Interfaces and Free Boundaries 2, (2000) 117-142

Error boundsfor a difference scheme approximating viscosity solutions of
mean curvature flow

KLAUS DECKELNICK

Centre for Mathematical Analysis and its Applications, School of Mathematical Sciences,
University of Sussex, Falmer, Brighton BN1 9QH, UK

[Received 18 December 1998 and in revised form 13 August 1999]

We analyse a finite difference scheme for the approximation of level set solutions to mean curvature
flow. The scheme which was proposed by Crandall & LioNanger. Math. 75, (1996) 17-41) is

a monotone and consistent discretization of a regularized version of the underlying problem. We
derive anL *°-error bound between the numerical solution and the viscosity solution to the level set
equation provided that the space and time step sizes are appropriately related to the regularization
parameter.

1. Introduction

The aim of this paper is to prove an error estimate for a difference scheme approximating mean
curvature motion in its level set formulation. This approach can be described as follows: det

R", n > 2 be a given initial hypersurface and choose a continuous funggio®" — R such that

I corresponds to the zero level setpf i.e. o = {Xx € R"|ug(x) = 0}. If u: R" x [0, 00) — R

is the unique (viscosity) solution of

Uy Uy:
Up = (aij - ﬁ) Uy, INR" x (0, 00) (1.1)
u(., 0)=ug in R", 1.2)

we then calll"(t) = {x € R"|u(x,t) = 0}, t > 0 a generalized solution of the mean curvature
flow problem. Equation (1.1) is a quasilinear, degenerate and possibly singar £f0) parabolic
equation which gives rise to a number of difficulties both from a theoretical and numerical point of
view.

Existence and unigueness for (1.1), (1.2) have been obtained by Chen, Giga & Goto [1] and by
Evans & Spruck [10] within the theory of viscosity solutions. The level set method therefore gives a
natural way of defining a global solution for the mean curvature flow problem which is meaningful
even after the onset of singularities.

We briefly describe the existence part in [10] since it is connected to the numerical method
which we are going to analyse. Their idea consists of introducing the following regularized version
of (1.1), (1.2), namely

s, U
ué(.,0)=ug inR". (1.4)
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If ug is smooth, then (1.3), (1.4) have aglobal solution u¢ which satisfies
lu¢l, |Du¢|, Juf| < C, uniformly on R" x [0, co) (1.5)

where C only depends on up. By (1.5) and the Arzela—Ascoli theorem, (u€) has a subseguence
which converges locally uniformly on R" x [0, 00). Its limit u € CO(R" x [0, 00)) then is the
unique viscosity solution of (1.1), (1.2) (see Section 2) and the whole sequence (u€) convergesto u
ase — 0.

Let us now turn to the numerical approximation of (1.1), (1.2). In [4], Crandall & Lions gave
an explicit finite difference scheme which is both monotone and consistent. Rather than discretizing
(1.2), (1.2), they introduced a scheme for the approximation of (1.3), (1.4) and exploited the fact
that u¢ — uase — 0. In order to describe their method we denote by

Go={p(Mg,....mMy) M €Z,i=1...,n} (p >0
aspace mesh. To every grid function v : G, — R we associate afunction Ev € CORM) satisfying
(Ev)(X) = v(X) forall x € G,.
A simple way to construct Ev isthe following: let
Qn = {q R"SRIQX) = Y ... aan1-~-Xf{”} .
i €{0,1}
A short calculation shows that dim Qp, = 2". On the other hand, the n-rectangle
n
Rm:{xeR”Hngigl x=pm+pZAia}, me Z"
i=1

has 2" verticesand it is not difficult to see that for every v : G, — R, m € Z" there exists aunique
Um € Qn which satisfies

Im(X) = v(X) forall x e RnNgG,.
Then the function Ev : R" — R, Ev(X) ;= im(X), X € Ry iswell-defined, continuous on R™ and

interpolates v on G,,. Furthermore, observing that the space of polynomials of degree less than or
equal to oneis contained in Qy, the Bramble—Hilbert Lemmaimplies

v — EvllLooRy) < 602 D20]lLo(Ry)- provided v € HZ®(Rn). (1.6)

The extension Ev alows usto evaluate a grid function on points not belonging to G,.
Next, we denote by S(n) the space of real symmetric n x n matrices. We define ¢ : R" —
S(n), 0(p) = (6 (P)ik by

Pi Pk
€2+ |pl?’

. 1
0 (P) = dik — T (1.7)

A/ €2+1pl?
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The following identity can be viewed as an approximation of the relation P2 = P which holds for
< , pi pk> _
P == 5|k I — .
[Pl P/ ik
- Pi Pk
> 65(P)0g; (p) = ik —
j=1

L S i,k=1...,n,peR" 1.8
21 IpE p (1.8)

Equation (1.8) allows us to rewrite the right-hand side of (1.3) as follows (ignoring the time
dependence of u¢ for amoment):

us, us, n
(Sik - m) uf(ixk = ;(ee(Dlﬁ)ej)i (9€(Du€)ej)ku§ixk

&

U Ué(. + ho¢(Du)g)) + ué(. — ho¢(Du€)gj) — 2u¢
- h2

[N

for small h. The above relation is the basis for the scheme in [4] which we describe now: let At be
atimestepsizeandn : G, — R. Then Wiy : G, — R isdefined asfollows:
(Watn) (X) = n(X)
At Z En(x + ho*(D,n(x))g) + En(x — h6<(D,n(x))g) — 25(x)
— h2
J:

(1.9)

pK S~ (X + o) + n(x — pg) — 2i(X)

+atl>
2
h = p

Here, D,n(x) isthe central difference operator, i.e.

1
D,n(x) = Z(n(x + per) — n(X — per), ..., n(X+ pen) — n(X — pen)).

A few remarks on the definition of Wyt arein order:

-1
€
(i) Notethat our definition (1.7) of (6€);k dlightly differs | by thefactor | 1 + ——
| VeZ+1pP2

from the one given in [4]. We made this change to ensure (1.8), the results of [4], however,
are not affected by this.

(ii) As mentioned above, the function Ep is introduced because x + h6€(D,n(x))gj is not
necessarily in G, so that the value of agrid function at that point might not be defined.

(iii) Finally, the third term in (1.9) appears in order to guarantee monotonicity of the resulting
scheme.

Let us now formulate the discrete problem: to do so, wefix T > Oandlet T = NAt, | =1At, | =
0,..., N.ThefunctionsU' : G, — R are obtained by
UO%(x) := ug(x), xeg,

I+1 I (1.10)
U'™(X) := (WxtUH(X), XeG,, 0KI<N-L
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The following convergence result for (1.10) is proved in [4].

THEOREM 1.1 Let u bethe viscosity solution of (1.1),(1.2) and suppose that

-, /NLip(uo) K

z — ), 0. 1.11
NG = (1.12)

P 1 K
Lo ZnAt(p+m><L K
Then

U'x) —ux,t) > 0 localy uniformly in (x, t) € R" x [0, c0)

as At \(Oand| At — t bounded.

When passing to the limit one thinks of ¢, p, h and K as being expressed in terms of At subject to
(1.11). The above scheme was the first one for which convergence was established. However, the
guestion of convergence rates remained an open problem. It is this question that we want to study
in this paper. Our result, Theorem 1.3 below, seemsto be the first one in this direction.

There are two main difficulties which have to be overcome in order to solve this problem. First,
asthe above scheme approximates (1.3), (1.4) rather than (1.1), (1.2), the error between u and u¢ has
to be estimated in terms of €. We have the following result which relies on an idea communicated
toushby G. Barles.

THEOREM 1.2 For every a € (0, %), 0< T < oothereisaconstant C = C(ug, T, o) such that

sup (U —u)(x,t)] < Ce?, forale > 0.
xeRN,0<t<T

Theorem 1.2 now allows us to analyse (1.9) for afixed ¢ > 0. The main difficulty here consists of
estimating the higher order derivatives for the solution u€ in order to control the truncation error.
While (1.5) provides uniform bounds on the solution and itsfirst derivatives, bounds on higher order
derivatives will depend upon €. To obtain these, we shall interpret solutions of (1.3) asentire graphs
moving by mean curvature in R and exploit curvature bounds obtained by Ecker & Huisken in
[8]. Rather than listing these estimates now we shall state them at the various places when they are
used. Let us now formulate our main result:

THEOREM 1.3  Supposethefollowing relations between the parameters appearing in the definition
of W4t hold:

_1
2

Nlo

11 17
h=¢2, p=€2, At =C1e 2, K = cpe

for certain positive constants c; and cp. Then, for every o € (0, %), 0<T < octhereisaC =
C(ug, T, a) such that
sup JU'(X) —u(x, t)] < Ce”.

Let us review other work on the discretization of the level set equation: before existence and
uniqueness for (1.1), (1.2) were yet obtained, Osher & Sethian [18] introduced numerical schemes
for motion by mean curvature and carried out calculations (cf. also [19]). In [2], Chen, Giga,
Hitaka & Honmaconsider aslightly different finite difference scheme and establish its L °°-stahility.
Walkington [20] proposes afinite element algorithm, provesits stability with respect to discrete L *°-
and WL-1-norms and presents numerical examples. Finite element cal cul ations based on avariational
formulation of (1.3) can aso befound in [12].



ERROR BOUNDS FOR A DIFFERENCE SCHEME 121

Besides the level set method there are several other approaches to study motion by mean
curvature: from the geometric point of view it is quite natural to use a parametrization in order to
describe the evolving surfaces. Thisworksvery well before singularities occur and hasthe advantage
that the number of space variables coincides with the dimension of the surfaces. There are several
convergence results for the approximation of the curve shortening flow, see, for example, [7], [6],
[14] and the references therein. For n- dimensiona surfaces which can be described as a graph,
optimal error estimates for a semi-discrete finite element method have been obtained in [5].

Apart from the level set approach there is a further method which is capable of dealing
with singularities, namely the approximation by the Allen—-Cahn equation, a singularly perturbed
parabolic equation. An error analysis for a fully discrete approximation to this problem has been
carried out in [17].

An overview of the above methods together with an extensive list of references can be found in
the survey article [9].

The paper is organized as follows: as already mentioned above, Section 2 contains the proof
of Theorem 1.2. The proof of Theorem 1.3 will be given in Section 3, while the estimates for the
higher order derivatives of u¢ are collected in Section 4.

2. Proof of Theorem 1.2

Beforewe give the proof of Theorem 1.2 wewould liketo recall the notion of aviscosity solution for
(1.2). Let usbegin by introducing the parabolic second order superjets P2 u(x, t) and P2~ u(x, t).
We set

P2’+u(x, ) = {@& X)eRxR"xSN)| uy,s) <ux,ty+as—-t)+ ¢, y—x)
1
+SIX(Y = X), Yy =x) +o(ls =t +]y = XI) as (¥, 9) — (X, D}

and P2 u(x, t) = —P%T(—u)(x, t). The closure of P2+ u(x, t) is defined by

P2rux, t):={@ & X) € R x R" x (1) [3(Xm, tm, 8m, £m. Xm)
€ R" x [0, 00) x R x R" x S(n) with (@m, &m, Xm) € P%Tu(Xm, tm) and
(Xms tm, ams Sma Xm) - (X7 tv av é:v X)v m— OO}

and similarly for P2~ u(x, t).

DEFINITION 2.1 A function u € COR" x [0, 00)) is called a viscosity subsolution of (1.1)
provided that for every (xo, to) € R" x (0, oo) and every (a, &, X) € P2 Tu(x, t)

a<<5ij—i_%>xij ife 20
a< (8ij — pipy) Xij for some|p| < 1, if ¢ =0.

A viscosity supersolution is defined analogously; P2 u(x, t) is replaced by P%~u(x, t) and < by
>. A viscosity solution of (1.1) isafunction u € CO(R" x [0, o)) which is both a subsolution and
asupersolution.

In what follows we shall assume that the initial function ug satisfies

Upe C*R"  and  ug(x) =1, IX| > S (2.1)
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for some S > 0. The results of [10] imply that (1.1), (1.2) have a unique viscosity solution u €
CORM x [0, o0)) such that

Iullwie@xooy <C  ad  ux,t)=1,  |x[+t>R (2.2)

for some R > 0 depending only on S. Furthermore, the solutions (u€) of (1.3), (1.4) converge
locally uniformly to u. Our aim in this section is to establish arate for this convergence as stated in
Theorem 1.2.

To begin, let usfix « € (O, %) and 0 < T < oo. We claim that there exists a constant M =
M (ug, T, ) such that

sup (U—Uu%)(x,t) < Me” forall e > 0. (2.3)
XeRN,0<t<T
We shall argue by contradiction. Let us assume that for every M > O there existse = ¢(M) > 0
such that
sup (U—U)(X,t) > Me*. (2.9
XeRN,0<t<T
Wedefiney € R by
_ 21— )
T 1-2¢a
and consider the function w : R" x R" x [0, T] — R,

> 2 (2.5)

M
WX, Y, 1) = UK, D) — Uy, 1) — S el x—ypY — = et
y 2T
Note that in view of (2.4)
M
sup w(x,y,t) > sup (U—US(X, 1) — =——€°T
xRN, yeRN, 0<t<T XeRN 0<t<T 2T (2.6)
M
> ?e“.
Next, let us make sure that sup w is actualy attained. Since
€ o1y y
wX,y, )< sup u+ sup (—U°)— —e T Z[X Y]
RMx[0,T] R x[0,T] 14

<Cc—Ee-bix_yy
v

provided

1
W A
we deduce

sup wX,y,t) = sup w(X, Yy, ).
xeRN, yeR",0<t<T X—y|<r,0<t<T
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Furthermore, from step 1 in the proof of Lemma 2.3 in [11] we conclude that there exist B, >
0, be > 0 such that
B, 1

1—Us(x, t)] < BeePelx? < 26 = X # 0.
11— U, b < B T "

- . . . . ~ 4B
Combining this estimate with (2.2) we obtain for |[x| > R := max (R,r + < e—"‘) and

Mb,

X—yl<Tr

X, y, 1) < |[L—ué(y, )] < Be 1 < B 1 < M

w s Y X - ) X L0 LT = X €

bE |y|2 € (R—r)z 4

so that

sup wX,y,t) = sup wX, Yy, 1) =wX, 9,10

XeRM, yeRM,0<tLT IX| <R, |x—y|<r,0<t<T

for some (R, ¥, f). We claim that f > 0 provided p is suitably chosen. To see this, compute

w(X, y. 0) = Up(X) — Uo(y) — gel—% X —yJ”
2.7
<Ix—yl (Lip(uo) - gel—% X — y|y‘l>

and distinguish two cases: if [x — y| <

ipuo) Me“, then (2.7) implies

M
w(X, yv 0) g Zea~

1
If he other h —y| > ——Me€“, i 2.7 |
, on the other hand |x — y| aLip(uo) €%, we again use (2.7) to conclude
-1
. w v { Me* Y\
,0) <X — L ——€ 2 -
w(X,y,0) <X yI(ID(Uo) y € (4LIp(U0)) )

_ w(_M Y
= - L -
X yI( 'P(Uo) = = <4Lip(uo)) )

sincel— % +a(y — 1) = 0by (2.5). If we chose  in such away that 4~y Lip(up)” < uM” 1,

S, .
_ y4"Lip(ug)”

V= (2.8)

we obtain w(X, y, 0) < 0 sothat in conclusion

M
sup w(X,y,0 < —*
xeRM, yeR" 4

which shows that f > 0. In addition, we may assume that f < T. Otherwise, we could replace u by

8
G(x,t) := u(x,t) — T1 (8 > 0), which satisfies lim; ~7 G(x, t) = —oo uniformly in x € R".
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Furthermore, U is a subsolution of (1.1) which is sufficient for the subsequent analysis (see (2.11)).
Thiswould allow usto prove (2.3) for G in place of u and the result then follows by sending § — 0.
Summing up, there exists (%, ¥, ) € R" x R" x (0, T) such that

sup wX, y,t) = w9, 10).
xeRN, yeRN 0t <T

In order to proceed, we write w in the form

w(X’ y’ t) = U(X, t) - Ué(y, t) - ¢)(Xv yv t)

where M
Hoq1r o
t)="€e"2|x—yY + —€"t.
P(X,y, 1) yé IX =yl +2T€
By Theorem 8.3 in [3] there exist for every p > 0 matrices X, Y € S(n) such that
(i) (@, Dx¢(%, 9. ), X) € P>HuR, f)
(b, Dyg(%, 9,0, Y) € P> (-u(y, ) = —P>u(9, )
. M,
(”) a+ b= EG
1 X 0 )
@iin) —|=+IlAI)I < < A+ pA
o 0OY
where A= D2 _ #(R, ¥, ). Letting & = % — ¥, ashort computation gives

(x.y)

NI

Dxd (X, 9,) = —Dyo (R, ¥, §) = uel~2|E¥ 7% (2.9

B -B , o o X
A:(_B B ) B=pne 25" (v —2E @& +15°). (2.10)

Here, ® denotes the tensor product of two vectorsin R". In view of (iii) we have for all n € R"

X 0
nt(X+Y)n=(nt,nt)( ) ( 1 )
oY n
¢t B -B 2B2 —2B?2 n
-B B —2B2 2B2 n

sothat X +Y < 0. ]

Next, since (a, Dxp (X, ¥, ), X) € P2Hu(k, f) and u is a viscosity subsolution of (1.1), we
obtain .

a—(&j—ﬁ))(ijéo, ifé;ﬁO

HE (2.12)

a—(5ij—pipj)Xij<0, for some |p| < 1, if &€ =0.
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Furthermore,
us (9, ) = —h, Du‘(9,f) = —Dyp (%, ¥, D), D2uc(y, ) > -Y

because u€ is smooth. Thus (1.3) and (2.9) imply

us, (9, Hus, (9,1
_ ~ _ S | Yj ~
b=-u@.H= (8" 21 bw g, e ) S 3O
W ER g @12
s\ - 2 220z 5 ) i
€24 ple2v|g|2r—2
We distinguish two cases: if £ # 0, (ii), (2.11) and (2.12) give
M
RRpee J b
2T6 a—+
£ £ 2 .2—y 812y—4¢ £
(s - 58 x4 (5, - LEETET S
£12 €2 + u2e2 v |§|2r =2
. s 2.13)
. £, 2 tY (
= (Sij—éii (Xij + Yij) + = €’ EA
HE €[2(e2 + n2e27|5|2r—2)
ezétYé

< = - .
|£12(e? + 227|512 =2)
since X + Y < 0. In order to estimate this expression, we observe that in view of (iii) and (2.10)
Sty s £t X 0 0 stpe ftp2f
§'YE§=(0,§) . | <& B§+2p5 B
0 Y & (2.14)
=uly =D e 2§ + 208! B,
Inserting this inequality into (2.13) and letting o — 0 we obtain

3-L 2y—
S 2E)r 2

M < 1
_6 J— =
2T Sty €2 4 p2e2-v|Ej2r-2

vy ovy=2 _@=22 .
y=2 ev-1pv-le 27D |E|Y2

= — 1 y—1 e2v-D =
(v ) 1 €2 + M2€2—y|‘;’_—|2y—2

(E+E=1>withp= Mandq:
p q 14

Applying Young's inequality ab < %ap + %bq

2 —
Ll) we deduce
y—2

4 2 y=2 22—y £2y—2
2 35 0¢ Tagphe I

Mg (y — Dprtedd
2T €2 + M2€2—y|§|2y—2
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1 y=2
<Cy)urTe2r=D
3 y 4 Lip(uo)” \ 71 4
()
=C(y, Ug)e*M 1

where we used (2.8) and (2.5). Thisleadsto a contradiction if M islarge.
Finally, it remains to consider the case ¢ = 0. Now, (2.11) and (2.12) give

M o
EG —a+b
< (8 — pipy) Xij + & Yij
= (&) — pipy) (Xij +Yij) + pYPp.
Since y > 2, (2.10) implies that B = 0 so that the calculation in (2.14) yields p'Yp < O.
Furthermore, since X + Y < 0 we obtain %e“ < 0 which is again a contradiction. Thus (2.3)

is proved. The estimate for sup(u¢ — u) follows in an analogous way, which concludes the proof of
Theorem 1.2. a

3. Proof of theerror estimate

In this section we shall prove our main result, Theorem 1.3. The analysis of the finite difference
scheme requires, as usual, arguments based on Taylor expansions which in our case means that we
have to estimate higher order derivatives of u€. The proofs for these estimates are postponed to
Section 4.

To begin, let Wx; be given by (1.9), i.e. War = Wy at + W2 at, Wherefor x € G,

(Wy, atm) (X) =n(X)
LAt Xn: (En)(x + ho¢(D,n(x))g) + (En)(x — ho<(D,n(x))g) — 2n(X)
i=1

h2

K s (X+ 9)—|- (X_ e')—2 (X)
(Wz,Atn)(x):At'oT n o€ npz P€ n
=1

and En wasintroduced in Section 1. We start by estimating the local truncation error for Wi at.

LEMMA 3.1 Letuc bethesolution of (1.3), (1.4). For every o € (0, %) thereexist constantsC > 0
and A > 0 which only depend on ug, T, « and n such that

sup U (X, 1) — (Wo atu® (1) (]
X€G,,1=0,...,N—1

< CAt(,ozh_ze_2 + p2e®h™t 4 h2ve% 4 At6_3)

provided h < re2.
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Proof. Letusfixx € G, andl € {0,..., N — 1}. Clearly,

(Wp, 4tUc (L, 1) (X) = u(x, ) + RO(X, 1)

(3.1)

N ué(x + hos(Dus(x, t)))e, ) + uc(x — hos(Duc(x, §))e;, t)) — 2uc(x, t
+Atz ( (Duc(x, 1))g, 1) (hz (Duc(x, 1))g, 1) (X, 1)
i=1

where

At &
RE(x, 1) = 2 ((EuE(., 1)) (X +ho (DUt (X, 1))g) — u(x + hoc(Du‘(x, t))g, tr)
j=1
+(EUC(, 1)) (X —ho“(D,u (X, 11))€g) — u(x —ho(Du‘(x, 1)), t|)).
The remainder term is estimated by
[RE(x, )]

<CAth2(Jl(u* = EU)( )l + NI DUl 169 (Dpu (x, 1)) — 6°(DUe (x, 1)

< CAth™2(p? D2 (. 1) L + hlIDE Lo | Dpu(x, 1) — DU“(x, 1)) ).

Here we used (1.6) and (1.5). Next, it is not difficult to see that

005
'—'k(p)’<9, i,j,k=1,...,n, peR".
p; €

Furthermore,
DU (X, 1) — DUS(X, 1)] < Cp?|| D3u(., 1) flLee

so that we obtain, by Corollary 4.2 and Lemma 4.4,

|RE(%, )] S CAth™2(p?|D?U (., t) | + he o D3uc (., 1) | L) 2
<CAth=2(p2%e=2 4 hp2e~6). '
Next, let us define P€ := 0€(Duc(x, t)) € S(n). A Taylor expansion givesfor j =1,...,n
u‘(x £ hP, 1) =u(x, tj) £ h(Du‘(x, t}), P°g)
+:—2Lh2(D2u€(x iaji P<e, t))Pg, Pg))

where aji € (0, h). Then

2”: Ué(x +hPeg, ) + ué(x — hPeg, t) — 2u(x, )
h2

=1
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n

=Z<D2u€(x,t|)P€ej, Peej>

j=1
l n
+3 (D2 (x+ 0" Py, 1) — D2u(x, 1)) e, Pe)
=1
1 n
+5 <(D2uf(x — o P¢q. 1)) — D2UC(x. 1)) Pey. Pee,->.

Il
N

i
Using (1.8) and (1.3) we may rewrite thefirst term as

n n
D (DU (X, ) Pgj, Pég) =Y 65 (DU (X, )6 (DU (X, 1)U, (X, 1)
j=1 j=1
U (6 U (X 1)
€24 |Duc(x, 1|2

=uf (X, t).

(3.3)

Sik > U (X, 1)
Inserting these identities into (3.1) gives

(W, AtU (L 1)) (X) = US(X, 1)) + AtUS (X, b)) + RE(X, 1) + RE(X, 1) (34)
where, by Lemma4.8, since2a < 1

IRE(X, 1) <CAt sup sup ‘<(D2U€(X+O’P€ej,t|)— DZUG(X,H))PEGJ', Peej>‘
1<j<nlol<h

< CAth®e %
uniformly inx € G,, 1 € {0, ..., N — 1}, provided h < r€2.
Finaly, observing that

41
US(X, ti41) = US(X, 1) + Atug (X, 1) +/ (ti+1 — S)Uf (X, S) ds
1]

we obtain from (3.4)
[ (W, atU€ (., 1) () = US(X, b | < TREOG )]+ [REOX, 1))+ (AD? Ul
The lemma now follows from our estimates on the remainder terms and Corollary 4.6. O
LEMMA 3.2 Let u¢ bethe solution of (1.3), (1.4). Then
|(Wa, atu€ (., 1)) (X)| < CAtKph~te2, xeG,l=0,...,N.

Proof. A Taylor expansion givesfor j =1,...,n
U (X + o€, ) + U (X — pg, ) —2u°(x, ) 1 -
’ o ‘ = 5 (U5 (&7 1) + Ug (6. 1)

for some Eji € (X, X £ pgj). Theresult then follows from Corollary 4.2. O
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We are now in position to prove Theorem 1.3. Let usfix « € (O, %), 0 < T < oo and define
L :=L(e, At, p,h, K) := p?h~2¢2 + p’h~te b4 h2*e=% 4 Ate3 + Kph~te 2.
Combining Lemma 3.1 and 3.2 we obtain
[(WatU€ (., 1)) (X) — u€(x, ti11)| < CAtL, if h < A€’ (35)

In addition, the results of Section 1.3 in [4] ensure that W, is monotone (i.e. f < g impliesthat
Wyt f < Wit Q) provided that conditions (1.11) are met.
We denote by U' : G, — R the discrete approximation at time | At (see (1.10)) and claim that

sup [U'(x) —u¢(x,t)| < ClAtL, 1 =0,...,N. (3.6)
xeG,
To see this, we use induction on |. The estimate is clearly true for | = 0. Assuming that (3.6) holds
for I, we obtain
U'0) <us(x,t) +ClAtL,  xeg,,

so that the monotonicity of Wt together with (3.5) imply
UM 00 — U (X, tr41) = (WaeUD) (0 — u“(x, tig)
< (War (U(, ) + CIAtL)) (X) — u(X, ti41)
= (Watu®(, 1)) (¥) + CLAtL — u(x, ti41)
<C( +1AtL.

Here we also made use of the relation W (f + ¢) = W, f + ¢ for all constants ¢ which follows
immediately from the definition of W;.
In the same way we obtain u€(x, t +1) — U't1(x) < C(l + 1) AtL sothat (3.6) for | + 1 follows.
The proof of Theorem 1.3 is now completed by combining Theorem 1.2 and (3.6). Sincel At <
NAt = T weobtain

sup Jux, t) —U' (0]
xeG,,1=0,...,N

< osp GGt —uEG )+ sup Jus(x, ) — U
N

< Ce¥ + C(,ozh_ze_2 + 0% Ot h2e % 4 Ate 3 + K,oh_le_z)

provided h < Ae?. We now choose the parameters in such away that on one hand the conditions
(1.11) are satisfied and on the other hand the two terms on the right-hand side of the above inequality
balance. Thisleadsto the choices

5 11 17 1
h=¢2, p=¢€2, At =C1e 2, K =cpe 2

which satisfy (1.11) if ¢; and ¢, are suitably chosen. In addition we have h < A€? for small e.

Asaresult

sp Jux, ) —U' ()] < Ce®
xeG,,1=0,...,N

and the theorem is proved. O
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4. Estimatesfor higher order derivatives

In this section we shall prove the various estimates on the higher order derivatives of u€ which were
needed to control the local truncation error of W_,¢. For our approach the following observation
made in [10] is crucial: if u¢ isasolution of (1.3), then the function U¢ : R" x [0, oo) — R given

1
by U€(x, t) := —u®(x, t) solves the equation
€

1 us, Uy, 1
€ __ T€_ S A U
Ui = et (8” €2+ |Du¢|? € %X
Us U
s — X €
B (8” 1+ |DUE|2> Vs “

D €
=.,/1+ |DU¢2 div __bY )
V1+|DU<2

This means that the graph I} = {(X, Xn4+1) € R | x,01 = U€(x, t)} of U¢(., t) is moving by
mean curvature. Mean curvature evolution of surfaces, which can be written as a graph over some
hyperplane, has been studied by Ecker & Huisken in [8] where the authors examine the existence of
global solutions and their asymptotic behavior. In particular, they obtain estimates for the curvature
and higher order derivatives of the curvature. It turns out that these estimates can be trandlated into
estimates on derivatives of u® by exploiting the relation between ;€ and u€.

Before we carry out this idea, let us introduce some notation from differential geometry. Let
F:V — R™! (V c R" open) be a parametrization of a smooth, n-dimensiona manifold. The
induced metric G = (g;j) and the second fundamental form A = (h;j) are defined by

aF oF 92F .
gij={7—>7—), hij=(—=—.N), ibj=1...,n
X 09X 09X 0X;

where N is the normal to the manifold. We denote by g'l the components of the inverse matrix of
G. The Christoffel symbols of the second kind are given by

1 ad ad d
= Zg" (=gii + ——git — —Gij i j.k=1...n 4.2

In what follows, we regard all functions, vectors and tensors as being given on V. Hence, the
covariant derivative of afunction f isdefined by

d .
ij:—f, j=1...,n
0X;

The covariant derivative of a covariant vector X = (X;) isgiven by

9 -
ViXi=—X — LXK ij=1....n
3Xj



ERROR BOUNDS FOR A DIFFERENCE SCHEME 131

and this definition is extended to tensors so as to preserve the product rule and contractions. Thus,
for acovariant tensor T = (Tjk) of order 2

0

ViTik= 0X;
j

-I—ik_I—]Ikﬂl_I—]liTkl, ij,k=1...,n.

The Laplace Beltrami operator of afunction f isintroduced by
Af =dlvivjf.
Next, the inner product of two covariant vectors X = (Xj), Y = (Yj) is
X-Y=dxy,
while the lengths of covariant vectors (X;) and tensors (Tij), (Sjk) are
IXP=g'XiX;, TP=g"g"TuTji, ISP =9"9"9"*Sk Sis. 43
Let us now compute the above expressions for the manifold I¢. Since I¢ is parametrized by
FE(,t) : R" > R™L Fe(x, 1) := (x, US(x, 1) = (X, %uf(x, t)) we obtain
gij=<%,i—:>=5ij+éu§iu§j, i,j=1...,n
Thus, G =1 + E—lzDu6 ® Du¢ and therefore

. 1
hh_g-1_|_
@H)=G6"=I 62+|Du€|2Du€®Du€.

. L 1
Since the normal N€ is given by N© = ——————(—Du°, ¢) we compute for the second

V€2 + |Due 2

fundamental form

82|:e € o
hij=(—— N )= —25__ i j=1...n
0Xj 0X; /€2 + |Du¢ |2
In particular, we have for the norm | A| of the second fundamental form

€ €
uXi Xk qu X

A2 = dig¥hihi = glgl x A7
| | g-°g nikhj g'g 62+|DU6|2

(4.9

Thisrelation already indicates that bounds on second derivatives of u¢ can be derived from estimates
on |Al. In order to apply a corresponding result from [8] we introduce

1
vi= (N eny1) b= —Ve?+IDuel2, (4.5)
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From [8], Lemma4.1, and [16], Corollary 3.5, we have the following evolution equations

E”z — AvP=—2|A1%? — 6|Vv|?

3
E|A|2 — A|A?=—2|VA? + 2|A%

Note that according to (4.3)

Vo2 = glogoy.  IVAZ=¢1g"g"Vihg Vihs.

Therelations (4.6) and (4.7) are the main tool to prove the following curvature bound:

LEMMA 4.1 The second fundamental form of ¢ satisfies

sup | Al%v? < sup | A%, t>0.
I I

Proof. Corollary 4.2in[8].
Lemma 4.1 provides us with a bound on the second derivatives of uc:

COROLLARY 4.2 Thesolution u¢ of (1.3), (1.4) satisfies

ID2uf(X, t)] < Ce 2(e +|DUs(x, D)I?)  (x,t) € R" x [0, 00).

In particular, we havefort > 0
ID?U(, L < Ce™?

Proof. Lemma4.1, (4.4) and the definition of v givefort > 0

e 2 sup (g g¥ug, u Six ) % t)_supv |A?

xeRN

<supv?|A)?
Iy

=2 sup (9" g¥ug , u %ix) (%, 0)

xeRN

< Ce™2 sup |D?up(x)|2.
xeRN

Thus, our assumption (2.1) on ug implies

sup (g1 g ug U5 ) (X D) <

xeR"

Let usnow fix (x,t) € R" x [0, 00). If Du¢(x, t) = 0, then G(x, t) = |, so that

|D2U€(X, t)|2 = (g”g ux,xk XJX|)(X D <

(4.6)

4.7

(4.8)

(4.9)
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by (4.9), which proves (4.8) for this case.
. ~ Duf(x, 1) .
If Du¢(x,t) # 0, welet vy := m and choose vy, ..., vy such that {vq, ..., vp} isan
orthonormal basisfor R". Since
&2

i X, 1) =6ii —vjviji + ————=v1ivLj
g ( ) 1] 1,i V1, 62+|Du€|2 1iV1j

ashort calculation shows

gij gkl uii Xk U;J. X
n 2¢2 n et
= us ¥+ —— (T (N D — ] L 4.10
ij2=:2( U|UJ) + 62_,_ |Du€|2 ;( Ulvl) + (62 + |DU6|2)2( Ulvl) ( )

4

D2u6 2
@+ pupe V!

al functions being evaluated at (x, t). Combining this estimate with (4.9) proves (4.8). The second

estimate then follows from (1.5). O

Bounds on third derivatives of u® are now obtained in an analogous way, namely by estimating
thefirst derivatives of A.

LEMMA 4.3 Thereexistsaconstant C = C(ug, T) such that

supv?|[VAPZ < Ce 8, 0<t<T.
I*té

Proof. We argue along the lines of Lemma4.1in [8] and calculate
0 2 2 2 2
o (v VA )—A(v VA )
B] 9
=2 <&|VA|2 - AlVA|2> +|VA]? (ﬁvz - Av2> —2Vv? . VIVA2
Proposition 2.3 in [16] gives
9
a|VA|2 — AIVAP? < —2|V2A]? + CIA?|VA]?
which combined with (4.6) implies
0 2 2 2 2
ﬁ(u IVAI) — A(v?IVAF)

< —20%|V?A”? + Cv?| APV A2 — 202 A2V A)? (4.12)

—6|VA]’|Vv|? — 2Vv? - VIVAP2.
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Similarly asin the proof of Lemma4.1 in [8] we obtain with the help of Young's inequality
—2Vv2 . V|VA]Z = —Vv2. V|VA]Z — 4|VA| Vv - V|VA]|
< —v2Vu? V(v VAP) + v 2| V22|V AI? + 40|V A| [V2A] |V
= —207'vu . V(v¥|VA?) + 6| VU2 VAP + 207 V2 A2,

Inserting this estimate into (4.11) and using Lemma 4.1 we arrive at

3
E(UZ|VA|2) — AV VAP
< —2v71Vu - V(¥ VAP?) + Cv? AR VAP (4.12)

< —207 Vo V(»¥|VAP) + Ce VAL

Before we deal with the right-hand side of this estimate we derive an inequality which will be useful
in subsequent calculations. From (4.5) we obtain Vjv = —v2<Vi N€, ent1) which implies

Vo < v?VNE| = v?|A| (4.13)
by (4.22) below. Let usreturn to (4.12) and use (4.7) and (4.13) to obtain

3
5|A|2 — AIA? +2071Vy - VA2

< —2|VAP+2/A 4+ 407 Vol |A [VA]
< —2IVAP?+ 2|A1* + 4| APV A| (4.14)
—|IVA]Z +2|A* + 22 A

/N

< —|VAP+Ce™?

where we used Holder’s inequality together with the fact that |Aj2 < Ce 2 and |Al2v2 < Ce 2 by
Lemmad4.1. Thus, if wechoose 8 > C, (4.12) and (4.14) give

?
— <v2|VA|2+ P |A|2> —A <v2|VA|2+ P |A|2)

ot €2 €2
< —2v v v (vZWAI2 + %|A|2> +Ce®.
€

As a consequence, the function f 1= v2|V A + £2|A|2 — Ce 5 satisfies
€
af 9

Corollary 1.1in[8] thenimpliessup f < sup f fort > 0 so that
If Iy

supv?|VAIZ < Ce % + supv?| VAP + %
€ re €

sup | A2 (4.16)
I 0 Iy
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In order to estimate v|V A|2 at t = 0 we compute the covariant derivative of the second fundamental
form. According to (4.2)

ad
Vihg = ﬁhkr - FiThmr - Firrnhmk
|

and a short calculation shows that the Christoffel symbols are given by

= Yanthix i,k m=1,...,n
ik 62+|DU€|2’ >y P
Thus,
V'hk _ 8 ( U;er > U;muiixkuimxr uimuf(ixruimxk
Pk = o - 3 3
0% \ Ve? +[Duc|? €24+ |Dul?” /e +|Duc? (4.17)
Uik © (P Viv + hikVev + hir View) |
= - kr Viv + Nik Vr v 4+ Njy Vo).
JeZ+Dul2 /€2 + |Du¢ |2
€ €
. . i Xi X .
Taking into account that g'! = &;j — W,fmm (2.1) and (4.13) we obtain
€

C C
supv?|VAI2 < = sup |D3ug|? + C sup | A% |Vul? < — + Csupv?|Al* < Ce ™.
I§ € Rn r§ € r§

Inserting this estimate into (4.16) finally proves the lemma. |
Lemma 4.3 now allows us to bound the third derivatives of uc.
LEMMA 4.4 Thesolution u€ of (1.3), (1.4) satisfies
D3, DllLe <Ce™>,  0<tLT.
Proof. To begin, (4.17) immediately implies
01 g 0", U s < (€2 + IDUCI) | VAIZ + Ce2| A2 Vo)
<22 IVAP2 + C2 A*v?
< Ce™*

by (4.13) and Lemma 4.3. On the other hand, a similar calculation as in the proof of Corollary 4.2
shows

6
-4 ij oKl oS € 3,,€2
G 2 9190 Mo s > oz © U
The assertion of the lemma now follows from (1.5). O

The second derivatives of A can be estimated in a similar way as in Lemma 4.3. We leave the
detailsto the reader and just mention that the function f which appearsin (4.15) is now replaced by

= v V2AP + §|VA|2 + Z—§|A|2 —Ce &,

Thus we obtain
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LEMMA 4.5 Thereexistsaconstant C = C(ug, T) such that

supv?|V2AR < Ce®  0<t<T.
I‘Vté

As a consequence of the above curvature bounds we can estimate the second time derivative of u€.

COROLLARY 4.6 Thesolution u¢ of (1.3), (1.4) satisfies

sup [|ufy (., Dl < Ce ™3, 0<t<T.
Rn

Proof. Inview of (4.1) we have

uf:e\/1+|DU€|2H=\/62+|Duf|2H=evH (4.18)
where H isthe mean curvature of I'i¢. Differentiating thisidentity with respect to time yields
Ug = evgH + evHy.

us, us .
Clearly, evy = ———1X___ and therefore e|v;| < |Du¢|. We would like to estimate |Dug| by

V€2 + |Due|?

|Vus |. To do so, note that

(g’ Due)Z 62

g g — 162
0765 =k~ 2w @ v pwe

|2|5|2=v_2|§|2 foral € e R"  (4.19)

so that

=

. !
elur] < |DUf| < u(g'lu;Xi ung) = v|Vul]. (4.20)

Returning to (4.18) we obtain Viuf = € VjvH + evV; H which implies

VUS| <e|Vul| [H| + ev|VH| < ev?| Al [H| + ev|VA|
(4.21)
= |uf|v| Al + €v|VA| < Ce2

by (4.13), (4.1), (1.5), Lemma4.1 and Lemma 4.3.
According to [15], Corollary 3.5(i), we have Hy = AH + |A]2H which combined with (4.20)
and (4.21) gives

lug| < elve] [H] + ev|H
<oIVUE| [H| +ev(lAH| + |APH])

1
< IV + ev|V2A| + |uf| |A2
<Ce 3,

where we made use of (4.1), (1.5), Lemma4.1 and Lemma4.5. O
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Before we turn to alocal Holder-estimate for the second derivatives of u¢ we establish a bound
on the derivatives of the the matrix B(x, t) = (b (x, t))ij = (6 (DU (x, t)))ij.

LEMMA 4.7 Wehaveforal ¢ > 0:

m|0

sup sup |Dbij(x, )] <
1<i, j<nxeRM,t >0

Proof. We start by estimating the covariant derivative of the normal

. —Du¢ € c €
N¢ = , = |V, =]
\/62+ |Due |2 \/€2+ |Due |2 /€2 + |Du¢|?

ad k€
Since — N°€ = h; kg —— we obtain
8X| Xm
- aF¢ oF¢ -
VNP2 = gl (N, N§ ) = g hikg™hyi " < ' x >=g”gk'hikh,—| =|A?  (422)
I
on I'¢. Furthermore, writing
1 Du¢ ® Du¢ 1
B =6°(Du) = | — WRDW |1 ege (4.23)
+m 2-}-|DU€|2 1+0v-1
/ u€
we may estimate, by using (4.13) and (4.22),
1 \% 2
Vb < Al —aY

A4+vH2 v2 140
2
Vol + -2 |[VN€|
v+1

<
(erl)2|
2

<
(v+1)
<3JAl

A+ 2A

Employing (4.19) wefinally obtain

|Dbij| < v Vhij| < 3v]Al <

n\|0

by Lemma4.1. |

We are now in position to prove a Holder-continuity result for the second derivatives of u€.

LEMMA 4.8 Let u¢ be the solution of (1.3), (1.4) and 8 € (0, 1). ThereexissC > Oand 2 > 0O
which only depend on ug, 8, T and n such that for all (xg, to) € R" x [0, 00)

Sup

(D% (0 + P7y. to) — D2 (x0, t0)) P&, Pégj )| < Ce ¥ |y)?

provided |y| < Ae2. Here, P€ := 0€(Du (X, tg)) € S(n).
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Proof. Letusdefinew® : R" — R by
w(y) 1= U (X0 + Py, to) — U (Xo, to) — (DU (Xo, to), P°Y).
The derivatives of we¢ are
w;i (y) = (Du¢(xg + P€y, tg) — Du®(xo, to), P€g) i=1..., n
wyy, (Y) = (D?u(x0 + Py, to)P¢er, Pgy) i,j=1,...,n.
Thus, our lemmawill beimplied by the estimate
ID?w | cos (g < Ce ™2 (4.24)

provided R = 1¢? and A is chosen appropriately.
To prove (4.24) weregard w€ as the solution of a Poisson equation and use a Schauder estimate.
Abbreviating Q°(y) = 6°(Du“(xo + Py, tg)) ashort calculation shows

Awe(y) = trace(D?we (y)) = trace( P D?u‘ (xo + P€Y, to) P¢)
= trace( Q¢ (y) D?u¢ (xo + Py, t9) Q°(y))
+ trace(D?w  (y) — S () D*w (V) S' (V")

where S (y) = Q¢(y)(P9)~1 = Q¢ (y)(Q¢(0))~L. Let x1 := Xo+ P¢y. Remembering the definition
of Q¢ and (3.3) we abtain

n

trace(Q° () D?U¢ (x1, o) Q°(¥)) = D (DU (x1, t0) Q“(¥)§j, Q°(¥)§)) = uf (¥, to).

i=1
Asaresult,
Awe(y) = U (Xo + Py, to) + trace(D?w* (y) — S°(y) D*w* (y)S*(V)").

Next, let ¢ € C3(R™) be acut-off function, 0 < ¢ < 1, supp; C Bar = Bor(0), R« 1, =10n
Br.|D'¢| < CR™, 1< < 3and set 24 (y) := ¢(y)we(y). Then

AZE =F¢€ in By
=0 on dB;
where
FE(y) = £ (Y)Uf (X0 + Py, to) + trace( D2z (y) — S°(y)D?Z (y) S (y)")
+ trace( S°(y) (Du (v) ® D& (y) + De(y) ® D (y) + w* (1)D2 () S 1)),
A well-known Schauder estimate (see [13], Theorem 6.6) implies

10?2 llcos gy < CBMIFllcoss,)- (4.25)
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Before we start to estimate the right-hand side of (4.25) we derive two useful boundson | — &.

Note that by (4.23)
1
F)€ =1 — mve ® UE
so that
-1 _
PHY™" =1+ 14_1)71\16(5{)1)6

al functions being evaluated at (xo, to). The above identity together with Lemma4.7 implies
I =S WI=|(QO - QW)P)

= (6 (DU (X0, to)) — 6 (DU (X0 + P, 10)) (P

C _ C C
<ZIPYIPH ™ < Zwlyl € SR
€ € €

for y € Bor. Thus, assuming that R = 12 we arrive at

Similarly we obtain
I = S llcos (e < CARTP. (4.27)

A first application of the above estimates are bounds on the function w€¢. We claim that

lwé(y)| < CR?, IDw(y)| < CR, ID%we(y)| < C, lyl < 2R. (4.28)
To prove (4.28) wefirst establish the bound on the second derivatives. Let us write
D2we(y) = P D?u¢ (xo + P¢y, to) P*
= Q°(Y)D?u(xo + P°Y. ) Q(y) + DZw*(y)(I — S°(y)")
+(1 — S () D*w NS
so that (4.26) implies
ID%wf(y)| < |Q°(Y)D?U (X0 + PY. ) Q°(y)| + CAIDwe(y)l. |yl < 2R

and therefore
ID2we (y)| < 2|Q¢(y) DU (xo + P€Y, to) Q(Y)| (4.29)

provided A is sufficiently small. In order to estimate the right-hand side we let x; = xg + P€y and
distinguish two cases: if Du¢(x1, tg) = 0, then Q¢(y) = | and (4.8) gives

€2+ DU (x1, to)>

C.
€2

ID2we(y)| < 2|D%u(xo + P€y, to)| < C
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If Duc(x1,tp) # 0, we introduce an orthonormal basis {v1, ..., vy} asin Corollary 4.2 where
Du€(xq, tg) . .
v1 = —————. Inthis case we can rewrite ¢ (Du¢) asfollows:
[Du€(Xq, to)|
1 Du¢ ® Du¢
0¢(DU) =1 — il
+ € 2+ |DU€|2
\/T
Du¢ Du¢ 1 |Du¢|? Du¢ Du¢
=1 - @ —+|1- - 5 5 ®
1 Du¢ Du¢ Du¢ Du¢
=~ bu @ ou] ,/e + |Du€|2 o © Dul’
Thus, .
QUY) =1 —v1Qu+ v1 ® v1
VeZ+ DU (x1, to) 2
and a short calculation shows
Q°(y)D2uc (X0 + P€y, to) Q°(y)
n
6 . . . .
(klzzu”k”' T T Duep 2+ Due 2 Zz KV o+ S0

62
+ @ —— v1,iv1, .
€2 4+ |Du€|2 v1v1 j g

From (4.9) and (4.10) we deduce that aso in this case

|Q€(y) D2u¢ (%o + PCY, to) Q¢ (Y)|

n n 2
€ €
c Uy | + ———= ) Uy |+ 55 Uiy, |
Kkl V1Vk 2 2'7vv
(Z VT our &t @ ow
1

< C(g7gMu gy )’
< C
where u€ isevaluated at (X1, to). Inserting this estimate into (4.29) gives
Dy <C,  lyl<2R

Furthermore, the remaining estimates in (4.28) follow from the fact that w¢(0) = 0 and Dw€¢(0) =
0. We can now start to estimate || Ff||co,ﬂ(E—;l). In view of the elementary inequality || f gllcos <
I fllcosllgliLee + || T llLeellQllco.s, the properties of ¢ and (4.26)—(4.28) we obtain

IS*(Dw* ® D¢ + D¢ ® Dw® + w*D%¢) () flcos gy < CL+ R7P). (4.30)
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Next, writing

D27 — SD2Z(S)! = (I — §)D%Z + D2 (I — ()
and observing that D2z¢(y) = Ofor |y| > 2R we obtain
ID?2° — S D?Z($)" [l cos g,
< (2415 o) (I = Sl (B0 1022 licon g, (4.31)
HI1 = Sllcos gy ID*Z L°°(52R>>
< CAID?Z |Icos (g, + CRPID?Z L (Bop)

by (4.26) and (4.27). The last term on the right-hand side can be estimated further with the help of
(4.28) and the properties of the cut-off function, namely

ID2Z°|| L (Byr)

< C(ID2wS L (Bap) + 11D Lo (B0 I DWE lLw By + 105 Lo B0 1D% 1L (B30 )
<C.
If weinsert thisinequality into (4.31), theresult is
ID%2° — $*D?Z($)"|cos(g,) < CAID?Z[lcosg,) + CRP. (4.32)
Finally, it remains to estimate the Holder-norm of ¢ug (xg + P€., to) on By. Let us define he (y) :=
us (Xo + P€Yy, to) and proceeding in asimilar way as above we obtain
IDhe (y)|? = (Dh¢(y), Dh(y)) = (PDuf (xo + P€y, to), P* DU (X0 + Py, to))
<(Q°(Y)DUf (X0 + Py, to), Q°(Y)DU{ (X0 + Py, to)) + CA|Dh*(y)I?
=g (xo+ Py, to)uf , (X0 + P€y, to)Uf y, (X0 + Py, to) + CA|Dh(y)[?.
If A is chosen sufficiently small, we deduce
IDh*(Y)] < 2IVUf (X0 + P€Y, to)| < Ce ™2
by (4.21). This estimate together with (1.5) yields
lzuf (o + P to) o g,y < CL+ RP + e ?RVP), (4.33)
If we substitute (4.33) aswell as (4.32) and (4.30) into (4.25) we finally obtain
ID?Z llcos 5, < CAID?Z llcos gy + C(L+ R™) + Ce 2RV
<CAID?Z|lcos g, + Ce ¥

since R = re2. Choosing A sufficiently small and observing that ¢ = 1 on Br (4.24) follows and
the lemmais proved. 0
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