2: the solution G = G(H1). Let us consider the map Φ2 : C∞(S1) → C∞(S1) defined by
Φ2(G) := H(G)|Γ . Thus from Lemma 3.2, equation DGΦ2·g = m is solved setting g = −( ∂r h

∂rr H )|Γ
where h is a solution of (3.5).

As in step 1 we prove that (DGΦ2)
−1 is C∞-tame which allows us to apply the Nash–Moser

Theorem 2.2. This proves that Φ2 is invertible in a neighbourhood of G∗ which satisfies Φ2(G∗) =
H∗

1 . This ends the proof of Theorem 1.3. ✷

REMARK 3.3 In the proof of Theorem 1.3 we have assumed that D and Ω are diffeomorphic to a
disk. It is straightforward to adapt the proof to cases where D and Ω have other smooth shapes and
topologies (and not necessary the same).

4. Existence of a smooth free boundary close to ∂Ω .

In this section we prove the main result of this article: Theorem 1.1.
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FIG. 2. Local coordinates near ∂Ω .

4.1 Setting of the problem

Here we start from the particular solution that we know when Γ = ∂Ω{
D∗ = Ω

H∗ = H0 = H∗
1 .

We search for free boundaries Γ = ∂ D close to ∂Ω . As in Section 3 we construct a local curvilinear
parametrization (r, s) in a neighbourhood of ∂ D∗ = ∂Ω: s ∈ S

1 parametrizes ∂Ω proportionally to
its length, and r denotes the transversal coordinate positively oriented inward to the interior of Ω ,
with r ∈ (−r0, r0), r0 > 0. We will note that

f (y1, y2) = (s, r),

the diffeomorphism associated to these coordinates.
The constant H0 is fixed and H1 is a parameter. For H1 close to H0, Γ is close to ∂Ω , at a

distance of order ε. Problem (1.2) can be approximated by the one-dimensional equation H ′′ = H1,
which should give

H0 − H1 = H1

2
ε2. (4.1)

We take (4.1) as the definition of ε. Then it is natural to search for free boundaries Γ = ∂ D
parametrized by r = εG(s), such that, in the limit

G∗ := 1.

A difficulty is that the open set Ω\D degenerates as ε → 0. Our goal is to obtain a branch of
solutions starting from the obvious solution G∗ = 1 in ε = 0, and using the Nash–Moser inverse
function theorem.

4.2 The problem is reduced on the fixed compact set ω = S
1 × [0, 1]

We reduce the problem on the compact set ω where ω = S
1 × (0, 1). We will note (s, ρ) as a point

of this set. For this we use the following diffeomorphism from Ω\D into ω = S
1 × [0, 1] with

ρ = r

εG(s)
.
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We denote H̃(s, ρ) = H(y1,y2)−H1
ε2 H1

. As in Section 3, we aim to solve equation Φ1(G, H) = 0, or
equivalently

Φ̃1(G, H̃ , ε) = 0

where

Φ̃1 : C∞(S1) × C∞(ω) × (−ε0, ε0) −→ C∞(ω) × C∞(S1) × C∞(S1)

(G, H̃ , ε) �−→ Φ̃1(G, H̃ , ε) =



(Q̃G,ε H̃)|ω − 1
H̃|∂Ω − 1

2
∂ρ H̃|Γ ∗

and we denote ∂Ω := {ρ = 0}, Γ ∗ := {ρ = 1}. A straightforward computation gives:

Q̃G,ε H̃ = ãi j∂i j H̃ + εb̃j∂j H̃ + ε2c̃ H̃

where i, j ∈ {σ, ρ}, ∂σ = ε∂s and the coefficients Ã = (ãi j , b̃j , c̃) are C∞ functions of several
arguments Ã = Ã(∂ρ H̃ , ε∂s H̃ , G, G ′, G ′′, D f, D2 f, ε, ρ, H0), and

ã = P · a0(V ) · t P for some vector field V : ω → R
2

where P = M · (D f ), M =
(

1 0

−ερ
G ′(s)
G(s)

1
G(s)

)
, a0 is defined in (3.2) and a0

i j (V )ξiξj � |ξ |2

because F is increasing and F(0) = 1. Therefore the quasilinear operator Q̃G,ε stays elliptic while
ε > 0 and G is close to G∗ = 1.

Let us remark that the particular solution

H̃∗(s, ρ) = (ρ − 1)2

2

satisfies Φ̃1(G∗, H̃∗, 0) = 0.
The domain of definition is now fixed, and we would like to apply the same method as in Section

3 (an ad hoc tame ellipticity theorem and the Nash–Moser theorem). For every ε > 0, the tame
ellipticity Theorem 2.4 applies. However, on the one hand our problem degenerates as ε → 0,
because the ellipticity constant of the operator H̃ �−→ Q̃G,ε H̃ tends to 0. And on the other hand we
want to find solutions starting from the case ε = 0. We remove this difficulty by applying Theorem
1.4 which is another version of the tame ellipticity Theorem 2.4 which is valid in this degenerate
case.

4.3 Proof of Theorem 1.1

Step 1: the map (G, ε) �−→ H̃(G, ε) is C∞-tame. We want to solve

Φ̃1(G, H̃ , ε) = 0. (4.2)

We obtain the straightforward result on the differential of Φ̃1:
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LEMMA 4.1 We have

DH̃ Φ̃1 · h̃ =



DH̃ (Q̃G,ε H̃) · h̃|ω
h̃|∂Ω

∂ρ h̃|Γ ∗

where h̃ ∈ C∞(ω). For A = (ai j , bj , c), let

L(A, ε)h̃ := ai j∂i j h̃ + bj∂j h̃ + ch̃.

Then
DH̃ (Q̃G,ε H̃) · h̃ = L(A, ε)h̃

where coefficients A = (ai j , bj , c) are C∞ functions

A = A(∇ H̃ , D2 H̃ , G, G ′, G ′′, D f, D2 f, ε, ρ, H0).

Moreover, for A∗ = A(G∗, H̃∗, 0), we have

a∗ =
( (

2π
|∂Ω|

)2
0

0 1

)
, b∗ = c∗ = 0

where |∂Ω| denotes the length of ∂Ω .

Because (G, H̃ , ε) �−→ A(G, H̃ , ε) is a C∞-tame map, it is clear that for (G, H̃ , ε) in a
neighbourhood of (G∗, H̃∗, 0), the coefficients A are close to A∗, and therefore we can apply
Theorem 1.4. By composition we deduce that the solution h̃ = h̃(G, H̃ , ε, k̃) of

L(A(G, H̃ , ε), ε)h̃ = k̃

is C∞-tame. Then the Nash–Moser Theorem 2.2 applies to the map (G, H̃ , ε) �−→
(G, Φ̃1(G, H̃ , ε), ε), defined in a neighbourhood of (G∗, H̃∗, 0). We deduce the existence of
a C∞-tame solution H̃ = H̃(G, ε) to (4.2).

Step 2: the solution G = G(ε). To obtain the solution G(ε) of our problem, we have to impose
the condition H|Γ = H1, i.e. H̃|Γ ∗ = 0. We introduce the map Φ2(G, ε) := H̃(G, ε)|Γ ∗ which is
C∞-tame. To inverse DGΦ2 · g = m, we go back to the initial equations written in Ω\D which do
not depend explicitly on (G, ε).

We proceed as in the proof of Lemma 3.2 and a straightforward computation gives the following
lemma.

LEMMA 4.2 With the notations of this section we have

DGΦ2 · g = m

if and only if

g = −G ·
(

∂ρ h̃

∂ρρ H̃

)
|Γ ∗

(4.3)
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where h̃ ∈ C∞(ω) satisfies 


DH̃ (Q̃G,ε H̃) · h̃ = 0
h̃|∂Ω = 0
h̃|Γ ∗ = m.

We conclude as previously with the help of Theorem 1.4 (written here with two Dirichlet
conditions), that h̃ = h̃(G, ε, m) is C∞-tame and therefore from (4.3): g = g(G, ε, m) is C∞-tame.

We apply the Nash–Moser theorem to the map (G, ε) �−→ (Φ2(G, ε), ε) which satisfies
Φ2(G∗, 0) = H̃∗|Γ ∗ = 0. This proves the existence of the solution G(ε) to the equation

Φ2(G, ε) = 0.

Theorem 1.1 is proved. ✷

5. The tame ellipticity theorem in a degenerate case

In this section we prove Theorem 1.4.

5.1 Setting of the problem

For A = (ai j , bj , c) let us introduce the elliptic operator defined for (s, ρ) ∈ ω = S
1 × (0, 1)

L A,εw = ai j∂i jw + bj∂jw + cw

where i, j ∈ {σ, ρ}, ∂σ = ε∂s . We assume that ε ∈ R, that A ∈ C∞(ω), and that the coefficients A
satisfy

∃c0 > 0, ∀x ∈ S
1 × [0, 1], ∀ξ ∈ R

2, ai j (x)ξiξj � c0|ξ |2. (5.1)

For k0 ∈ C∞(ω) and (k1, k2) ∈ C∞(∂ω) we consider the following system


L A,εw = k0 on ω

∂ρw(s, ρ = 1) = k1(s)
w(s, ρ = 0) = k2(s).

(5.2)

Let k = (k0, k1, k2). System (5.2) will be denoted as

L(A, ε)w = k.

For ε �= 0, let us recall that from the Fredholm alternative theorem, L(A, ε) is invertible if and only
if L(A, ε)w = 0 implies w = 0. Let us denote k � 0 if and only if k0 � 0, k1 � 0, k2 � 0. Then let
us recall that L(A, ε) satisfies the maximum principle on ω if and only if for every w ∈ C2,α(ω),
L(A, ε)w � 0 implies w � 0. In particular, if L(A, ε) satisfies the maximum principle, then
L(A, ε) is invertible.

For ε = 0, the operator is degenerate. For s0 ∈ S
1 we define As0 = A(s0, ·), ws0 = w(s0, ·),

ks0 = k(s0, ·). We introduce the following one-dimensional elliptic operator defined for v ∈
C∞([0, 1]) by

L0(As0)v =



aρρ(s0, ρ)∂ρρv(ρ) + bρ(s0, ρ)∂ρv(ρ) + c(s0, ρ)v(ρ)

∂ρv(ρ = 1)

v(ρ = 0).
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With these notations we see that for ε = 0, we have a continuous family of one-dimensional elliptic
problems well posed on (0, 1)

L(A, 0)w = k ⇐⇒ ∀s ∈ S
1, L0(As)ws = ks .

In particular, we will say that the operator L(A, 0) satisfies the maximum principle on ω if and only
if for every s ∈ S

1, L0(As) satisfies the maximum principle on (0, 1).

REMARK 5.1 The main reason for which the limit at ε = 0 is well posed is that the problem
remains nondegenerate in one direction transversal to the boundary of the annulus S

1 × (0, 1). In
contrast, there is no general existence nor uniqueness of solutions to the limit problem on the same
annulus for the operator ∂2

s + ε2∂2
ρ .

Let us denote P = (A, k) and for q ∈ N, |P|q,α = |A|q,α+|k|q,α with |k|q,α = |k0|q,α+|k1|q+1,α+
|k2|q+2,α . We denote by w(P, ε) the solution to L(A, ε)w = k.

For P∗ = (A∗, 0) with A∗ as in Theorem 1.4, we introduce the following open set

B = {P ∈ C∞, |P − P∗|0,α < R}
with R > 0. We chose R small enough such that the coefficients A satisfy (5.1) for (A, k) ∈ B, and
L(A, 0) satisfy the maximum principle on the same set of coefficients. We will prove

THEOREM 5.2 (i) w(P, 0) is C0-tame on B
(ii) There exists ε0 ∈ (0, 1) such that

∀q ∈ N, ∃Cq,α > 0, ∀(P, ε) ∈ B × (−ε0, ε0) :
|w(P, ε) − w(P, 0)|q,α � Cq,α|ε|1−α|P|q+3,α.

REMARK 5.3 There appears to be a loss of derivatives in the degenerate case, in contrast to the
tame ellipticity Theorem 2.4 for the nondegenerate case.

5.2 Theorem 5.2 implies Theorem 1.4

In this subsection, we prove in two steps that Theorem 5.2 implies Theorem 1.4.

Step A: if w is C0-tame, then w is C∞-tame. We denote P = (A, k, ε) and W =
(w, ∂sw, ∂ρw, ∂ssw, ∂sρw, ∂ρρw). These notations will only be used in this paragraph. In particular,
W is C0-tame if and only if w is. We have

L(A, ε)w = k ⇐⇒ L(P)W (P) = l0(P)

where L(P) is a vector whose coordinates are polynomials in P , L(P)W (P) is a bilinear vector
function in L(P) and W (P), and l0(P) is the linear polynomial in P defined by l0(P) = k.
If W (P) is C0-tame and satisfies L(P)W (P) = l(P) where l(P) is C1-tame, then we obtain by
differentiation

L(P) (DPW (P) · p) = DP l(P) · p − (DPL(P) · p)W (P).

Because the polynomial L(P) is C∞-tame in P we deduce that DPW (P) is C0-tame and then
W (P) is C1-tame.

Finally, because l0(P) is C∞-tame, it is then straightforward to prove by recurrency that
Dm
PW (P) is C0-tame, for every m ∈ N.

This proves that w is C∞-tame.
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Step B: Theorem 5.2 implies that w is C0-tame. Let us denote θ(P, ε) = w(P, ε)−w(P, 0) where
we recall that P = (A, k).

From Theorem 5.2 (i) and the tame ellipticity Theorem 2.4, it is easy to prove that θ is continuous
for ε �= 0. Theorem 5.2 (ii) states that θ is continuous until ε = 0 and then is C0-tame on B ×
(−ε0, ε0).
The solution w = θ + w(·, 0) is the sum of two C0-tame maps and therefore is C0-tame on B ×
(−ε0, ε0). Finally, from the following straightforward Lemma 5.4, w(P, ε) = w(A, k, ε) is C0-
tame on a larger open set without bounds on k ∈ C∞.
This proves Theorem 1.4. ✷

We recall the following straightforward lemma, which is used in the proof (Step B) of Theorem
1.4.

LEMMA 5.4 Suppose that Φ(u, k) is C0, linear in k, and satisfies a tame estimate when k is
bounded, i.e.

∃R0 > 0, ∀u ∈ U ⊂ C∞, ∀k ∈ C∞ :(|k|b,α � R0
) �⇒ (∀q ∈ N, |Φ(u, k)|q,α � Cq,α

(
1 + |(u, k)|q+r,α

)) (5.3)

then for all k ∈ C∞, we have a tame inequality without bound on k

∀u ∈ U ⊂ C∞, ∀k ∈ C∞ : ∀q ∈ N,

|Φ(u, k)|q,α � Cq,α

R0
|k|b,α(1 + |u|q+r,α) + Cq,α|k|q+r,α.

In other words, because Φ is linear in k, it is enough for Φ to satisfy (5.3) to be C0-tame in U ×C∞
in the sense of Definition (2.3).

5.3 Proof of Theorem 5.2 (i)

We recall some useful tame inequalities. In particular, we will use them to prove that the map
P �−→ w(P, 0) is C0-tame.

5.3.1 Fundamental tame inequalities. Let u and v be some C∞ functions on a smooth bounded
open set Ω in R

n ; then we have the following tame inequalities:

product (see [1])

∀q ∈ N, |u · v|q,α � Cq,α(|u|0|v|q,α + |u|q,α|v|0). (5.4)

interpolation (see [5]). If (i, j) belongs to the segment of extremities (k, l) and (m, n), then for
every positive or null integers i, j, k, l, m, n we have

|u|i,α|v|j,α � C(i, j,k,l,m,n),α(|u|k,α|v|l,α + |u|m,α|v|n,α).

In particular, we will use this inequality under the following form

∀i, j � 0, |P|i,α|P|j,α � C |P|i+ j,α if |P|0,α is bounded. (5.5)
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5.3.2 The map P �−→ w(P, 0) is C0-tame. In all that follows C will denote a generic constant.
To simplify the notations let us introduce w0(P) = w(P, 0). For every s ∈ S

1, we apply the tame
ellipticity Theorem 2.4 to each one-dimensional elliptic problem

L0(As)w
0
s = ks (5.6)

where we recall that As = A(s, ·), w0
s = w0(s, ·), ks = k(s, ·). For every s ∈ S

1 we find that with
Ps = P(s, ·),

|w0
s |q+2,α � C |Ps |q,α. (5.7)

Let us emphasize that here the coordinate s is fixed and then the Hölder norms | · |q,α apply to
functions that only depend on the coordinate ρ.

The solution w0
s is C∞ relative to Ps . In particular, it is derivable relative to s because ∂sw

0 =
DPw0 · ∂s P . Derivating equation (5.6), we obtain

L0(As)(∂sw
0
s ) = Ks := ∂sks − L0(∂s As)(w

0
s ).

From the tame ellipticity estimate (2.4) we obtain

|∂sw
0
s |q+2,α � C(|Ks |q,α + |Ks |0,α|As |q,α)

and
|Ks |q,α � C(|∂sks |q,α + |L0(∂s As) · w0

s |q,α)

� C(|ks |q+1,α + |∂s As |0,α|w0
s |q+2,α + |∂s As |q,α|w0

s |2,α)

� C(|Ps |q+1,α + |Ps |1,α|Ps |q,α + |Ps |q+1,α|Ps |0,α)

� C |Ps |q+1,α

where we have used (5.4) for the second line, (5.7) for the third line, and for the last line: (5.5) and
the fact that |Ps |0,α is bounded because P ∈ B. We find that for every s ∈ S

1

|∂sw
0
s |q+2,α � C |Ps |q+1,α.

By a straightforward recurrency we obtain

|∂m
s w0

s |q+2,α � C |Ps |q+m,α.

In particular, this implies with the Hölder norms on ω = S
1 × (0, 1) that

|w0|q,α � Cq,α|P|q+1,α

which proves that w0 is C0-tame. ✷

5.4 Proof of Theorem 5.2 (ii)

We want to find estimates on θ(P, ε) = w(P, ε) − w0(P) with w0(P) = w(P, 0).
Let us remark that

L(A, ε)θ = −(L(A, ε) − L(A, 0))w0.

The linear differential operator L(A, ε) is linear in A and polynomial in ε, therefore we can write

L(A, ε)θ = K := −εM(A, ε)w0
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where M(A, ε) is a linear differential operator, whose coefficients are linear in A and polynomials
in ε. To obtain elliptic estimates with constants independent on ε, it is useful to introduce the change

of coordinates: σ = s
ε
, ωε = S1

ε
×(0, 1), A(σ, ρ) = A(s, ρ), θ(σ, ρ) = θ(s, ρ), K (σ, ρ) = K (s, ρ).

We deduce that
L(A, 1)θ = K on ωε. (5.8)

The quantity ε0 introduced in Theorem 5.2 is given by

LEMMA 5.5 (Schauder estimate). There exists ε0 ∈ (0, 1) and a constant C0 > 0 such that for
each ε ∈ (−ε0, ε0)\{0}, for each coefficient A(σ, ρ) = A(εσ, ρ) such that (A, 0) ∈ B, and for
every θ ∈ C2,α solution to (5.8), we have

|θ |2,α � C0|K |0,α.

Proof deferred

Estimate on |θ |2,α . For every (P, ε) ∈ B × ((−ε0, ε0)\{0}), we deduce the straightforward
estimates

|θ |2,α � C |K |0,α

� C |K |0,α

� C |ε||M(A, ε)w0|0,α

� C |ε||A|0,α|w0|2,α.

It gives
|θ |2,α � C |ε||P|3,α.

Estimate on |∂σ θ |2,α . We derive equation L(A, 1)θ = K relative to σ , and we obtain

L(A, 1)(∂σ θ) = ∂σ K − L(∂σ A, 1)θ.

We proceed similarly as in Subsection 5.3.2, and this gives

|∂σ θ |2,α � Cε2|P|4,α.

Estimate on |∂ρθ |2,α . We have:

|∂ρθ |2,α � C(|θ |2,α + |∂σ θ |2,α + |∂3
ρθ |0,α).

Then we only need to estimate |∂3
ρθ |0,α . Let us note that K = (K 0, K 1, K 2). With these notations

we have L A,1θ = K 0, i.e.

ai j∂i jθ + bj∂jθ + c θ = K 0

where i, j ∈ {σ, ρ}. We deduce that
∂2
ρθ = K

′
0

where K
′
0 is a function on (K 0, A, θ, ∇θ, ∂ρ∇θ). Thus by derivation relative to ρ we can estimate

∂3
ρθ . A straightforward computation gives

|∂3
ρθ |0,α � C |ε||P|4,α
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and then
|∂ρθ |2,α � C |ε||P|4,α.

Estimates on higher derivatives of θ

A straightforward recurrency allows us to prove that for every j � i � 0 we have

|∂ i
σ ∂ j−i

ρ θ |2,α � Cj,α|ε|i+1|P|j+3,α. (5.9)

We deduce that
∀q � 0, ∃Cq,α > 0, ∀(P, ε) ∈ B × (−ε0, ε0),

|θ |q,α � Cq,α|ε|1−α|P|q+3,α.

This ends the proof of Theorem 5.2 (ii). ✷

REMARK 5.6 In fact we can also obtain the following estimate: |θ |q � Cq,α|ε||P|q+4,α .

Proof of Lemma 5.5. For this proof we take our inspiration from some ideas in [7], which were
based on Morrey [8].

If the lemma is false, then we can find sequences (εn)n ∈ (−1, 1)\{0}, (An, kn)n ∈ B, (K n)n

and (θn)n ∈ C2,α such that for An(σ, ρ) = An(εnσ, ρ)

L(An, 1)θn = K n on ωεn = S
1

εn
× (0, 1)

and εn → 0, |θn|2,α = 1, |K n|0,α → 0. For σ0 ∈ R and µ > 0 let us define the box Cµ(σ0) =
{(σ, ρ), ρ ∈ [0, 1], |σ −σ0| � µ}. Then, on the one hand, there exists a constant C > 1 and σn ∈ S1

εn
such that

|θn|2,α;C1(σn) � |θn|2,α � C |θn|2,α;C1(σn).

On the other hand, from elliptic estimates (see Morrey [8]) there exists a constant C0 > 0 such that

|θn|2,α;C1(σn) � C0(|θn|L1(C2(σn)) + |K n|0,α;C2(σn)).

Up to extraction of some subsequence, we have εnσn → s∞ ∈ S
1, An → A∞ and An → A∞ where

A∞(σ, ρ) = A∞,s∞(ρ) = limn→+∞ An(εnσ+εnσn, ρ) = A∞(s∞, ρ). Moreover, θn(σ+σn, ρ) →
θ∞(σ, ρ) which satisfies |θ∞|2,α � 1, and then

1

CC0
� |θ∞|L1(C2(0)). (5.10)

We also have
L(A∞, 1)θ∞ = 0 on ω0 = R × (0, 1).

Let the subsolution v(ρ) = supσ∈R θ∞(σ, ρ) (resp. the supersolution v(ρ) = infσ∈R θ∞(σ, ρ)):
it satisfies L(A∞, 1)v � 0 (resp. L(A∞, 1)v � 0). From the maximum principle applied to
L0(A∞,s∞) we obtain

0 � v � θ∞ � v � 0.

This gives a contradiction with (5.10) and proves the lemma. ✷
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