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On a constrained variational problem with an arbitrary number of free
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We study the problem of minimizing the Dirichlet integral among all functionsu ∈ H1(Ω) whose
level sets{u = li } have prescribed Lebesgue measureαi . This problem was introduced in connection
with a model for the interface between immiscible fluids. The existence of minimizers is proved
with an arbitrary number of level-set constraints, and their regularity is investigated. Our technique
consists in enlarging the class of admissible functions to the whole space H1(Ω), penalizing those
functions whose level sets have measures far from those required; in fact, we study the minimizers of
a family of penalized functionalsFλ, λ > 0, showing that they are Ḧolder continuous, and then we
prove that such functions minimize the original functional also, provided the penalization parameter
λ is large enough. In the case where only two levels are involved, we prove Lipschitz continuity of
the minimizers.

1. Introduction

Given a connected bounded domainΩ ⊂ R
n with Lipschitz boundary, a natural numberm � 1 and

real numbersαi , li such that

l0 < l1 < · · · < lm,

m∑
i=0

αi < |Ω| , αi > 0, i = 0, . . . , m, (1)

consider the following minimum problem:


min
u∈K

∫
Ω

|∇u|2

K = {u ∈ H1(Ω) : |{u = li }| = αi , i = 0, . . . , m},
(2)

that is, minimize the Dirichlet integral among all functions whose level sets{u = li } have Lebesgue
measure equal toαi , i = 0, . . . , m (observe that no boundary condition is given).

The above problem was first introduced by Ambrosioet al. in [4], motivated by a question posed
by Gurtin in connection with a problem on the interface between immiscible fluids.

In [4], the authors established existence of minimizers under certain assumptions on the vectors
li , namely that they should be extreme points of a convex set ofR

n ; in the scalar case this condition
reduces to considering only two phases, i.e.m = 1.
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In addition, several properties of minimizers where obtained in [4]; in particular, the asymptotic
behavior of solutions was identified, when the total volume of the different phases exhaust the total
measure of Ω .

In this note we focus our attention on the scalar case (i.e. u is real valued), and our goal is
twofold: on one hand, we prove the existence of minimizers of (2) for an arbitrary number of levels;
on the other hand, we study their regularity, which was not investigated in [4].

Our main result is the following theorem.

THEOREM 1.1 Suppose Ω ⊂ R
n is a connected bounded domain with Lipschitz boundary, m � 1

is a natural number and li , αi satisfy (1). Then problem (2) has a solution. Each solution is locally
Hölder continuous in Ω , and is harmonic in the open set Ω \ ⋃

i {u = li }. Moreover, if m = 1 (i.e.
only two levels are involved), then each solution is locally Lipchitz continuous.

Our technique consists in adding to the Dirichlet integral a quantity which penalizes those
functions u whose level sets have a measure which is less than the prescribed quantities αi , and
minimizing the penalized functional over the whole space H1(Ω). More precisely, for λ > 0 we
define the functional

Fλ(u) =
∫

Ω

|∇u|2 + λ

m∑
i=0

fi
(|{u = li }|

)
, (3)

where
fi (x) = (αi − x)+, i = 0, . . . , m (4)

are the penalization functions, and we consider the problem

min
u∈H1(Ω)

Fλ(u) (5)

in place of (2). We show that the minimizers of Fλ exist for all λ > 0 and are Hölder continuous
(Lipschitz continuous in the case of two levels). Furthermore, we show that when λ is sufficiently
large (depending only on Ω , αi and li according to the explicit condition (21)), then u minimizes
Fλ if and only if u is a solution to (2). As a consequence, we obtain that the minimizers of (2) exist
for all m � 1, and they are Hölder continuous (Lipschitz continuous when m = 1).

A penalization approach was also adopted in [1], where the Dirichlet integral is minimized
among all functions assuming a given boundary value and having a prescribed measure of the set
{u > 0}. Here we deal with an arbitrary number of free boundaries and no boundary condition:
the main difference with respect to [1], however, consists in the way we penalize the functionals
and, consequently, in the way we prove that for large λ the measures of the level sets adjust to the
prescribed values. The penalized functional in [1] was

Fε(u) =
∫

Ω

|∇u|2 + εsgn(ω−|{u>0}|)(ω − |{u > 0}|) (6)

where ω is the prescribed value of |{u > 0}|; in other words, the difference ω − |{u > 0}| was given
a weight ε if positive and 1/ε if negative. In [1], after proving Lipschitz continuity of the minimizers
and their linear growth away from the free boundary ∂{u > 0}, the standalone theory from [2] was
invoked in order to obtain the smoothness of ∂{u > 0} and of the normal derivative of u, which was
shown to be equal to some constant λε along ∂{u > 0}. With such tools available and an estimate
0 < c � λε � C with c, C independent of ε, it was possible to make smooth inward and outward
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perturbations of the set {u > 0} via diffeomorphisms and prove that, for ε small enough, the measure
of {u > 0} adjusts exactly to ω.

The only disavantage of the approach [1], perhaps, was the fact that the smoothness of the free
boundary was needed in order to study the behavior for small ε, and this made the technique in [1]
highly dependent on the measure-theoretic machinery from [2].

In this paper we present an entirely different approach, which allows one to tackle the problem
without relying on the smoothness of the free boundary and the normal derivative. Observe that,
according to (3) and (4), our penalization does not affect those functions whose level sets {u = li }
exceed the prescribed measures, since we a priori show that, for any minimizer of Fλ, the measures
of the level sets do not exceed the prescribed values (Theorem 2.1). This fact plays a central role in
our argument, since it allows us to avoid smooth inward perturbations of the sets {u = li } (which
would require strong smoothness properties of free boundaries and normal derivatives). The main
idea is that outward perturbations of {u = li } can be done in a natural way, without diffeomorphisms
or smoothness, just replacing u, in the set li < u < li+1, by wδ = li + c(u − li − δ)+, where
δ ∈ (li , li+1) and c is chosen in such a way that the other levels {u = lj }, j = i are preserved
(whereas {u = li } is replaced by the larger set {li � u � li + δ}).

When λ is large enough, we rule out the case |{u = li }| < αi showing that, in this case, it would
hold Fλ(wδ) < Fλ(u) for small δ, contrary to the minimality of u. More precisely, replacing u by
wδ , the Dirichlet integral increases by a quantity

li+1 − li
li+1 − li − δ

∫
{li <u<li +δ}

|∇u|2 ,

whereas penalization changes by −λ |{li < u < li + δ}|. The crucial point here is the fact that the
average of |∇u|2 over {li < u < li + δ} is bounded by a quantity independent of λ (Lemma 3.1).

Our approach seems to be quite general and we feel it might be of use in other settings also,
dealing with one or several free boundaries (in particular, it might be applied to problems of the
kind in [1] as well).

2. Existence of minimizers and basic properties

We begin with the definition of some quantities which depend only on Ω , αi and li , which will be
used throughout the paper without further reference.

REMARK 2.1 Given Ω , m � 1, αi and li as in (1), we let

µ = inf
u∈K

∫
Ω

|∇u|2 (7)

where K is as defined in (2). Moreover, we define the numbers

α = min
0�i<m

αi , h = min
0�i<m

(li+1 − li ), M = max(|l0| , |lm |). (8)

We denote by CS the Sobolev–Poincaré constant relative to Ω , that is, the smallest number such
that ∫

Ω

|u − ū| � CS |Ω|1/n |Du| (Ω), ū = −
∫

Ω

u, ∀u ∈ BV(Ω), (9)

where |Du| (Ω) is the total variation of the distributional derivative of u, and equals
∫
Ω

|∇u| if
u ∈ H1(Ω). We remark that CS depends only on the shape of Ω and not on its volume.
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For u ∈ K, we observe that∫
Ω

|u − ū| �
∫

{u=l0}
|l0 − ū| +

∫
{u=lm }

|lm − ū| � α(lm − l0) � αh.

Since Ω is connected, from the Sobolev inequality it follows that µ > 0 (and a positive lower bound
for µ can be explicitly determined in terms of the data). Moreover, since Fλ(v) = ∫

Ω
|∇v|2 when

v ∈ K, it holds that
inf

v∈H1(Ω)
Fλ(v) � µ, ∀λ > 0. (10)

PROPOSITION 2.1 If λ > 0 and u ∈ H1(Ω) is a minimizer of Fλ, then u is locally Hölder
continuous in Ω for every exponent θ ∈ (0, 1). More precisely, we have

|u(x) − u(y)| � CK |x − y| log
CK

|x − y| , (11)

for every compact set K ⊂ Ω and every x, y ∈ K , where CK is some positive constant depending
on K .

Proof. Let Br be an open ball such that B̄r ⊂ Ω , and let vr be the harmonic function on Br which
coincides with u on ∂ Br . Replacing u with vr inside Br , the Dirichlet integral on Ω decreases by∫

Br

|∇u|2 dx −
∫

Br

|∇vr |2 dx =
∫

Br

|∇(u − vr )|2 dx .

On the other hand, since this variation affects the values of u only inside Br , the penalization cannot
increase more than λ |Br |, hence we obtain from the minimality of u∫

Br

|∇(u − vr )|2 dx � λωnrn,

where ωn denotes the Lebesgue measure of the unit ball in R
n . Then (11) follows from the

arbitrariness of Br , reasoning as in Theorem 2.1 of [3]. ✷

THEOREM 2.1 For all λ > 0, the functional Fλ in (3) achieves a minimum u over H1(Ω), and
each minimum u satisfies

l0 � u(x) � lm, for a.e. x ∈ Ω. (12)

If, moreover,
λ >

µ

α
(13)

and u ∈ H1(Ω) is a minimum for Fλ, then it holds that

αi − µ

λ
� |{u = i}| � αi , i = 0, . . . , m. (14)

Proof. Let uk be a minimizing sequence for Fλ. Replacing, if necessary, uk with
min(lm, max(l0, uk)), it is not restrictive to assume that |uk | � M . Then, since∫

Ω

u2
k � |Ω| M2, sup

k

∫
Ω

|∇uk |2 � sup
k

Fλ(uk) < +∞,
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passing to a subsequence (not relabeled), there exists u ∈ H1(Ω) such that

∇uk → ∇u weakly in L2(Ω), uk(x) → u(x) for a.e. x ∈ Ω .

Then u is a minimum for Fλ by semicontinuity. In order to prove (12), it suffices to observe that
replacing u by w = max(l0, min(u, lm)) would yield Fλ(w) < Fλ(u) in case (12) should not hold,
contrary to the minimality of u.

Moreover, from (4), (3) and (10) it follows that

λ(αj − |{u = j}|) � λ

m∑
i=0

fi
(|{u = i}|) � Fλ(u) � µ, j = 0, . . . , m,

which proves the first inequality in (14).
It remains to prove the second inequality in (14). In order to do so, we suppose that

∣∣{u = lj }
∣∣ >

αj holds for some j and we seek a contradiction. Letting E = {u = lj }, we observe that E is
closed in Ω , according to Proposition 2.1. Then we can choose a point x0 ∈ Ω ∩ ∂ E such that
|B(x0, r) ∩ E | > 0 for all sufficiently small r > 0 (the existence of such x0 follows from elementary
measure-theoretic arguments). In particular, since u(x0) = lj and u is continuous, there is r such
that, letting Br = B(x0, r), it holds that Br ⊂ Ω and

0 < |Br ∩ E | < |Br | � |E | − αj , |Br ∩ {u = li }| = 0, i = j. (15)

Then, if v ∈ H1(Ω) is harmonic in Br and coincides with u outside Br , we have∣∣{v = lj }
∣∣ � |E | − |Br | � αj , |{v = li }| = |{u = li }| , i = j.

Then the penalization of v is the same as that of u, and its Dirichlet integral is less than that of u
(observe that u is not harmonic inside Br , by virtue of (15)), thus violating the minimality of u.
Since this is a contradiction, it must hold that

∣∣{u = lj }
∣∣ � αj for all j , and (14) is completely

established. ✷

The following elementary observation will allow us to simplify all our arguments, since the level
sets {u = li } and {u = lm−i } play complementary roles.

REMARK 2.2 If u minimizes Fλ for some λ > 0, then the function lm −u minimizes the functional
obtained from (3) by replacing li with lm − li and αi with αm−i , i = 0, . . . , m.

Now we establish some properties of the minimizers of Fλ, which generalize those obtained in [4]
for the case of two levels.

THEOREM 2.2 If u ∈ H1(Ω) is a minimum for Fλ and (13) holds, then∫
Ω

|∇u|2 φ(x) f ′(u) +
∫

Ω

f (u)∇u∇φ = 0 (16)

for all φ ∈ C1(Ω̄) and all Lipschitz f such that f (li ) = 0, i = 0, . . . , m, and

∫
Ω

|∇u|2 g(u) =
m−1∑
i=0

(
−
∫ li+1

li
g(s) ds

) ∫
{li <u<li+1}

|∇u|2 (17)

for all g ∈ L∞(R).
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Proof. For ε > 0, let uε = u+εφ f (u), and observe that uε(x) = li whenever u(x) = li . Therefore,
the penalization of uε does not exceed that of u, and Fλ(u) � Fλ(uε) implies∫

Ω

|∇u|2 �
∫

Ω

|∇uε |2 .

Then (16) follows from the arbitrarity of ε. Finally, given g ∈ L∞(R), let

f (t) =
m−1∑
i=0

(∫ t

li
g(s) ds − (t − li ) −

∫ li+1

li
g(s) ds

)
χ[li ,li+1)(t)

and observe that f is Lipschitz continuous and f (li ) = 0. Then (17) follows from (16) with this
choice of f and φ ≡ 1. ✷

3. Behaviour for large λ

The following lemma is crucial in order to prove that, for large λ, the measures of the level sets
adjust to the prescribed values.

LEMMA 3.1 If λ � 2µ/α and u minimizes Fλ, then for any δ ∈ (0, li+1 − li ) it holds that

−
∫

{li <u<li +δ}
|∇u|2 � C2

1 (18)

where

C1 = 2µ
|Ω|1+ 1

n

hα2
CS (19)

depends only on Ω , li and αi .

Proof. Letting At = {u < t} for t ∈ (li , li+1), we have {u = li } ⊂ At ⊂ Ω \ {u = li+1} and∫
Ω

∣∣∣∣χAt − −
∫

Ω

χAt

∣∣∣∣ = 2
|At |
|Ω| (|Ω| − |At |) � 2

|{u = li+1}| |{u = li }|
|Ω| � α2

2 |Ω|
(the last inequality follows from (14)). For almost every t ∈ (li , li+1) it holds that χAt ∈ BV(Ω),
∂ At = {u = t}, and the isoperimetric inequality (9), combined with the last inequality, yields

α2

2 |Ω| � CS |Ω| 1
n Hn−1({u = t}), i.e. µ � hC1Hn−1({u = t}). (20)

Therefore, for δ ∈ (0, li+1 − li ) and for a.e. t ∈ (li , li+1), from (17) with g = χ(li ,li +δ), (10) and
(20) we obtain∫

{li <u<li +δ}
|∇u|2 = δ

li+1 − li

∫
{li <u<li+1}

|∇u|2 � δµ

h
� δC1 Hn−1({u = t}).

Integrating the last inequality with respect to t over (li , li + δ), dividing by δ and using the coarea
formula yields∫

{li <u<li +δ}
|∇u|2 � C1

∫ li +δ

li
Hn−1({u = t}) dt = C1

∫
{li <u<li +δ}

|∇u| ,

and (18) follows from the Hölder inequality. ✷
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THEOREM 3.1 If λ satisfies
λ > max(2µ/α, C2

1) (21)

where C1 is given by (19), and u minimizes Fλ, then

|{u = li }| = αi , i = 0, 1, . . . , m. (22)

As a consequence, u is a solution to (5) if and only if it is a solution to (2).

Proof. From |{u = li }| < αi for a given i < m we derive a contradiction (the case i = m easily
follows from Remark 2.2). Indeed, if |{u = li }| < αi , then for all sufficiently small δ ∈ (0, li+1 − li )
it holds that

|{u = li }| + |{li < u � li + δ}| � αi . (23)

For such δ we let

wδ(x) =




u(x) if u(x) � li

li + li+1 − li
li+1 − li − δ

(u − li − δ)+ if li < u(x) < li+1

u(x) if u(x) � li+1

and we observe that

{wδ = lj } = {u = lj }, j = 0, . . . , m, j = i,

{wδ = li } = {u = li } ∪ {li < u � li + δ}.
(24)

Therefore, recalling (23), Fλ(u) � Fλ(wδ) simplifies to

λ |{li < u � li + δ}| �
∫

Ω

|∇wδ|2 −
∫

Ω

|∇u|2 . (25)

On the other hand, from (17) with g = χ(li +δ,li+1) we obtain∫
Ω

|∇wδ|2 =
∫

{u<li }
|∇u|2 +

∫
{u>li+1}

|∇u|2 + li+1 − li
li+1 − li − δ

∫
li <u<li+1

|∇u|2

and (25) reduces to

λ |{li < u � li + δ}| � δ

li+1 − li − δ

∫
li <u<li+1

|∇u|2 = li+1 − li
li+1 − li − δ

∫
li <u�li +δ

|∇u|2

where we have used (17) again with g = χ(li ,li +δ]. Dividing both sides by |{li < u < li + δ}| and
using (18) we have

λ � li+1 − li
li+1 − li − δ

−
∫

{li <u<li +δ}
|∇u|2 � li+1 − li

li+1 − li − δ
C2

1

which is a contradiction, since it violates (21) after taking the limit for δ → 0. Therefore,
|{u = li }| � αi and equality must hold by virtue of (14). ✷
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4. The case of two levels

In this section we suppose that m = 1, that is, we consider only two levels l0 and l1. In order to
simplify the notation, we can assume l0 = 0 and l1 = 1 without losing generality. Our goal here
is proving that, in the case of two levels, minimizers are Lipschitz continuous. In the general case,
however, we already know Hölder continuity of the minimizers (Proposition 2.1).

REMARK 4.1 Observe that in Section 2 the only use we made of Proposition 2.1 was in the proof
of Theorem 2.1, while proving the second inequality in (14). However, in the case of two levels the
proof of (14) can be completed without relying on continuity, as follows.

Let βi = min (αi , |{u = i}|), i = 0, 1, where u minimizes Fλ. From (13) and the first inequality
in (14), it follows that β0, β1 > 0, and u is also a solution of the problem


min
v∈K′

∫
Ω

|∇v|2

K′ = {v ∈ H1(Ω) : |{v = i}| � βi , i = 0, 1}
(26)

(indeed, for v ∈ K′ it holds Fλ(u) � Fλ(v), but due to the choice of βi the penalization of v does
not exceed that of u). From the results in [4] concerning the relaxed problem (26), it follows that
|{u = i}| = βi , i = 0, 1, and the second inequality in (14) follows, without assuming continuity.

The techniques of this section essentially follow the guideline of [2], Section 3. However, since
we are dealing with two independent free boundaries, comparison with harmonic functions (as
in [2], where minimizers are subharmonic) is no longer fruitful. Here, minimizers turn out to be
subharmonic near {u = 0} and superharmonic near {u = 1}, and the natural comparison functions
are the following.

REMARK 4.2 Given u ∈ H1(Ω) and a ball Br ⊂ Ω , we denote by Hu the unique harmonic
function such that u − Hu ∈ H1

0(Br ), and we let Hu ≡ u in Ω \ Br , so that Hu ∈ H1(Ω).
Moreover, we let

H−u = min(u,Hu), H+u = max(u,Hu).

The dependence of Hu, H−u and H+u on Br will always be clear from the context and will not be
pointed out explicitly.

We now state a very useful lemma on harmonic functions; the proof is omitted since it is just
the last part of the proof of Lemma 3.2 in [2] (see also [5], pp. 276–277).

LEMMA 4.1 If g ∈ H1(Ω), Br ⊂ Ω is a ball of radius r and g � 0 in Br , it holds that

|{g = 0} ∩ Br |
(

−
∫

∂ Br

g

)2

� Cr2
∫

Br

|∇(g − Hg)|2 , (27)

where C depends only on n.

REMARK 4.3 Given u ∈ H1(Ω), we denote

Ωi = {x ∈ Ω : |{u = i} ∩ Br (x)| > 0, ∀r > 0}, i = 0, 1,

Ω∗ = Ω \ (Ω0 ∪ Ω1).

It is easy to see that Ω0 and Ω1 are closed in Ω , whereas Ω∗ is open.
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Throughout this section, we assume that λ > 0 satisfies (13), so that Theorem 2.1 is available.

LEMMA 4.2 If u minimizes Fλ, then∫
Br

|∇(u − H+u)|2 � λ |{u = 0} ∩ Br | , (28)

(
−
∫

∂ Br

u

)2

|{u = 0} ∩ Br | � λCr2 |{u = 0} ∩ Br | , (29)

for any ball Br ⊂ Ω . Here C depends only on n.

Proof. For any ball Br ⊂ Ω , an elementary computation yields∫
Br

|∇(u − H+u)|2 =
∫

Br

|∇u|2 −
∫

Br

|∇H+u|2

and, since H+u ≡ u outside Br , Fλ(u) � Fλ(H+u) reads∫
Br

|∇(u − H+u)|2 �
1∑

i=0

fi
(|{H+u = i}|) − fi

(|{u = i}|).
Since u � H+u � 1 and f1 is nonincreasing, the above inequality implies∫

Br

|∇(u − H+u)|2 � f0
(|{H+u = 0}|) − f0

(|{u = 0}|). (30)

Now, from (14) we have |{H+u = 0}| � |{u = 0}| � α0 and, since f0(x)− f0(y) = λ(y − x) when
x � y � α0, (30) reduces to∫

Br

|∇(u − H+u)|2 � λ |{u = 0} ∩ {H+u > 0}| . (31)

Since u and H+u coincide outside Br , (28) follows from (31).
Now we apply Lemma 4.1 with g = H−u. Observe that g � 0, Hg = Hu and −∫

∂ Br
g = −∫

∂ Br
u;

moreover, g − Hg = u − H+u and {u = 0} ∩ Br ⊂ {g = 0} ∩ Br , and (27) yields

|{u = 0} ∩ Br |
(

−
∫

∂ Br

u

)2

� Cr2
∫

Br

|∇(u − H+u)|2 . (32)

Combining (32) and (28) we prove (29). ✷

THEOREM 4.1 Suppose λ satisfies (13) and u is a minimum for Fλ. Then Ω0 ∩Ω1 = ∅, and there
exists a constant C = C(n) such that for any ball Br = B(x, r) ⊂ Ω with r2λC < 1 it holds that

either Br ∩ Ω0 = ∅ or Br ∩ Ω1 = ∅. (33)

Moreover, u is subharmonic in the open set Ω \ Ω1, superharmonic in the open set Ω \ Ω0 and
harmonic in the open set Ω∗. In particular, u can be defined pointwise by

u(x) = lim
r→0

−
∫

Br (x)

u ∀x ∈ Ω (34)

and, according to this pointwise definition,

Ω0 = {u = 0}, Ω1 = {u = 1}, and Ω∗ = {0 < u < 1}. (35)
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Proof. Consider a ball Br = B(x, r) ⊂ Ω , and suppose |{u = 0} ∩ Br | > 0 and |{u = 1} ∩ Br | >

0 hold simultaneously. Then (29) implies

−
∫

∂ Br

u � r
√

λC . (36)

According to Remark 2.2, (29) also holds with 1 − u in place of u, which implies that(
1 − −

∫
∂ Br

u

)
� r

√
λC (37)

Adding (36) and (37) we obtain 1 � r2λC , where C depends only on n, and the first part of the
theorem is proved.

Now we prove that u is superharmonic in Ω \ Ω0. For any ball Br ⊆ Ω \ Ω0, it clearly holds
that |{u = 0} ∩ Br | = 0 and from (28) it follows that u ≡ H+u inside Br . Therefore, it holds that
u � Hu in Br , hence u is superharmonic in Ω \ Ω0 since Br was arbitrary.

The subharmonicity in Ω \Ω1 now follows from Remark 2.2, whereas in Ω∗ = Ω \ (Ω0 ∪Ω1)

u is harmonic, being both sub and superharmonic. The limit in (34) exists for all x ∈ Ω , since u is
superharmonic or subharmonic near x .

Now let x0 ∈ Ω0, and let Br = B(x0, r). Then (29) implies (36) for all r > 0 such that Br ⊂ Ω .
Multiplying both sides of (36) by rn−1 and integrating over (0, ρ) yields

−
∫

Bρ

u �
√

λCρ,

and from (34) we have u(x0) = 0. Furthermore, from Remark 2.2 we obtain u(x1) = 1 whenever
x1 ∈ Ω1. Finally, if x ∈ Ω∗, then u is harmonic near x , hence the strong maximum principle implies
that 0 < u(x) < 1. ✷

THEOREM 4.2 If u is a minimum for Fλ and m = 1, then u is locally Lipschitz continuous in Ω .

Proof. Fix a compact set K ⊂ Ω , a point x ∈ Ω∗ ∩ K , and let d = dist(x, ∂Ω), ρ = dist(x, Ω0 ∪
Ω1) and Bρ = B(x, ρ); if ρ � d , then u is harmonic in B(x, d), hence

|∇u(x)| � C(n)

d
−
∫

∂ Bd

u � C(n)

d
= C(n, K ).

If ρ < d , then at least one of either |{u = 0} ∩ Br | > 0 or |{u = 1} ∩ Br | > 0 is satisfied for all
ρ < r < d (depending on whether x is closer to Ω0 or Ω1); in the former case, from (29) we obtain
that (36) holds for all ρ < r < d , whereas in the latter case from Remark 2.2 and (29) applied with
1 − u in place of u we obtain that (37) is satisfied for all ρ < r < d. Taking the limit for r → ρ in
(36) or in (37), we obtain that

min

(
1

ρ
−
∫

∂ Bρ

u,
1

ρ
−
∫

∂ Bρ

1 − u

)
�

√
λC .

Since u and 1 − u are harmonic inside Bρ , and |∇u| = |∇(1 − u)|, we have

|∇u(x)| � C(n, λ).

Finally, if x ∈ K ∩(Ω\Ω∗), then either u(x) = 0 or u(x) = 1, and we can assume that |∇u(x)| = 0.
In all cases, |∇u(x)| is bounded by a constant C = C(n, λ, K ) when x ∈ K . ✷
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5. Concluding remarks and open questions

By the techniques introduced in this paper, one can probably handle problems of the kind (2) with
functionals more general than the Dirichlet integral, with only minor changes. However, even in the
simplest case, several questions remain unsolved.

We point out that we were not able to prove Lipschitz continuity of the minimizers when more
than two levels are involved. Indeed, reasoning as in Section 4, one can only prove that for arbitrary
m any minimizer u grows linearly away from the extreme free boundaries ∂{u = l0} and ∂{u = lm},
thus proving Lipschitz continuity in a neighborhood of the extreme levels {u = l0} and {u = lm}.
We remark that Lemma 4.1 cannot be applied near a middle level li (i.e. 0 < i < m), since if
x0 ∈ ∂{u = li }, then the function u − li might take, as far as we know, both positive and negative
values near x0 (although we believe that this cannot happen if u is a minimizer, we were not able to
rule out such a behavior). On the other hand, (27) is false if one drops the assumption g � 0, even
if one puts |g| in place of g in the left-hand side of (27), as one can see from the following example.

EXAMPLE 5.1 Let B ⊂ R
2 be the unitary ball, let k be an odd natural number and define, in polar

coordinates,

g(r, θ) = χ[e−π/2,1](r)

(
rk + e−kπ/2

sin(kπ/2)
sin log rk

)
sin(kθ).

Then, clearly, Hg = rk sin(kθ). Moreover, a simple computation yields

|{g = 0} ∩ B|
(

−
∫

∂ B
|g|

)2

= 4

π
e−π ,

∫
B

|∇(g − Hg)|2 = πk
(

1 + k
π

2

)
e−kπ ,

hence (27) does not hold for large k, even with |g| in the left-hand side.

Proving that minimizers are Lipschitz continuous would be an important step in order to prove
the linear growth away from the free boundaries, which would lead to regularity theorems for the
free boundaries and the normal derivative, following the ideas in [1]. Indeed, since any minimizer
u is harmonic in the open set Ω \ ⋃

i {u = li }, the theory of Alt and Caffarelli [2] on harmonic
functions with linear growth could be succesfully applied in a neighborhood of each level set {u =
li }. Moreover, the Neumann condition in the formal Euler equation of (2), i.e.

�u = 0 in Ω \
⋃

i

{u = li }, −∂u

∂ν
= λi on ∂{u = li } ∩ Ω (38)

could be given a precise meaning, reasoning as in [1]. At present, we can do this only in the case of
two levels, where one can prove linear growth proceeding as in Lemma 3.4 from [2], thus obtaining
that the Neumann condition in (38) is satisfied Hn−1-almost everywhere along the reduced boundary
of each level set (see [1], Theorem 3).

We point out that Lipschitz continuity (and even linear growth) could be proved for an arbitrary
number of levels, if only one could show that any point on any free boundary ∂{u = li } is either a
local maximum or a local minimum.

Finally, we remark that we do not know any explicit example of a minimizer except when n = 1
and Ω is an interval, where each minimizer is a monotone and piecewise linear function (see [4] for
more details).
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